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INEQUALITIES FOR THE GAMMA FUNCTION

RELATING TO ASYMPTOTIC EXPANSIONS

G. ALLASIA, C. GIORDANO AND J. PEČARIĆ

Abstract. Many inequalities for the gamma function can be deduced from monotonicity or
convexity properties of logΓ(x) and related functions involving finite sums of the Stirling
asymptotic series. Considering a particular case of a generalization of this classical expansion,
we deduce further convexity results and inequalities which are similar to some other ones related
to the usual form of the Stirling series. We give, among other things, inequalities which overvalue
logΓ(x) , whereas the corresponding finite sums of the classical expansion undervalue it or vice
versa. Moreover we obtain bilateral inequalities also for the digamma and the polygamma
functions. Finally, a few extensions of Gautschi-type inequalities are discussed.

1. Introduction and preliminary results

Several inequalities for the gamma function arise from monotonicity and convexity
properties of logΓ(x), as well as of some functions connected to finite sums of the
classical Stirling asymptotic series [13] for x → ∞

logΓ(x) ∼
(

x − 1
2

)
log x − x +

1
2

log(2π) +
∞∑
k=1

B2k

2k(2k − 1)x2k−1
, (1.1)

where B2k , ( k = 1, 2 . . . ), are the Bernoulli numbers. In this paper we present further
results referring to a rather unusual form of the Stirling asymptotic series containing
odd powers of 1/(x − 1

2 ), x > 1/2 , for x → ∞ ,

logΓ(x) ∼
(

x − 1
2

)
log

(
x − 1

2

)
− x +

1
2

+
1
2

log(2π)

−
∞∑
k=1

B2k

2k(2k − 1)

(
1 − 1

22k−1

)
1

(x − 1
2 )

2k−1
. (1.2)

Series (1.2), as well as (1.1), is a special case of a general asymptotic expansion of
logΓ(z + h) for 0 � h � 1 and | arg z| < π, in terms of powers of 1/z [13, p. 295].
Replacing z + h by x, and then getting h = 1/2 we deduce (1.2), taking into account
that

Bk(1/2) = −
(

1 − 1
2k−1

)
Bk, k = 0, 1, . . . . (1.3)
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The starting point of our paper was a private communication of D. Kershaw, who called
our attention to the following Theorem 1.1 and pointed out the intriguing connection
with the asymptotic series (1.1) and (1.2).

THEOREM 1.1. For x > 1
2(

x − 1
2

)
log x − x < logΓ(x) − 1

2
log(2π) <

(
x − 1

2

)
log

(
x − 1

2

)
−
(

x − 1
2

)
(1.4)

Proof. From the inequalities for the digamma function (see (14) in [9] and (4.5)
below)

log

(
x − 1

2

)
< ψ(x) < log x − 1

2x
, x >

1
2

it follows for real M > x∫ x

M

(
log t − 1

2t

)
dt <

∫ x

M
ψ(t)dt <

∫ x

M
log

(
t − 1

2

)
dt, x >

1
2
.

After some rearrangement, we get

logΓ(M) −
(

M − 1
2

)
logM + M < logΓ(x) −

(
x − 1

2

)
log x + x, (1.5)

and

logΓ(x)−
(

x−1
2

)[
log

(
x−1

2

)
−1

]
< logΓ(M)−

(
M−1

2

)[
log

(
M−1

2

)
−1

]
.

(1.6)
Letting M → ∞ in (1.5) and (1.6) and using (1.1) and (1.2) respectively, we obtain
the result.

We point out that in (1.4) the left-hand inequality involves the first terms of the
asymptotic expansion (1.1) whereas the right-hand one regards the corresponding terms
of (1.2). The left-hand inequality in (1.4), valid for x > 0 , is well-known and is a
consequence of the complete monotonicity on (0,∞) of the function

A0(x) = logΓ(x) −
(

x − 1
2

)
log x + x − 1

2
log(2π)

stated by Muldoon [12]. We recall that a function f (x) is said to be completely
monotonic on an interval I if f (x) has derivatives of all order on I and (−1)nf (n)(x) �
0, n = 0, 1, . . . , for x ∈ I. If the inequality is strict for all x ∈ I and for all n � 0,
then f (x) is said strictly completely monotonic.

