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A COMPUTATIONAL ROLE OF PARTIALLY RELAXED

MONOTONE MAPPINGS IN APPROXIMATION SOLVABILITY

OF NONLINEAR VARIATIONAL INEQUALITIES

RAM U. VERMA

Abstract. A computational role of a class of partially relaxed monotone mappings in the
approximation-solvability of a class of nonlinear variational inequalities based on a variational
inequality type algorithm is presented. We consider a class of nonlinear variational inequality
(abbreviated as NVI) problems: find an element x∗ ∈ K such that

〈 T(x∗), x − x∗〉 � 0 for all x ∈ K,

where T : K → H is a γ -r-partially relaxed monotone mapping and K a closed convex subset
of a real Hilbert space H .

1. Introduction

In recent years, there has been an enormous growth in applications of variational
inequalities to problems arising from mathematical programming, optimization and
control theory, mathematical finance, engineering sciences, and others. Of special
interest is the explosion of new algorithms – a key ingredient to the approximation
solvability of variational inequalities and computational mathematics in general. In the
case of algorithms expressed as variational inequalities, Marcotte and Wu [9] applied
such an algorithm to the approximation solvability of a class of variational inequalities
involving cocoercive mappings [4,9] in Rn . Inspired by the recent work [9], Verma [16]
extended a class of the variational inequality type algorithms and applied them to the
approximation solvability of a class of variational inequalities in a Hilbert space setting,
which of course, have applications to the Rn space setting. Our plan in this paper is
to present the approximation solvability of a class of variational inequalities involving
the class of the partially relaxed monotone mappings along with our approach to some
numerical applications in Rn . To learn more details on the approximation solvability
of variational inequalities and related recent algorithms, we recommend [1–19].

Let H be a real Hilbert space with the inner product 〈 ·, ·〉 and norm || · || . Let
T : K → H be any γ -r-partially relaxed monotone mapping and K a closed convex
subset of H . We consider a class of nonlinear variational inequality (abbreviated as
NVI) problems: find an element x∗ ∈ K such that

〈T(x∗), x − x∗〉 � 0 for all x ∈ K, (1.1)
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which is equivalent to a projection formula

x∗ = PK[x∗ − ρT(x∗)],

where PK is the projection of H onto K , and ρ > 0 is a constant.
Now we need to recall the following auxiliary results, which are crucial to the

development of the work on hand.

LEMMA 1.1. An element u ∈ K is a solution of the NVI problem (1.1) if and only
if

u = PK [u − ρT(u)] for ρ > 0,

where T : K → H is a mapping on K .

LEMMA 1.2. An element u ∈ K is a solution of the NVI problem (1.1) if

〈T(u), x − u〉 � 0 for all x ∈ K.

A mapping T : H → H is said to be α -cocoercive [14] if for all x , y ∈ H , we
have

||x − y||2 � α2||T(x) − T(y)||2 + ||α(T(x) − T(y)) − (x − y)||2,
where α > 0 is a constant.

Alternatively, a mapping T : H → H is called α -cocoercive [4,9] if there exists
a constant α > 0 such that

〈T(x) − T(y), x − y〉 � α||T(x) − T(y)||2 for all x, y ∈ H.

T is called r -strongly monotone if for each x , y ∈ H , we have

〈T(x) − T(y), x − y〉 � r||x − y||2 for a constant r > 0.

This implies that
||T(x) − T(y)|| � r||x − y||,

that is, T is r -expanding, and when r = 1 , it is expanding. The mapping T is called
β -Lipschitz continuous (or β -Lipschitzian) if there exists a constant β � 0 such that

||T(x) − T(y)|| � β ||x − y|| for all x, y ∈ H.

We note that if T is α -cocoercive and expanding, then T is α -stronglymonotone.
On the other hand, if T is α -strongly monotone and β -Lipschitz continuous, then T
is (α/β2) -cocoercive for β > 0 . Clearly every α -cocoercive mapping T is (1/α) -
Lipschitz continuous.

LEMMA 1.3. [9]. For any two elements u , v ∈ H , we have

||u||2 + 〈 u, v〉 � −1
4
||v||2.

