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EXTENSIONS OF FATOU’S INEQUALITY

LIVIU C. FLORESCU

Abstract. Using some compacity techniques in the space of integrable functions we obtain an
expression of the gap in the Fatou’s inequality. Also, we derived as corollaries some results of
H.-A. Klei.

1. Introduction

For a sequence of integrable functions there are two impediments which, when its
occur, lead to a bad comportationof the sequencewith respect to the strong convergence:

• the concentration of mass disturb the weak convergence,
• the asymptotic oscillatory behaviour troubles the convergence in measure.

The following example (inspired by [8]) seems to be typical:
Let un : [−2π, 2π] → R , un(x) = n · χ

[− 1
n , 0]

(x) + sin(nx) · χ (0, 2π] (x),

∀x ∈ [−2π, 2π], ∀n ∈ N .
The sequence concentrates the mass in {0} and has an asymptotic oscillatory

behaviour on (0, 2π] .
There are two main instruments for control of these two deviations: the modulus

of uniform integrability gives a measure of the concentration of mass meanwhile the
asymptotic oscillatory behaviour is controlled by a Young measure.

M. Saadoune et M. Valadier ([8]) use two compacity results (“biting lemma” and
Prohorov’s compacity theorem for Young measures) for obtain a structural result which
is the most complet result about the comportation of a bounded sequence of integrable
functions.

We present the result of Saadoune and Valadier and we obtain some importants
consequences. Finally, we obtain as corollaries some convergence results of H.-A. Klei.

2. Biting lemma

Let (Ω , A ,μ) be a space with a positive bounded measure μ on the σ –algebra
A and let L1(A) be the space of all real–valued integrable functions on the set A ∈ A .

For every sequence (un)n∈N ⊆ L1(Ω ) ,

η((un)) = lim
ε→0

sup
μ(E)<ε

sup
n∈N

∫
E
|un|dμ
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is the modulus of uniform integrability of (un) (H. P. Rosenthal, [7]).
Obviously, (un) is uniform integrable if and only if η((un)) = 0 .

DEFINITION 2.1. ([1]). A sequence (un) ⊆ L1(Ω ) is w2 –convergent to u ∈
L1(Ω ) if there exists a sequence of “bits” (Bp) ⊆ A , Bp ⊇ Bp+1,μ(Bp) ↓ 0 such that,

∀p ∈ N ,
(
un|Ω\Bp

)
n∈N

is weakly convergent to u|
Ω\Bp

in L1(Ω \ Bp) .

We denote in this case un
w2−→ u and we can proof that

η((un)) = lim
p

lim
n

∫
Bp

|un|dμ

([2, Proposition 5] and [3, Corollary of Proposition 4]).

So, if un
w2

−→ u , (un) concentrates the mass on the sets Bp, ∀p ∈ N .

A very useful result concerning w2 –convergence is the Brooks–Chacon’s lemma
or biting lemma ([1]).

We give an improvement of this lemma as it appears in [3, Theorem 6].

THEOREM 2.2. For every bounded sequence (un) in L1(Ω ) there exists a subse-
quence (u1

n) w2 –convergent such that η((un)) = η((u2
n)) , for every subsequence (u2

n)
of (u1

n) .

Particularly this means that, for (u1
n) , the concentrationofmass is maximale among

all subsequences of (un) .

3. Young measures

DEFINITION 3.1. ([9]). Let B be the σ –algebra of all Borel sets of R ; a Young
measure is a positive measure τ : A ⊗ B → R + such that τ(A× R ) = μ(A), ∀A ∈
A .

Let Y be the space of all Young measures on Ω × R .

For every measure τ ∈ Y there exists a family (τx)x∈Ω of probabilities on R
such that, ∀Ψ ∈ L1(Ω × R , A ⊗ B , τ) ,∫

Ω×R
Ψ(x, y)dτ(x, y) =

∫
Ω

[∫
R
Ψ(x, y)dτx(y)

]
dμ(x).