Muldoon’s result was recently extended by Alzer [2], who showed that for integer
N � 0 the functions

AN(x) = logΓ(x) −
(

x − 1
2

)
log x + x − 1

2
log(2π) −

2N∑
k=1

B2k

2k(2k − 1)x2k−1
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and

BN(x) = − logΓ(x) +
(

x − 1
2

)
log x − x +

1
2

log(2π) +
2N+1∑
k=1

B2k

2k(2k − 1)x2k−1

are strictly completely monotonic for x > 0 .
Previously, Merkle [10] proved that the function

x → logΓ(x)−
(

x − 1
2

)
log x+x−1

2
log(2π)−

n∑
k=1

B2k

2k(2k − 1)x2k−1
, n = 0, 1, 2 . . .

is convex for even n and concave for odd n on (0,∞) and proposed as an application
sharp bounds for the ratio Γ(x + β)/Γ(x) .

Then the authors [14] pointed out the n -convexity properties related to the functions
AN(x) and BN(x) and deduced further inequalities for the ratio of gamma functions
Γ(x+1)/Γ(x+ s). Moreover some authors improved inequalities for lnΓ(x) involving
finite sums of the Stirling asymptotic series (1.1) to the purpose to derive more stringent
bounds for large x . See for instance [4].

In Section 2 we prove inequalities for n -convex functions by means the second
Euler-Maclaurin formula and in Section 3, in a similar way as in [14], we derive
monotonicity and convexity results for some functions related to finite sum of (1.2). As
a consequence we deduce bilateral inequalities for logΓ(x), digamma function ψ(x)
and polygamma function by using either finite sums of (1.2) or finite sums of both (1.1)
and (1.2). Moreover we find that on the interval (1/2,∞) whereas finite sums of the
Stirling formula (1.1) undervalue logΓ(x), the corresponding sums of (1.2) overvalue
it or vice versa.

Finally, in Section 4 we consider Gautschi-type inequalities from the viewpoint
of the convexity properties, giving some comments and extensions. We recall that the
well-known Gautschi inequality ([6]; see also [7] for references)

x1−s <
Γ(x + 1)
Γ(x + s)

< exp[(1 − s)ψ(x + 1)] (1.7)

for x > 0 and 0 � s � 1 is a straightforward consequence of the convexity of logΓ(x)
[14] and this remark allows us to deduce the more symmetric inequality

(y − x)ψ(x) < log
Γ(y)
Γ(x)

< (y − x)ψ(y) 0 < x < y. (1.8)

In Section 4 we give some comments and estensions with regard to the inequalities for
the function log[Γ(y)/Γ(x)] involving digamma and polygamma functions.

2. The second Euler-Maclaurin formula and n -convexity

We recall that a function f (x) which has derivatives up the order n on an interval
I is said to be n -convex for n � 2 on I if f (n)(x) � 0 for x ∈ I. If the inequality is
strict for all x ∈ I, then f (x) is said to be strictly n -convex .



546 G. ALLASIA, C. GIORDANO AND J. PEČARIĆ

THEOREM 2.1. Let f (x) ∈ C2r[0,∞) be a (2r) -convex function, with primitive
function F(x) such that

lim
x→∞ f (x) = 0, lim

x→∞ f (2k−1)(x) = 0 (k = 1, . . . , r − 1), lim
x→∞F(x) = 0.

If r is odd, we have for x � 1
2

∞∑
k=0

f (x + k) � −F

(
x − 1

2

)
−

r−1∑
k=1

B2k(1/2)
(2k)!

f (2k−1)
(

x − 1
2

)
. (2.1)

If f is strictly (2r) -convex, then the inequality is strict. For even r , we have reverse
inequalities.

Proof. The second Euler-Maclaurin summation formula [15, p.135] gives

n−1∑
k=0

f

(
x + k +

1
2

)
=
∫ x+n

x
f (t) dt +

r−1∑
k=1

B2k(1/2)
(2k)!