A mapping T : H → H is said to be γ -r-partially relaxed monotone if there exist
constants γ , r > 0 such that

〈T(x) − T(y), z − y〉 � −γ ||z − x||2 + r||x − y||2 for all x, y, z ∈ H.
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A mapping T : H → H is said to be γ -partially relaxed monotone [14] if there
exists a constant γ > 0 such that

〈T(x) − T(y), z − y〉 � −γ ||z − x||2 for all x, y, z ∈ H.

EXAMPLE 1.4. [1,2]. Let T : Rn → Rn be defined by

T(x) = cI(x) + v,

where c > 0 is a constant, x , v ∈ Rn with v fixed, and I is the n× n identity matrix.
Then T is a γ -partially relaxed monotone mapping for c = γ . On the top of that, T
is c -Lipschitz continuous. Since

||y − z||2 + ||y − x||2 + ||x − z||2 � 0 for all x, y, z ∈ Rn,

we have
〈 y − z, y − z〉 + 〈 y − x, y − x〉 + 〈 x − z, x − z〉 � 0

or
−〈 x, y〉 − 〈 y, z〉 + 〈 y, y〉 + 〈 z, z〉 − 〈 z, x〉 + 〈 x, x〉 � 0

or
γ [〈 x − y, z − y〉 + 〈 z − x, z − x〉 ] � 0

or
〈 γ x − γ y, z − y〉 + c||z − x||2 � 0 (since γ = c )

or
〈T(x) − T(y), z − y〉 � −γ ||z − x||2,

that is, T is γ -partially relaxed monotone.
The partially relaxed monotone mappings [16] are weaker than the cocoercive [9]

and strongly monotonemappings and on the top of that, are more computation-oriented.
This class of relaxed monotone mappings satisfy the following implications:

γ -r-partial relaxed monotonicity
↓

γ -partial relaxed monotonicity

2. Algorithms and the NVI problem (1.1)

This section deals with the approximation-solvability of the NVI problem (1.1)
based on an iterative algorithm [9], which is represented by a class of variational
inequalities, while it does preserve an equivalence to a class of projection formulas.

ALGORITHM 2.1. [9]. For an arbitrarily chosen initial point x0 ∈ K , we consider
an iterative algorithm generated as follows (for k � 0 ):

〈 ρT(x0) + x1 − x0, x − x1〉 � 0

...

〈 ρT(xk) + xk+1 − xk, x − xk+1〉 � 0 for all x ∈ K and for ρ > 0.



538 RAM U. VERMA

Algorithm 2.1 is equivalent to the projection formula

xk+1 = PK [xk − ρT(xk)],

where PK is the projection of H onto K .
Before we present our main result on the approximation-solvability of the NVI

problem (1.1), we need to recall the following auxiliary result.

LEMMA 2.1. For v , w ∈ H , we have

〈 v, w〉 =
1
2
[||v + w||2 − ||v||2 − ||w||2].

Now, we present, based on Algorithm 2.1, the approximation-solvability of the
NVI problem (1.1) involving the γ -r-partially relaxed monotone mappings in a Hilbert
space setting.

THEOREM 2.1. Let H be a real Hilbert space and K a nonempty closed convex
subset of H . Let x∗ ∈ K be a solution of the NVI problem (1.1) and the sequence
{xk} be generated by Algorithm 2.1. Suppose that a mappings T : K → H satisfy the
following assumptions:
(i) T is γ -r-partially relaxed monotone.

Then we have:
(a) The estimates:

(ii) ||xk+1 − x∗||2 � (1 − 2ρr)||xk − x∗||2 − (1 − 2ργ )||xk − xk+1||2 .
(iii) ||xk+1 − x∗||2 � (1 − 2ρr)||xk − x∗||2 for 1 − 2ργ > 0 and 1 − 2ρr > 0 .

(b) The sequence {xk} converges to x∗ for 0 < ρ < 1/2γ and 0 < ρ < 1/2r .

Proof. First, we compute the estimate and then show the convergence of the
sequence {xk} to x∗ , a solution of the NVI problem (1.1). Since xk satisfies Algorithm
2.1, we have

〈 ρT(xk) + xk+1 − xk, x − xk+1〉 � 0 for all x ∈ K. (2.1)

On the top of that, x∗ is a solution of the NVI problem (1.1), that is, we can have, for a
constant ρ > 0 that

〈 ρT(x∗), x − x∗〉 � 0 for all x ∈ K. (2.2)

Replacing x by x∗ in (2.1) and x by xk+1 in (2.2), and adding, we obtain

0 � −ρ〈T(xk) − T(x∗), xk+1 − x∗〉 + 〈 xk+1 − xk, x∗ − xk+1〉 .

