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DERIVATIVES OF GENERALIZED MEANS

SILVIA TOADER

Abstract. A generalized mean is a reflexive positive function of two positive variables. We study
the partial derivatives of first and second order of a generalized mean. We also prove that a
homogenous generalized mean is a mean on a limited interval. The results are useful in the
researches related to the generalizations of the arithmetic-geometric mean.

1. Means and generalized means

A mean is defined usually as a function M : R2 — R, which has the property
min(a,b) < M(a,b) < max(a,b),Va,b > 0.
Of course, each mean M is reflexive, i.e.
M(a,a) = a, Ya > 0.

Sometimes this weaker condition is taken as a definition of means (see [2]), but we call
it a generalized mean. Thus, by generalized mean we understand a reflexive function
. R2
M : R T — R+ .
A (generalized) mean is called symmetric if

M(b,a) = M(a,b),Va,b > 0.
It is called homogeneous (of degree one) if
M(ta,tb) = tM(a,b),Va,b,t > 0.

Some important examples of means are the weighted power means P, ; defined
by

A-a"+ (1—A)- b/, n#0
Pn,l(mb):{ [al,bl—)t( ) ] ni() ’

with A € [0, 1] fixed. For A = 1/2 we get the (symmetric) power means P, = P, /> .
As the most known special cases we note the arithmetic mean A = P, the geometric
mean G = Py, and the harmonic mean H = P_; .

Mathematics subject classification (2000): 26E60.
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We give here a list of other well known means (see [3] and [6]):
— the extended logarithmic mean

1
1 a —b" r
Lab)=(-—2"2 ) f 0;
(a,5) <r logalogb) or r#

— the identric mean

— the extended mean

1
r_pr\ s
Er,s(a7b) = (E : a, )

r a* — b
for rs(r —s) # 0, while
E. (a,b) = I.(a,b) = [I(a’,b")]* for r#0

E.o=L,,and Eqo = G;
— the Gini mean

1
a + b\
Gi’,S(a7b) = (as +bs)

for r # s and

>

"1 b" -logbh
o) - g (1222100

a” +br
— the Moskovitz mean

a-b"+b-a

Mr(aab) = ar +br

We can compose the (generalized) means M, N and P obtaining the (generalized)
mean M(N, P) given by

M(N,P)(a,b) = M(N(a,b),P(a,b)),Ya,b > 0.
We shall use in what follows the mean Q defined on this way by
0 = Py3/4(Ps, G).

that is L
3 a4+ bt PP
b = _— _— .

In [5] are considered the following expressions:

2 2 2
G G P Py
M =A|— M, =A[— My =A—, My=A|—+=
1 <P2> ) 2 <Q) ’ 3 G’ 4 (G) ’
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2 2
M5:A<%> 5 MGZAPEZaHdM7:A<%) .
Of course, if M, N and P are generalized means and the function f : Ry — Ry is
such that f (1) = 1 then M - f (N/P) is also a generalized mean. Thus, all the above
expressions are generalized means.
Another less usual example is the following. Looking after generalized means of
harmonic type, we found the expressions
2ab a* + b> —2ab
Hla.b) = 23+ — 53
They define symmetric generalized means. For k € [0, 1] they are even means. For
instance Hy = H,H,, = A and H; = C = G,,; (the contraharmonic mean).
Finally we remember the exponential mean (see [6])

a-e*—b-e
T(a7b):W71

2. First order partial derivatives

Regarding the first order partial derivatives of means, we have the following results.
THEOREM 1. If M is a differentiable generalized mean then
M;(c,c) + My(c,c) = 1. (1)
Proof. Indeed, Taylor’s formula of degree one for M gives
M(a+1,b+ 1) = M(a,b) + (M} (a,b) + My(a, )] + O(),
for ¢ in a neighborhood of zero. Taking a = b = ¢ we get
c+1=c+i[M(c,c) + My(c,c)] + O(r),
which gives (1). O
REMARK 1. This doesn’t mean that the derivatives are positive.

EXAMPLE 1. For the generalized mean M defined by

b(a+3b)
M(a,b) = ——=
(a,b) 3t b
we have )
8b
4 _ @@
M;(a,b) = (Ba+b)?
thus

M (c,c) =—-1/2<0.

REMARK 2. For a mean, this cannot happen as we prove in the following
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THEOREM 2. If M is a differentiable mean then
M. (c,c) > 0. (2)
Proof. For t > 0 we have
M(c,c) =c<M(c+tc)<c+t

and so
M(c+1t,c)—M(c,c)

M(c,c) = lim >0. O
t—0,:>0 1t
REMARK 3. Similarly we prove that
Mj(c,c) > 0.
Using (1) we deduce that
0< M(c,e) < 1.
This property doesn’t hold in an arbitrary point.
EXAMPLE 2. For the contraharmonic mean
a’ + b?
Cla,b) = ——
(a,2) a+b’
we have ) )
a”+2ab—b
Cl(a,b) = —————— <0
a(a ) (a + b)z
if

0<a< (V2-1)b.