[f (2k−1)(x + n) − f (2k−1)(x)]

+
nB2r(1/2)

(2r)!
f (2r)(ξ)

where ξ ∈ (x, x+n) . Since (−1)r+1B2r > 0 , from (1.3)wehave that (−1)rB2r(1/2) >
0. Hence, for (2r) -convex functions on [1/2,∞) we deduce for odd r

n−1∑
k=0

f

(
x + k +

1
2

)
� F(x + n) − F(x) +

r−1∑
k=1

B2k(1/2)
(2k)!

[f (2k−1)(x + n) − f (2k−1)(x)].

From this, as n → ∞, we get

∞∑
k=0

f

(
x + k +

1
2

)
� −F(x) −

r−1∑
k=1

B2k(1/2)
(2k)!

f (2k−1)(x)

and replacing x by x − 1
2 , we obtain (2.1) for x � 1/2. The proof of the fact that the

inequality is strict for strictly 2r -convex functions is similar to that given in [14]. If r
is even, we have reverse inequalities.

REMARK 2.1. From the previous Theorem 2.1 and the corresponding Theorem 2.2
in [14] we derive, for odd r

1
2
f (x) − F(x)−

r−1∑
k=1

B2k

(2k)!
f (2k−1)(x) �

∞∑
k=0

f (x + k)

� −F

(
x − 1

2

)
+

r−1∑
k=1

B2k

(2k)!

(
1 − 1

22k−1

)
f (2k−1)

(
x − 1

2

)

and vice versa for even r .
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THEOREM 2.2. Let f (x) ∈ C2r+2[0,∞) and let F(x) be a primitive function of
f (x) . Further let f (x) be (2r) -convex and (2r + 2) -convex, and let

lim
x→∞ f (x) = 0, lim

x→∞ f (2k−1)(x) = 0 (k = 1, . . . , r), lim
x→∞ F(x) = 0.

If r is odd, we have for x � 1
2

−F

(
x − 1

2

)
−

r∑
k=1

B2k(1/2)
(2k)!

f (2k−1)
(

x − 1
2

)
�

∞∑
k=0

f (x + k)

� −F

(
x − 1

2

)
−

r−1∑
k=1

B2k(1/2)
(2k)!

f (2k−1)
(

x − 1
2

)
.

(2.2)

If f is strictly (2r) -convex and strictly (2r + 2) -convex, then the inequalities are strict.
If r is even, we have reversed inequalities.

Proof. This is an immediate consequence of Theorem 2.1.

REMARK 2.2. We note that (2.2) can be rewritten for odd r as

B2r

(2r)!

(
1 − 1

22r−1

)
f (2r−1)

(
x − 1

2

)
�

∞∑
k=0

f (x + k) + F

(
x − 1

2

)

+
r−1∑
k=1

B2k(1/2)
(2k)!

f (2k−1)
(

x − 1
2

)
� 0

while for even r we have reverse inequalities. So we can write for each r∣∣∣∣∣
∞∑
k=0

f (x + k) + F

(
x − 1

2

)
+

r−1∑
k=1

B2k(1/2)
(2k)!

f (2k−1)
(

x − 1
2

)∣∣∣∣∣
� (−1)r B2r

(2r)!

(
1 − 1

22r−1

)
f (2r−1)

(
x − 1

2

)
.

3. Inequalities for the gamma and polygamma functions

The results in Section 2 allow us to obtain inequalities for the gamma, digamma
and polygamma functions.

COROLLARY 3.1. For x > 1
2 , real p > 1 and integer N � 0,

1

(p − 1)(x − 1
2 )

p−1
−

2N+1∑
k=1

B2k

(2k)!

(
1 − 1

22k−1

)
p(p + 1) · · · (p + 2k − 2)

(x − 1
2 )

p+2k−1
<

∞∑
k=0

1
(x + k)p

<
1

(p − 1)(x − 1
2 )

p−1
−

2N∑
k=1

B2k

(2k)!

(
1 − 1

22k−1

)
p(p + 1) · · · (p + 2k − 2)

(x − 1
2 )

p+2k−1
(3.1)
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where the sum is zero for N = 0. We have reverse inequalities replacing 2N by 2N−1 .

