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DERIVATIVES OF GENERALIZED MEANS

SILVIA TOADER

Abstract. A generalized mean is a reflexive positive function of two positive variables. We study
the partial derivatives of first and second order of a generalized mean. We also prove that a
homogenous generalized mean is a mean on a limited interval. The results are useful in the
researches related to the generalizations of the arithmetic-geometric mean.

1. Means and generalized means

A mean is defined usually as a function M : R2
+ → R+ which has the property

min(a, b) � M(a, b) � max(a, b), ∀a, b � 0.

Of course, each mean M is reflexive, i.e.

M(a, a) = a, ∀a � 0.

Sometimes this weaker condition is taken as a definition of means (see [2]), but we call
it a generalized mean. Thus, by generalized mean we understand a reflexive function
M : R2

+ → R+ .
A (generalized) mean is called symmetric if

M(b, a) = M(a, b), ∀a, b � 0.

It is called homogeneous (of degree one) if

M(ta, tb) = tM(a, b), ∀a, b, t � 0.

Some important examples of means are the weighted power means Pn,λ defined
by

Pn,λ (a, b) =
{

[λ · an + (1 − λ ) · bn]1/n, n �= 0
aλ · b1−λ , n = 0

,

with λ ∈ [0, 1] fixed. For λ = 1/2 we get the (symmetric) power means Pn = Pn,1/2 .
As the most known special cases we note the arithmetic mean A = P1 , the geometric
mean G = P0 , and the harmonic mean H = P−1 .
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We give here a list of other well known means (see [3] and [6]):
— the extended logarithmic mean

Lr(a, b) =
(

1
r
· ar − br

log a − log b

) 1
r

for r �= 0;

— the identric mean

I(a, b) =
1
e

(
aa

bb

) 1
a−b

;

— the extended mean

Er,s(a, b) =
(

s
r
· ar − br

as − bs

) 1
r−s

for rs(r − s) �= 0 , while

Er,r(a, b) = Ir(a, b) = [I(ar, br)]
1
r for r �= 0

Er,0 = Lr , and E0,0 = G ;
— the Gini mean

Gr,s(a, b) =
(

ar + br

as + bs

) 1
r−s

for r �= s and

Gr,r(a, b) = exp

(
ar · log a + br · log b

ar + br

)
;

— the Moskovitz mean

Mr(a, b) =
a · br + b · ar

ar + br
.

We can compose the (generalized) means M, N and P obtaining the (generalized)
mean M(N, P) given by

M(N, P)(a, b) = M(N(a, b), P(a, b)), ∀a, b � 0.

We shall use in what follows the mean Q defined on this way by

Q = P4,3/4(P4, G).

that is

Q(a, b) =
(

3
4
· a4 + b4

2
+

a2b2

4

)1/4

.

In [5] are considered the following expressions:

M1 = A

(
G
P2

)2

, M2 = A

(
G
Q

)2

, M3 = A
P2

G
, M4 = A

(
P2

G

)2

,
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M5 = A

(
A
G

)2

, M6 = A
G
P2

and M7 = A

(
Q
G

)2

.

Of course, if M, N and P are generalized means and the function f : R+ → R+ is
such that f (1) = 1 then M · f (N/P) is also a generalized mean. Thus, all the above
expressions are generalized means.

Another less usual example is the following. Looking after generalized means of
harmonic type, we found the expressions

Hk(a, b) =
2ab

a + b
+ k · a2 + b2 − 2ab

a + b
.

They define symmetric generalized means. For k ∈ [0, 1] they are even means. For
instance H0 = H, H1/2 = A and H1 = C = G2,1 (the contraharmonic mean).

Finally we remember the exponential mean (see [6])

T(a, b) =
a · ea − b · eb

ea − eb
− 1.

2. First order partial derivatives

Regarding the first order partial derivatives of means, we have the following results.

THEOREM 1. If M is a differentiable generalized mean then

M′
a(c, c) + M′

b(c, c) = 1. (1)

Proof. Indeed, Taylor’s formula of degree one for M gives

M(a + t, b + t) = M(a, b) + t[M′
a(a, b) + M′

b(a, b)] + O(t2),

for t in a neighborhood of zero. Taking a = b = c we get

c + t = c + t[M′
a(c, c) + M′

b(c, c)] + O(t2),

which gives (1). �

REMARK 1. This doesn’t mean that the derivatives are positive.

EXAMPLE 1. For the generalized mean M defined by

M(a, b) =
b(a + 3b)
3a + b

we have

M′
a(a, b) = − 8b2

(3a + b)2

thus
M′

a(c, c) = −1/2 < 0.

REMARK 2. For a mean, this cannot happen as we prove in the following



520 SILVIA TOADER

THEOREM 2. If M is a differentiable mean then

M′
a(c, c) � 0. (2)

Proof. For t > 0 we have

M(c, c) = c � M(c + t, c) � c + t

and so

M′
a(c, c) = lim

t→0,t>0

M(c + t, c) − M(c, c)
t

� 0. �

REMARK 3. Similarly we prove that

M′
b(c, c) � 0.