(τx)x∈Ω is the disintegration of τ ([9]).
In an equivalent form, a Young measure is a (A − C )–measurable mapping

τ : Ω → P, τ(x) = τx, ∀x ∈ Ω , where P is the family of all probabilities on R and
C is the family of all Borel sets in the narrow topology on P ([4, Théorème 2.2]).

For each u ∈ L1(Ω ) , the Young measure associated to u is τu : Ω → P , where
τu(x) = τu

x = δu(x) (the Dirac mass concentrated in u(x) ). So, the mapping u 	→ τu is
an embeding of L1(Ω ) in Y (L1(Ω ) ↪→ Y ).
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The narrow topologyon Y , T , is theweakest topology on Y making continuous
the mappings

τ 	→
∫
Ω×R

χ A (x) · f (y)dτ(x, y),

∀A ∈ A and f ∈ C0(R ) (the space of all real continuous mappings f with
lim|x|→∞ f (x) = 0 ) (see [9, Theorem 3]).

If (un) ⊆ L1(Ω ) ↪→ Y and τ = (τx)x∈Ω ∈ Y then un
T−→ τ iff, ∀f ∈

C0(R ), ∀A ∈ A ,∫
Ω×R

χA(x)f (y)dτun (x, y) =
∫

A
f (un(x))dμ(x) −→

∫
A

(∫
R

f (y)dτx(y)
)

dμ(x)

If we denote uf (x) =
∫

R f (y)dτx(y) then un
T−→ τ iff (f (un))n∈N is weakly convergent

to uf in L1(Ω ), ∀f ∈ C0(R ) (see [4, Théorème 5.4]).

PROPOSITION 3.2. If un
T−→ τ then

τ(G′
u) = sup

a>0
lim

n
μ(|un − u| � a),

∀u : Ω → R measurable, where Gu = {(x, u(x)) : x ∈ Ω } is the graph of u and
G′

u = (Ω × R ) \ Gu .

Proof. For every measurable mapping u : Ω → R and for every a > 0,Ψi :
Ω × R → R +,Ψ1 = χ

(|y − u(x)| < a)
,Ψ2 = χ

(|y − u(x)| > a)
are measurables in (x, y)

and l.s.c. in y . Then ∫
Ω×R

Ψidτ � lim
n

∫
Ω
Ψi(x, un(x))dμ(x)

(see [9, Lemma 5]).
It follows that, ∀a > 0

τ(|y − u(x)| < a) � lim
n
μ(|un − u| < a), and (1)

τ(|y − u(x)| > a) � lim
n
μ(|un − u| > a) � lim

n
μ(|un − u| > a). (2)

It follows that

τ(Gu) = inf
a>0

τ(|y − u(x)| < a) � inf
a>0

lim
n
μ(|un − u| < a) (3)

and
τ(G′

u) = sup
a>0

τ(|y − u(x)| > a) � sup
a>0

lim
n
μ(|un − u| > a) (4)

= sup
a>0

lim
n
μ(|un − u| � a).

From (3) we obtain
τ(G′

u) � sup
a>0

lim
n
μ(|un − u| � a) (5)
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and from (4) and (5) we have τ(G′
u) = supa>0 limn μ(|un − u| � a). �

REMARK 3.3. un
μ−→ u iff τ(G′

u) = 0 iff
∫
Ω×R |y − u(x)|dτ(x, y) = 0 ⇔∫

Ω

(∫
R |y − u(x)|dτx(y)

)
dμ(x) = 0 ⇔ ∫

R |y − u(x)|dτx(y) = 0 μ –a.e. ⇔ τx(y �=
u(x)) = 0 ⇔ τx = δu(x) , μ –a.e.

Particularly, if τ ∈ L1(Ω )(∃u ∈ L1(Ω ) such that τ = τu) then un
T−→ τu iff

un
μ−→ u ( (un) is convergent in measure to u ).
So T |

L1(Ω)
is the topology of convergence in measure on L1(Ω ) .

PROPOSITION 3.4. Let (un) ⊆ L1(Ω ) be a bounded sequence such that un
T−→

τ ∈ Y . Then τ has a barycenter u ∈ L1(Ω ) .