Proof. The inequalities (3.1) are an immediate consequence of Theorem 2.2 by
setting f (x) = x−p and r = 2N + 1. In the case r = 2N we have reverse inequalities.

Similarly fromCorollary 3.1 and the correspondingCorollary 2.2 in [14]we deduce

REMARK 3.1. For x > 1
2 , real p > 1 and integer N � 0 ,

1

(p − 1)(x − 1
2 )

p−1
−

2N+1∑
k=1

B2k

(2k)!

(
1 − 1

22k−1

)
p(p + 1) · · · (p + 2k − 2)

(x − 1
2 )

p+2k−1

<

∞∑
k=0

1
(x + k)p

<
1

2xp
+

1
(p − 1)xp−1

+
2N+1∑
k=1

B2k

(2k)!
p(p + 1) · · · (p + 2k − 2)

xp+2k−1
,

(3.2)

and

1
2xp

+
1

(p − 1)xp−1
+

2N∑
k=1

B2k

(2k)!
p(p + 1) · · · (p + 2k − 2)

xp+2k−1
<

∞∑
k=0

1
(x + k)p

<
1

(p − 1)(x − 1
2 )

p−1
−

2N∑
k=1

B2k

(2k)!

(
1 − 1

22k−1

)
p(p + 1) · · · (p + 2k − 2)

(x − 1
2 )

p+2k−1
,
(3.3)

where the sums are zero for N = 0 .

REMARK 3.2. Let us consider the polygamma function

ψ (n)(x) =
dn+1

dxn+1
logΓ(x) = (−1)n+1n!

∞∑
k=0

1
(x + k)n+1

n = 1, 2, . . . .

As a consequence of Corollary 3.1 setting p = n + 1, we have for x > 1/2

(n − 1)!
(x − 1

2 )
n
+

2N+1∑
k=1

B2k(1/2)
(2k)!

(n + 2k − 1)!
(x − 1

2 )
n+2k

< (−1)n+1ψ (n)(x)

<
(n − 1)!
(x − 1

2 )
n

+
2N∑
k=1

B2k(1/2)
(2k)!

(n + 2k − 1)!
(x − 1

2 )
n+2k

(3.4)

and reverse inequalities replacing 2N by 2N − 1 .
From (3.4) we obtain, in particular, for n = 1 and N = 0 ,

1

x − 1
2

− 1

12(x− 1
2 )

2
< ψ ′(x) <

1

x − 1
2

, x >
1
2
.

Other inequalities for the polygamma function can be similarly deduced from (3.2) and
(3.3).

Now we investigate the n-convexity properties of the functions

F1(x) = logΓ(x) −
(

x − 1
2

)
log

(
x − 1

2

)
−

2N+1∑
k=1

B2k(1/2)
2k(2k − 1)(x − 1

2 )
2k−1
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and

F2(x) = logΓ(x) −
(

x − 1
2

)
log

(
x − 1

2

)
−

2N∑
k=1

B2k(1/2)
2k(2k − 1)(x − 1

2 )
2k−1

,

for N � 0 and x > 1/2 . . . .

THEOREM 3.1. If n is even, then F1(x) is strictly n -convex and F2(x) strictly
n -concave, whereas if n is odd, then F1(x) is strictly n -concave and F2(x) is strictly
n -convex .

Proof. By differentiation for n � 1 ,

F(n)
1 (x) =(−1)n(n − 1)!

[ ∞∑
k=0

1
(x + k)n

− 1

(n − 1)(x − 1
2 )

n−1

−
2N+1∑
k=1

B2k(1/2)
(2k)!

n(n + 1) · · · (n + 2k − 2)
(x − 1

2 )
n+2k−1

]
(3.5)

and

F(n)
2 (x) =(−1)n+1(n − 1)!