REMARK 4. If M is symmetric we know the value of the first order partial deriva-
tives for @ = b, even if M is a generalized mean.

THEOREM 3. If M is a symmetric differentiable generalized mean then
M;(c,c) = Mjy(c,c) = 1/2. 3)
Proof. If M is symmetric we have
M t,c)—M M 1) —-M
M. (c,c) = lim (c+t0) (c0) _ lim (cct1) (c,¢) = M, (c,c),
t—0 t 1—0 t
thus (1) gives (3). O

REMARK 5. For a mean the relation (3) was proved in [4]. This result is used in [4]
and [6] for proving the convergence of double sequences of Gauss type. The common
limit of such double sequences defines generalizations of the arithmetic-geometric mean.

REMARK 6. Another application of the above results is related to the following
theorem.
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THEOREM 4. If M is a differentiable homogeneous generalized mean, such that
Mj(1,1) = p € (0,1), (4)
then there exists a constant T > 1 such that
a< M(a,b) <b, (5)

for
ISQST.
a

Proof. As M is homogeneous, the relation (5) is equivalent with
b b
1<M (1, —) < -
a a
If we denote ¢ = b/a, we have the conditions

fO=M1,6)—1>0

and
glt)=t—M(1,1t) > 0.

But
f'(1) =M,(1,1) =p>0

so that we can find a 77 > 1 such that f () > 0 for 1 <¢ < 7T’. Similarly
g()=1-M(L,1)=1-p>0,
thus g(r) > 0 for 1 <r<T",with 7" > 1. We take T = min{7’,7"}. O
REMARK 7. We have the same property also for @ > b. Such a result was proved
for some integral means in [1]. As was remarked there, it means that a generalized

mean, with the above properties is in fact a mean, but only on a limited interval. We
have evalueted the value of T for some of the generalized means defined above.

Generalized mean T
A(G/Q)? 3.951...
AP,/G 5.570...
A(P,/G)? 2414 ...
A3)G? 4.236 ...
A(Q/G)? 1.913. ..

REMARK 8. The condition (4) is of course necessary for the validity of the above
theorem, as follows from the previous results.
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EXAMPLE 3. The generalized mean M defined by

_pat(d—p)hb

M(a,) qa+ (1 —q)b

»prq € (0,1),
is a mean if and only if p > ¢. Indeed, as

M(c,c) =p—q,

if p < g, it cannot be a mean (even on limited interval). For p > g it is easy to verify
that it defines a mean.

3. Second order partial derivatives

Other generalizations of the arithmetic-geometric mean can be obtained starting
from its integral representation (see [7] and [5]). In the study of these new generalizations
are useful the following results.

THEOREM 5. If M is a twice differentiable generalized mean then
w(c.0) +2Mg,(c,c) + Mg (c,c) = 0. (6)
Proof. We can use the same idea as in the previous proofs. Indeed, Taylor’s
formula of degree two for M gives

M(a+t,b+1t)=M(a,b) + t{M,(a,b) + M,(a,b)]
+ 2 [M}5 (a, b) + 2M,(a, b) + M(:(a, b)] /2 + O(F),

for ¢ in a neighborhood of zero. Taking a = b = ¢ and using the formula (1) we get
6). O

THEOREM 6. If M is a symmetric generalized mean then
(lz/b(C7 c)=-— ;IZ (c;0). (7)

Proof. As above M) (c,c) = M}, (c,c) and so (6) gives (7). O

In what follows we shall show that most of the “usual” symmetric means have the
property.
(04
22(6,6)2?7 o €R. (8)

By direct (but difficult) computation we get the following values of « in (8):

M Er,s Gr,s Mr

r+s—3 | r+s—1 r|°
0 ) T 2

Of course, we have here included the values of L,, I, and P, = G.o = Ey,,.
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For the generalized means of Kim we have the following values:

R|M | M, M3 My M5 Mg My

31 1 1 | 1] 3
=2z 12 ]-32]|2

a

In the case of generalized means of harmonic type, Hy wehave o« = oy = k—1/2.
But not all the symmetric generalized means have this property. For example we
have

1
[/zlz(ca C) = ga

thus it is not of the type (8).
On the other hand a non symmetric mean can also have the above property. For
example, in the case of P, we have (8) with

o =A(l—A)(n—1).
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