Proof. The mapping Ψ : Ω × R → R +,Ψ(x, y) = |y|, ∀y ∈ R is (A ⊗ B )–
measurable and lower semi–continuous in y . Then∫

Ω×R
Ψ(x, y)dτ(x, y) � lim n

∫
Ω×R

Ψ(x, y)dτun(x, y) (∗)

(see [9, Lemma 5]).
But

∫
Ω×R |y|dτun(x, y) =

∫
Ω

(∫
R |y|dδun(x)

)
dμ(x) =

∫
Ω |un(x)|dμ(x)

� supn ‖un‖1 < +∞.
Therefore, from (∗) ,∫

Ω

(∫
R
|y|dτx(y)

)
dμ(x) < +∞. (∗∗)

so that τ has a barycenter u : Ω → R , u(x) =
∫

R ydτx(y) and, from (∗∗) ,∫
Ω
|u|dμ �

∫
Ω

(∫
R
|y|dτx(y)

)
dμ(x) < +∞

and therefore u ∈ L1(Ω ) . �

If un
T−→ τ ∈ Y then τ contains some informations about the asymptotic

oscillatory behaviour of (un) .
The following compacity result is a variant with parameter of Prohorov’s theorem.

THEOREM 3.5. ([9, Theorem 7]). For every norm–bounded sequence (un) ⊆
L1(Ω ) ↪→ Y there exists a subsequence (u1

n) T –convergent to a Young measure
τ ∈ Y .

4. Convergence results

Combining the biting lemma and Prohorov’s theorem, M. Saadoune and M. Val-
adier proved the following general result:

THEOREM 4.1. ([8, Theorem 4.5]). Let (un) be a bounded sequence in L1(Ω ) .
There exist a subsequence (u1

n) and a Young measure τ ∈ Y such that:
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(1) u1
n

T−→ τ and τx (Ls(un(x))) = 1 a.e.(
Ls(un(x)) =

⋂
n∈N {um(x) : m � n}

)
.

(2) The mapping u : Ω → R , u(x) = bar(τx) =
∫

R ydτx(y), ∀x ∈ Ω ,
is integrable on Ω .

(3) u1
n

w2−→ u and η((u2
n)) = η((un)), ∀(u2

n) a subsequence of (u1
n).

(4) (a) u1
n|M

μ−→ u|M where M = {x ∈ Ω :
∫

R |y − u(x)|dτx(y) = 0};

(b) u1
n|A

μ
�→ u|A , ∀A ∈ A , with A ⊆ Ω \ M and μ(A) > 0.

(5) limn ‖u1
n − v‖1 = η((un)) +

∫
Ω×R |y − v(x)|dτ(x, y), ∀v ∈ L1(Ω ).

REMARK 4.2. Even if the original sequence (un) is T –convergent the result
does not hold without extraction. Indeed, if Ω = [0, 1] , μ is the Lebesgue’s mesure
on Ω and un : Ω → R is defined by u2n = 2nχ

[0, 1
2n ]

and u2n+1 = 0, ∀n ∈ N , then

un
μ−→ 0 = u so that un

T−→ μ ⊗ δ0 ∈ Y .

M = Ω , un
w2−→ 0 but η((un)) = 1 �= 0 = η((u2n+1)) so that (3) is false for

(un) .
(5) is also false because the sequence (‖un − u‖1)n∈N = (‖un‖1)n∈N has not a

limit.

PROPOSITION 4.3. Let (un) ⊆ L1(Ω ) be a bounded sequence such that un
T−→

τ ∈ Y and η((un)) = η((u1
n)) , for each subsequence (u1

n) of (un) .
Then (un) satsfies the condition (1), (2), (4) and (5) of the theorem 4.1 without

extraction a subsequence.