[ ∞∑
k=0

1
(x + k)n

− 1

(n − 1)(x − 1
2 )

n−1

−
2N∑
k=1

B2k(1/2)
(2k)!

n(n + 1) · · · (n + 2k − 2)
(x − 1

2 )
n+2k−1

]
. (3.6)

Setting p = n in (3.1) we see that the expression bracketed in (3.5) is positive, whereas
the expression bracketed in (3.6) is negative. Therefore

(−1)nF(n)
1 (x) > 0 and (−1)n+1F(n)

2 (x) > 0.

Furthermore let us consider the functions

F3(x) = logΓ(x) −
(

x − 1
2

)
log

(
x − 1

2

)
+ x − 1

2
− 1

2
log(2π)

−
2N+1∑
k=1

B2k(1/2)
2k(2k − 1)(x − 1

2 )
2k−1

and

F4(x) = − logΓ(x) +
(

x − 1
2

)
log

(
x − 1

2

)
− x +

1
2

+
1
2

log(2π)

+
2N∑
k=1

B2k(1/2)
2k(2k − 1)(x − 1

2 )
2k−1

,
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which are clearly related to the asymptotic series (1.2). We shall investigate the complete
monotonicity of these functions, taking into account that

F3(x) = F1(x) + x − 1
2
− 1

2
log(2π)

and

F4(x) = −F2(x) − x +
1
2

+
1
2

log(2π).

THEOREM 3.2. For integer N � 0 the functions F3(x) and F4(x) are strictly
completely monotonic on (1/2,∞) .

Proof. FromTheorem3.2wehave F′′
3 (x) = F′′

1 (x) > 0 and F′′
4 (x) = [−F2(x)]′′ >

0. By integration on [x, M], real M > x > 1/2, we get

F′
3(M) − F′

3(x) > 0, and F′
4(M) − F′

4(x) > 0. (3.7)

By means of the Stirling asymptotic expansion for ψ(x) as x → ∞, we have for
M → ∞ in (3.7), F′

3(x) < 0 and F′
4(x) < 0 . Further integration on [x, M] gives the

inequalities

F3(M) − F3(x) < 0, and F4(M) − F4(x) < 0.

Again for M → ∞ we get also F3(x) > 0 and F4(x) > 0 . So we conclude, according
to the results in Theorem 3.2, that the functions F3(x) and F4(x) are strictly completely
monotonic on ( 1

2 ,∞).

Monotonicity properties of F3 and F4 enable us to deduce the following inequal-
ities for x > 1

2 , N = 0, 1, 2 . . .

(
x − 1

2

)
log

(
x − 1

2

)
−
(

x − 1
2

)
+

1
2

log(2π) +
2N+1∑
k=1

B2k(1/2)
2k(2k − 1)(x − 1

2 )
2k−1

< logΓ(x) <

(
x − 1

2

)
log

(
x − 1

2

)
−
(

x − 1
2

)
+

1
2

log(2π)

+
2N∑
k=1

B2k(1/2)
2k(2k − 1)(x − 1

2 )
2k−1

(3.8)

and

log

(
x − 1

2

)
−

2N∑
k=1

B2k(1/2)
2k(x − 1

2 )
2k

< ψ(x) < log

(
x − 1

2

)
−

2N+1∑
k=1

B2k(1/2)
2k(x − 1

2 )
2k

Furthermore, taking also into account the complete monotonicity of AN(x) and BN(x)
defined in Section 1, we obtain inequalities for logΓ(x) and ψ(x) involving finite sums
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of both aymptotic expansions (1.1) and (1.2) on ( 1
2 ,∞) ,

(
x − 1

2

)
log x − x +

1
2

log(2π) +
2N∑
k=1

B2k

2k(2k − 1)x2k−1
< logΓ(x)

<

(
x − 1

2

)
log

(
x − 1

2

)
−
(

x − 1
2

)
+

1
2

log(2π)

+
2N∑
k=1

B2k(1/2)
2k(2k − 1)(x − 1

2 )
2k−1

(3.9)

and

log

(
x − 1

2

)
−

2N∑
k=1

B2k(1/2)
2k(x − 1

2 )
2k

< ψ(x) < log

(
x − 1

2

)
−

2N∑
k=1

B2k(1/2)
2kx2k

and the reverse inequalities replacing 2N by 2N+1. Bilateral inequality (3.9) coincides
with (1.4) in the case N = 0 .