Since T is γ -r-partially relaxed monotone, it implies that

0 � 〈 xk+1 − xk, x∗ − xk+1〉 + ργ ||xk+1 − xk||2 − ρr||xk − x∗||2. (2.3)

Taking v = xk+1 − xk and w = x∗ − xk+1 in Lemma 2.1, and applying to (2.3), we
have

0 � 1
2
[||x∗ − xk||2 − ||xk+1 − xk||2 − ||x∗ − xk+1||2] + ργ ||xk+1 − xk||2 − ρr||xk − x∗||2.
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It follows that

||xk+1 − x∗||2 � ||xk − x∗||2 − ||xk+1 − xk||2 + 2ργ ||xk+1 − xk||2 − 2ρr||xk − x∗||2.
That means, we have

||xk+1 − x∗||2 � (1 − 2ρr)||xk − x∗||2 − (1 − 2ργ )||xk+1 − xk||2. (2.4)

It follows from (2.4) for 1 − 2ργ > 0 and 1 − 2ρr > 0 that

||xk+1 − x∗||2 � (1 − 2ρr)||xk − x∗||2. (2.5)

It follows from (2.5) that
lim

k→∞
||xk+1 − x∗|| = 0.

Thus, xk → x∗ strongly as k → ∞ , and this concludes the proof.

3. Applications

In this section we consider some applications of the result of Section 2 to the Rn .
Let F : X → Rn be a mapping from a closed convex subset X of Rn into Rn . We
consider a variational inequality problem: find an element u ∈ X such that

[F(u)]t(x − u) � 0 for all x ∈ X, (3.1)

where [F(u)]t denotes the transpose of the vector F(u) . Based on Algorithm 2.1, we
have:

ALGORITHM 3.1. For an arbitrarily chosen initial point x0 ∈ X , a sequence {xk}
is generated by an iterative scheme:

[ρF(xk) + Dρ(xk+1 − xk)]t(x − xk+1) � 0 for all x ∈ X, (3.2)

where Dρ is a fixed positive-definite matrix.
In what follows, Dρ shall denote a symmetric matrix in (3.2) for the convergence

of the projection method. The symbol λmin(S) shall denote the minimum eigenvalue
of a symmetric matrix S .

Since Dρ is symmetric, it implies that (3.2) is equivalent to

xk+1 = PDρ [x
k − D−1

ρ (ρF(xk))], (3.3)

where PDρ is the projection on the set X with respect to the norm || · ||Dρ induced by
the positive-definite symmetric matrix Dρ .

THEOREM 3.1. Let F be a γ -r-partially relaxed monotone mapping and Dρ = D,
where D is a symmetric positive-definite matrix. Suppose that the sequence {xk} is
generated by Algorithm 3.1 for a constant ρ > 0 , and x∗ is a solution of variational
inequality (3.1). Then we have the following conclusions:

(i) ||xk+1−x∗||2D�[1−2ρr/λmin(D)]||xk−x∗||2D−[1−2ρλ/λmin(D)]||xk+1−xk||2D ;
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(ii) the sequence {xk} generated by Algorithm 3.1 converges to x∗ , a solution
of the variational inequality (3.1) for 0 < ρ < λmin(D)/2r and 0 < ρ <
λmin(D)/2γ .

Proof. The proof is similar to that of Theorem 2.1.

REMARK 3.1. An estimate similar to that of Theorem 2.1 can be achieved by
applying the auxiliary problem principle of Cohen [3], but the convergence analysis will
differ.

4. Numerical computation/experiment

It sounds interesting if we can come up with some adaptive linesearch rule which
would work under the partial relaxed monotonicity condition. The difficulty we are
faced with is the way this condition comes up in the analysis – it always involves an
(unknown) solution point.This differs from how (for example) strong monotonicity and
Lipschitz continuity conditions are usually applied to other projection methods. As a
result the problem – how to develop a linesearch rule under the framework of the partial
relaxed monotonicity condition – is still open.
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