Proof. If un
T−→ τ then τx is carried by Ls(un(x)) , μ –almost everywhere (see

the proof of [9, Theorem10]). From the proposition 3.4, τ has a barycenter u ∈ L1(Ω ) .
Obviously, the condition (4) is fulfiled.
Let v ∈ L1(Ω ) ; for every subsequence (‖u1

n − v‖1) of (‖un − v‖1) , from

the theorem 4.1, there exists a subsequence (u2
n) of (u1

n) such that u2
n

T−→ τ and
limn ‖u2

n−v‖1=η((u1
n))+

∫
Ω×R |y−v(x)|dτ(x, y)=η((un))+

∫
Ω×R |y−v(x)|dτ(x, y)=L .

Then, every subsequence (‖u1
n − v‖1) has a subsequence (‖u2

n − v‖1) convergent
to L so that ‖un − v‖1 → L . �

REMARK 4.4. Generally, the condition (3) is not fulfiled in the conditions of
previous proposition.

Indeed, ∀n ∈ N ∗, k = 0, . . . , n − 1 let f k
n = n · χ

[ kn , k+1
n )

∈ L1([0, 1]) and let

(ϕm)m∈N be the sequence: f 0
1 , f 0

2 , f 1
2 , . . . , f 0

n , f 1
n , . . . , f n−1

n , . . . Then ϕ μ−→ 0 hence
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ϕm
T−→ μ ⊗ δ0 ∈ Y (μ is the Lebesgue’s measure on [0, 1] ) and η((ϕm)) =

η((ϕ1
m)) = 1 for each subsequence (ϕ1

m) of (ϕm) , but (ϕm) is not w2 –convergent

in L1([0, 1]) (if I suppose that ϕm
w2−→ f then, from [3, Proposition 3], f = 0 ,

a.e. so that there exists (Bp) with μ(Bp) ↓ 0 such that
∫
Ω\Bp

ϕmdμ → 0 ; but, if

μ(Bp0) < 1
2 , then, ∀n ∈ N ∗, ∃kn ∈ {0, . . . , n−1} such that μ

(
[ kn

n , kn+1
n ) \ Bp0

)
> 1

2n ;
so
∫
Ω\Bp0

f kn
n dμ > 1

2 ).

REMARK 4.5. From the condition (5) of the theorem 4.1, if v = u then we obtain:

lim
n

‖u1
n − u‖1 = η((un)) +

∫
Ω×R

|y − u(x)|dτ. (∗)

We remark that
∫
Ω×R |y − u(x)|dτ =

∫
G′

u
|y − u(x)|dτ = 0 iff τ(G′

u) = 0 and, from

3.3, iff un
μ−→ u .

Therefore the relation (∗) gives a decomposition of the deficiency of strong
convergence in a “weak part” and a “measure part”.

Of course, (∗) is a generalization of Lebesgue–Vitali theorembecause ‖un−u‖1 →
0 iff η((un)) = 0 =

∫
Ω×R |y − u(x)|dτ = 0 hence iff (un) is uniform integrable and

convergent in measure to u .

EXEMPLE 4.6. We take again the sequence un : [−2π, 2π] → R

un(x) = nχ
[− 1

n , 0]
(x) + sin nxχ

(0, 2π]
(x).

Then un
T−→ τ where the disintegration of τ , (τx)x∈[−2π,2π] is given by

τx(B) =

{
δ0(B), x ∈ [−2π, 0],
1
π
∫

B∩[−1,1]
1√
1−t2

dμ(t), x ∈ (0, 2π].

u(x) = bar(τx) = 0, un
w2−→ 0 (Bp = [− 1

p , 0], ∀p ∈ N ) .

Ls(un(x)) =

⎧⎨
⎩

{0}, x ∈ [−2π, 0),
∅, x = 0,

[−1, 1], x ∈ (0, 2π].

M = [−2π, 0] and
∫

A | sin(nx)|dμ(x) = 2
π μ(A) �→ 0, ∀A ∈ A , A ⊆ (0, 2π] .

η((un)) = 1 = η((u1
n)) , for every subsequence (u1

n) of (un) .
From the proposition 4.3, we can write (5) without extraction a subsequence:

lim
n

‖un − v‖1 = 1 +
∫
Ω×R

|y − u(x)|dτ(x, y).