By using the n -convexity (concavity) properties of the functions F1(x) and F2(x),
and the complete monotonicity of F3(x) and F4(x) we can obtain inequalities of the
same type as in [14].

Recalling that a function exp(−h(x)) is completely monotonic on an interval I if
h′(x) is completely monotonic on I, we deduce that the functions

F5(x) =
Γ(x)√

2π

(
e

x − 1
2

)x− 1
2

exp{−
2N+1∑
k=1

B2k(1/2)
2k(2k − 1)(x − 1

2 )
2k−1

}

and

F6(x) =
√

2π
Γ(x)

(
x − 1

2

e

)x− 1
2

exp{
2N∑
k=1

B2k(1/2)
2k(2k − 1)(x − 1

2 )
2k−1

}

are completely monotonic for x > 1
2 as an immediate consequence of the complete

monotonicity of −F′
3(x) and −F′

4(x) .

4. Inequalities for the gamma function
involving digamma and polygamma functions

In [14] we show that Gautschi’s inequality (1.7) is a straighforward consequence
of the convexity of logΓ(x) and this remark allows us to deduce, in particular, the more
symmetric inequality (1.8). We also consider the following improvement of Gautschi’s
inequality, proposed but seemingly not published by Kershaw,

(a − b)ψ
(
x +

√
ab
)

< log
Γ(x + a)
Γ(x + b)

< (a − b)ψ
(

x +
a + b

2

)
(4.1)
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with x > 0 and 0 � b � a . The proof of (4.1) may be obtained by means the same
reasoning in [8] to prove

(1 − s)ψ(x +
√

s) < log
Γ(x + 1)
Γ(x + s)

< (1 − s)ψ
(

x +
s + 1

2

)
, (4.2)

where x > 0 and 0 < s < 1. In fact, (4.2) is a particular case of (4.1) by setting
b = s and a = 1 . Recently, on investigating about the best bounds in Gautschi-type
inequalities, Elezović, Giordano and Pečarić [5] have proved (4.1).

Inequalities (4.1) and (1.8) can be easily compared. In fact (1.8) can be rewritten
in the form

(a − b)ψ(x + b) < log
Γ(x + a)
Γ(x + b)

< (a − b)ψ(x + a)

with z = t + a and x = t + b . Since ψ(x) is an increasing function, it is evident that
(4.1) is sharper than (1.8).

Many authors have been interestd in studying and extending Gautschi-type in-
equalities. For example, Bustoz and Ismail [3] proved that some inequalities for the
gamma function in particular (4.2), follow from the complete monotonicity of certain
functions involving the ratio Γ(x + 1)/Γ(x + s) . In this Section we deduce inequal-
ities for log[Γ(y)/Γ(x)] as consequences of 2r -concavity properties of ψ(x) and by
applying Hadamard-type inequalities.

Merkle [10] obtains the inequalities

(y − x)
ψ(x) + ψ(y)

2
< log

Γ(y)
Γ(x)

< (y − x)ψ
(

x + y
2

)
(4.3)

espressed in terms of the digamma function, as an application of some conditions for
the convexity of the derivative of a function f . We note (see also [5]) that (4.3) is an
immediate consequence of the Hadamard inequalities for a concave function.

Given a concave function f : [x, y] → R , the well-known Hadamard’s inequalities
state

(y − x)
f (x) + f (y)

2
�
∫ y

x
f (t)dt � (y − x)f

(
x + y

2

)
and (see, e.g., [1])

0 � (y − x)f
(

x + y
2

)
−
∫ y

x
f (t)dt �

∫ y

x
f (t)dt − (y − x)

f (x) + f (y)
2

. (4.4)

Choosing f (t) = ψ(t) , which is strictly concave, we have (4.3) and from (4.4) the
more informative inequality

0 < (y − x)ψ
(

x + y
2

)
− log

Γ(y)
Γ(x)

< log
Γ(y)
Γ(x)

− (y − x)
ψ(x) + ψ(y)

2
.