Using (1) we deduce that
0 � M′

a(c, c) � 1.

This property doesn’t hold in an arbitrary point.

EXAMPLE 2. For the contraharmonic mean

C(a, b) =
a2 + b2

a + b
,

we have

C′
a(a, b) =

a2 + 2ab − b2

(a + b)2
< 0

if
0 � a < (

√
2 − 1)b.

REMARK 4. If M is symmetric we know the value of the first order partial deriva-
tives for a = b , even if M is a generalized mean.

THEOREM 3. If M is a symmetric differentiable generalized mean then

M′
a(c, c) = M′

b(c, c) = 1/2. (3)

Proof. If M is symmetric we have

M′
a(c, c) = lim

t→0

M(c + t, c) − M(c, c)
t

= lim
t→0

M(c, c + t) − M(c, c)
t

= M′
b(c, c),

thus (1) gives (3). �

REMARK 5. For a mean the relation (3) was proved in [4]. This result is used in [4]
and [6] for proving the convergence of double sequences of Gauss type. The common
limit of such double sequences defines generalizations of the arithmetic-geometricmean.

REMARK 6. Another application of the above results is related to the following
theorem.
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THEOREM 4. If M is a differentiable homogeneous generalized mean, such that

M′
b(1, 1) = p ∈ (0, 1), (4)

then there exists a constant T > 1 such that

a � M(a, b) � b, (5)

for

1 � b
a

� T.

Proof. As M is homogeneous, the relation (5) is equivalent with

1 � M

(
1,

b
a

)
� b

a
.

If we denote t = b/a , we have the conditions

f (t) = M(1, t) − 1 � 0

and
g(t) = t − M(1, t) � 0.

But
f ′(1) = M′

b(1, 1) = p > 0

so that we can find a T ′ > 1 such that f (t) � 0 for 1 � t � T ′ . Similarly

g′(1) = 1 − M′
b(1, 1) = 1 − p > 0,

thus g(t) � 0 for 1 � t � T ′′ , with T ′′ > 1 . We take T = min{T ′, T ′′} . �

REMARK 7. We have the same property also for a > b . Such a result was proved
for some integral means in [1]. As was remarked there, it means that a generalized
mean, with the above properties is in fact a mean, but only on a limited interval. We
have evalueted the value of T for some of the generalized means defined above.

Generalized mean T

A(G/Q)2 3.951 . . .

AP2/G 5.570 . . .

A(P2/G)2 2.414 . . .

A3/G2 4.236 . . .

A(Q/G)2 1.913 . . .

REMARK 8. The condition (4) is of course necessary for the validity of the above
theorem, as follows from the previous results.
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EXAMPLE 3. The generalized mean M defined by

M(a, b) = b
pa + (1 − p)b
qa + (1 − q)b

; p, q ∈ (0, 1),

is a mean if and only if p � q . Indeed, as

M′
a(c, c) = p − q,

if p < q , it cannot be a mean (even on limited interval). For p � q it is easy to verify
that it defines a mean.

3. Second order partial derivatives

Other generalizations of the arithmetic-geometric mean can be obtained starting
from its integral representation (see [7] and [5]). In the study of these newgeneralizations
are useful the following results.

THEOREM 5. If M is a twice differentiable generalized mean then

M′′
a2(c, c) + 2M′′

ab(c, c) + M′′
a2(c, c) = 0. (6)

Proof. We can use the same idea as in the previous proofs. Indeed, Taylor’s
formula of degree two for M gives

M(a + t, b + t) = M(a, b) + t[M′
a(a, b) + M′

b(a, b)]

+ t2[M′′
a2(a, b) + 2M′′

ab(a, b) + M′′
a2(a, b)]/2 + O(t3),

for t in a neighborhood of zero. Taking a = b = c and using the formula (1) we get
(6). �

THEOREM 6. If M is a symmetric generalized mean then

M′′
ab(c, c) = −M′′

a2(c, c). (7)

Proof. As above M′′
a2(c, c) = M′′

b2(c, c) and so (6) gives (7). �
In what follows we shall show that most of the “usual” symmetric means have the

property.

M′′
a2(c, c) =

α
c

, α ∈ R. (8)

By direct (but difficult) computation we get the following values of α in (8):

M E r,s G r,s M r

α r+s−3
12

r+s−1
4 − r

2

.

Of course, we have here included the values of Lr , Ir and Pr = Gr,0 = E2r,r .
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For the generalized means of Kim we have the following values:

R M 1 M 2 M 3 M 4 M 5 M 6 M 7

α −1 − 3
2

1
2 1 1

2 − 1
2

3
2

.

In the case of generalizedmeans of harmonic type, Hk we have α = αk = k−1/2 .
But not all the symmetric generalized means have this property. For example we

have

T ′′
a2(c, c) =

1
6
,

thus it is not of the type (8).
On the other hand a non symmetric mean can also have the above property. For

example, in the case of Pn,λ we have (8) with

α = λ (1 − λ )(n − 1).
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