If v = u = 0 we obtain limn ‖un‖1 = 5 .
We remark again the concentration of mass on the sets [− 1

p , 0] and an asymptotic
oscilatory behaviour on (0, 2π] (where τx is not a Dirac measure).
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5. Improvements of Fatou’s lemma

We try to obtain some localization of w2 –limit u in the theorem 4.1.

THEOREM 5.1. Let (un) be a bounded sequence in L1(Ω ) ; then there exist a

subsequence (u1
n) and a Young measure τ = (τx)x∈Ω ∈ Y such that u1

n
T−→ τ and

lim un � u � lim un where u(x) = bar(τx), ∀x ∈ Ω .

If un � 0, ∀n ∈ N then

lim
∫
Ω

u1
ndμ = η((un)) +

∫
Ω

udμ, hence

∫
Ω

lim undμ + η((un)) � lim
∫
Ω

u1
ndμ �

∫
Ω

lim undμ + η((un)).

In addition, if we suppose that there exists limn ‖un‖1 ∈ R + then∫
Ω

lim undμ + η((un)) � lim
∫
Ω

undμ �
∫
Ω

lim undμ + η((un)).

Proof. From the theorem 4.1 there exist a subsequence (u1
n) and a Young measure

τ which accomplish the conditions (1)–(5).
Because Ls(u1

n(x)) ⊆ Ls(un(x)) , from (1) we obtain τx(Ls(un(x)) = 1 a.e.
∀x ∈ Ω , Ls(un(x)) ⊆

[
lim un(x), lim un(x)

]
hence

u(x) =
∫

R
ydτx(y) =

∫
Ls(un(x))

ydτx(y) =
∫

[lim un(x),lim un(x)]
ydτx(y).

Therefore
lim un(x) � u(x) � lim un(x) a.e. (∗)

If un � 0, ∀n ∈ N then Ls(u1
n(x)) ⊆ [0, +∞) , hence τx(−∞, 0] = 0 , a.e. Therefore,

from (5) of 4.1,

lim
∫
Ω

u1
ndμ = lim ‖u1

n‖1 = η((un)) +
∫
Ω×R

|y|dτ(x, y)

= η((un)) +
∫
Ω

(∫
R
|y|dτx(y)

)
dμ(x)

= η((un)) +
∫
Ω

(∫
[0,+∞)

ydτx(y)

)
dμ(x)

= η((un)) +
∫
Ω

(∫
R

ydτx(y)
)

dμ(x) = η((un)) +
∫
Ω

udμ

and from (∗)∫
Ω

lim undμ + η((un)) � lim
∫
Ω

u1
ndμ �

∫
Ω

lim undμ + η((un)).

In addition, if ∃ lim ‖un‖1 ∈ R then lim
∫
Ω u1

ndμ = lim
∫
Ω undμ . �
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COROLLARY 5.2. For every bounded sequence (un) ⊆ L1
+(Ω ) there exists a

subsequence (u1
n) such that∫

Ω
lim undμ + η((u1

n)) � lim
∫
Ω

undμ.

Proof. Let (u1
n) be a subsequence of (un) such that

lim
∫
Ω

undμ = lim
∫
Ω

u1
ndμ.

From the previous theorem, there exists a subsequence (u2
n) of (u1

n) such that

lim
∫
Ω

u2
ndμ = η((u1

n)) +
∫
Ω

udμ and lim u1
n � u � lim u1

n.

Then ∫
Ω

lim undμ + η((u1
n)) �

∫
Ω

lim u1
ndμ + η((u1

n)) �
∫
Ω

udμ + η((u1
n))

= lim
∫
Ω

u2
ndμ = lim

∫
Ω

undμ. �

REMARKS 5.3. (i) Without extraction of a subsequence the result does not holds.
Indeed, for the sequence in the remark 4.2,∫

Ω
lim undμ + η((un)) = 1 > lim

∫
Ω

undμ.

(ii) If θ((un)) = inf
{
η((u1

n)) : (u1
n) subsequence of (un)

}
then, for every bounded

sequence (un) ⊆ L1
+(Ω ),∫

Ω
lim undμ + θ((un)) � lim

∫
Ω

undμ.

