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GOLDEN–THOMPSON TYPE INEQUALITIES RELATED

TO A GEOMETRIC MEAN VIA SPECHT’S RATIO

MASATOSHI FUJII, YUKI SEO AND MASARU TOMINAGA

Abstract. We prove a Golden-Thompson type inequality via Specht’s ratio: Let H and K be
selfadjoint operators on a Hilbert space H satisfying MI � H, K � mI for some scalar M > m .
Then
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holds for all t > 0 and 0 � λ � 1 , where h = eM−m and (generalized) Specht’s ratio Mh(t)
is defined for h > 0 as

Mh(t) =
(ht − 1)h

t
ht−1

e log ht (h �= 1) and M1(1) = 1.
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[9] B. MOND AND J. E. PEČARIĆ, Convex inequalities in Hilbert spaces, Houston J. Math., 19 (1993),

405–420.
[10] W. SPECHT, Zur Theorie der elementaren Mittel, Math. Z., 74 (1960), 91–98.
[11] K. SYMANZIK, Proof and refinements of an inequality of Feynman, J. Math. Phys., 6 (1965), 1155–1156.
[12] C. J. THOMPSON, Inequalitywith applications in statisticalmechanics, J.Math. Phys., 6 (1965), 469–480.
[13] M. TOMINAGA, Specht’s ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583–588.
[14] M. TOMINAGA, Specht’s ratio and logarithmic mean in the Young inequality, preprint.
[15] A. M. TURING, Rounding off-errors in matrix processes, Quart. J. Mech. Appl. Math., 1 (1948), 287–308.
[16] T. YAMAZAKI AND M. YANAGIDA, Characterizations of chaotic order associated with Kantorovich

inequality, Sci. Math., 2 (1999), 37–50.

c© � � , Zagreb
Paper MIA-05-57

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