REMARK 4.1. Letting y = x + 1 in (4.3), we get [see also 10]

ψ(x) +
1
2x

< log x < ψ
(

x +
1
2

)
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and, from this, there follows

log

(
x − 1

2

)
< ψ(x) < log x − 1

2x
, x >

1
2

(4.5)

which is used in Theorem 1.1, and further

0 < log

(
x − 1

2

)
− ψ(x) < ψ(x) − log x +

1
2x

x >
1
2
.

THEOREM 4.1. Let x and y be real numbers, 0 < x < y , and h = (y − x)/n .
Then

h
2

[ψ(x) + ψ(y)] + h
n−1∑
k=1

ψ(x + kh) < log
Γ(y)
Γ(x)

< h
n−1∑
k=0

ψ
[
x +

(
k +

1
2

)
h

]

and, more in general,

0 < h
n−1∑
k=0

ψ
[
x +

(
k +

1
2

)
h

]
− log

Γ(y)
Γ(x)

< log
Γ(y)
Γ(x)

− h
2

[ψ(x) + ψ(y)] − h
n−1∑
k=1

ψ(x + kh).

Proof. These inequalities are straightforward consequences of the extensions of
Hadamard’s inequalities proved in [1], Theorem 1.1.

THEOREM 4.2. Let x and y be real numbers, 0 < x < y , and h = (y − x)/n.
Then for odd r � 1 ,

h
2

[ψ(x) + ψ(y)] + h
n−1∑
k=1

ψ(x + kh) −
r−1∑
ν=1

B2νh2ν

(2ν)!

[
ψ (2ν−1)(y) − ψ (2ν−1)(x)

]

< log
Γ(y)
Γ(x)

< h
n−1∑
k=0

ψ
[
x +

(
k +

1
2

)
h

]
−

r−1∑
ν=1

B2νh2ν

(2ν)!

[
ψ (2ν−1)(y) − ψ (2ν−1)(x)

]
and more generally,

0 < h
n−1∑
k=0

ψ
[
x +

(
k +

1
2

)
h

]
−

r−1∑
ν=1

B2ν(1/2)h2ν

(2ν)!

[
ψ (2ν−1)(y) − ψ (2ν−1)(x)

]

− log
Γ(y)
Γ(x)

< log
Γ(y)
Γ(x)

− h
2
[ψ(x) + ψ(y)] − h

n−1∑
j=1

ψ(x + jh)

+
r−1∑
ν=1

B2νh2ν

(2ν)!

[
ψ (2ν−1)(y) − ψ (2ν−1)(x)

]
.

If r is even, we have reverse inequalities.

Proof. Since ψ(x) is 2r -concave, these inequalities clearly follow from Theorem
2.1 in [1].
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THEOREM 4.3. Let x and y be real numbers, 0 < x < y , and h = (y − x)/n.
Then for odd r � 1 ,

h
n−1∑
k=0

ψ
[
x +

(
k +

1
2

)
h

]
−

r−2∑
ν=1

B2ν(1/2)h2ν

(2ν)!

[
ψ (2ν−1)(y) − ψ (2ν−1)(x)

]
< log

Γ(y)
Γ(x)

< h
n−1∑
k=0

ψ
[
x +

(
k +

1
2

)
h

]
−

r−1∑
ν=1

B2ν(1/2)h2ν

(2ν)!

[
ψ (2ν−1)(y) − ψ (2ν−1)(x)

]
,

and

h
2
[ψ(x)+ψ(y)]+h

n−1∑
j=1

ψ(x+jh)−
r−1∑
ν=1

B2νh2ν

(2ν)!

[
ψ (2ν−1)(y)−ψ (2ν−1)(x)

]
< log

Γ(y)
Γ(x)

<
h
2
[ψ(x) + ψ(y)] + h

n−1∑
j=1

ψ(x + jh) −
r−2∑
ν=1

B2νh2ν

(2ν)!

[
ψ (2ν−1)(y) − ψ (2ν−1)(x)

]
.

If r is even, we have reverse inequalities.

Proof. These inequalities immediately follow from Hadamard-type inequalities
for (2r) -concave and (2r + 2) -concave functions, which are proved in [1], Theorem
2.2.
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