Now we derive some convergence results of H.-A. Klei as corollaries.

COROLLARY 5.4. ([5, Theorem 3]. Let (un) be a bounded sequence in L1
+(Ω )

such that
(∫

Ω undμ
)

n∈N
converges in R + .

Then the following assertions are equivalents:
(i) lim

∫
Ω undμ = η((un)) +

∫
Ω lim undμ and η((un)) = η((u1

n)) for each
subsequence (u1

n) of (un) .

(ii) un
μ−→ lim un.

Proof. (i) =⇒ (ii) . For each subsequence (u1
n) of (un) there exist, from the

theorem 5.1, a subsequence (u2
n) and a Young measure τ = (τx)x∈Ω such that u2

n
T−→ τ

and

lim
∫
Ω

u2
ndμ = η((u1

n)) +
∫
Ω

udμ and lim u1
n � u � lim u1

n,
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where u(x) = bar(τx) .
From (i) ,

∫
Ω udμ =

∫
Ω lim undμ so that

u = lim un a.e. (a)

From the proposition 4.3, (u2
n) satisfies the condition (5) of the theorem 4.1. Then

lim ‖u2
n − u‖1 = η((u2

n)) +
∫
Ω×R

|y − u(x)|dτ.

But, from (a)

∫
Ω×R

|y − u(x)|dτ =
∫
Ω

(∫
[lim un(x),lim un(x)]

|y − lim un(x)|dτx(y)

)
dμ(x)

=
∫
Ω

(∫
[lim un(x),lim un(x)]

(y − lim un(x))dτx(y)

)
dμ(x)

=
∫
Ω

(∫
R
(y − u(x))dτx(y)

)
dμ(x) = 0

(
u(x) =

∫
R

ydτx(y)
)

.

Therefore, from 4.5, u2
n

μ−→ u . Hence each subsequence of (un) has a subsequence

convergent in measure to u . So that un
μ−→ u = lim un .

(ii) =⇒ (i). Let (un) be convergent in measure to u = lim un . From the theorem
5.1 there exist a subsequence (u1

n) and τ = (δu(x))x∈Ω ∈ Y such that

lim
∫
Ω

undμ = lim
∫
Ω

u1
ndμ = η((un)) +

∫
Ω

udμ (b)

(bar(τx) =
∫

R
ydτx(y) =

∫
R

ydδu(x)(y) = u(x)).

For every subsequence (u2
n) of (un) , using (b) we obtain

lim
∫
Ω

u2
ndμ = η((u2

n)) +
∫
Ω

udμ.

Because lim
∫
Ω undμ = lim

∫
Ω u2

ndμ , using (b) again,

η((un)) +
∫
Ω

udμ = η((u2
n)) +

∫
Ω

udμ

so that η((un)) = η((u2
n)) . �

COROLLARY 5.5. ([5, Theorem 5]). Let (un) be a bounded sequence of L1
+(R ) .

Then the following assertions are equivalents:
(i) ∃ limn

∫
Ω undμ =

∫
Ω limn undμ.
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(ii) un
‖·‖1−→ limn un.

Proof. (i) =⇒ (ii) . From the theorem 5.1 there exist a subsequence (u1
n) of (un)

and τ = (τx)x∈Ω ∈ Y such that

lim
∫
Ω

undμ = lim
∫
Ω

u1
ndμ = η((un)) +

∫
Ω

udμ,

where u(x) = bar(τx) � lim un(x) a.e.
Hence, from (i),

η((un)) +
∫
Ω

udμ =
∫
Ω

lim undμ

so that η((un)) = 0 and u = lim un a.e.

Now, from the corollary 5.4, un
μ−→ lim un and, from Lebesgue–Vitali’s theorem,

un
‖·‖1−→ limn un .

(ii) =⇒ (i) is obviously. �

COROLLARY 5.6. ([6, Proposition 3]). Let (un) be a bounded sequence in L1
+(Ω )

converging in measure to u . Then

lim
∫
Ω

undμ = θ((un)) +
∫
Ω

udμ.
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