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ABOUT VON NEUMMANN’S INEQUALITY FOR d –CONTRACTIONS

OCTAVIAN CRĂSNARU

1. Introduction

A d -contraction is a d -tuple (T1, . . . , Td) ofmutually commutingoperators acting
on a common Hilbert space H satisfying:

‖T1ξ1 + . . . + Tdξd‖2 � ‖ξ1‖2 + . . . + ‖ξd‖2

for every ξ1, . . . , ξd ∈ H . These are the higher dimensional counterparts of contraction.
A distinguished d -contraction, which acts on a new H2 space associated with the

unit ball Bd in complex d -space, is the d -shift (S1, . . . , Sd ). This spaces is a natural
generalization of the familiar Hardy space of the unit disk. We will show, briefly, the
way of defining this space.

P will denote the algebra of all complex holomorphic polynomials f in the
variable z = (z1, . . . , zd) . For each n = 1, 2, . . . we write En for the symmetric tensor
product of n copies of E = Cd · E0 is defined as the one dimensional vector space C
with its usual inner product.

It is shown that: every polynomial f : E → C takes the form:

f (z) =
n∑

k=0

< zk, ξk >Ek , z ∈ E

where: zk = z ⊕ . . . ⊕ z︸ ︷︷ ︸
k

∈ Ek, z ∈ E .

We define a Hilbert seminorm on P as follows:

‖f ‖2 = ‖ξ0‖2 + ‖ξ1‖2 + · · · + ‖ξn‖2 (1.1)

H2
d is defined as the Hilbert space obtained by completing P in the norm (1.1).

When there is no possibility of confusion concerning the dimension we will ab-
breviate H2

d with the simpler H2 .
More information can be found in the paper [1] of W. Arverson.
By a multiplier of H2 we mean a complex-valued function f : Bd �→ C with the

property:
f · H2 ⊂ H2.

The algebra of all multipliers is denoted M .
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Every f ∈ M defines a unique bounded operator Mf on H2 by way of:

Mf : g ∈ H2 �→ f · g ∈ H2.

The natural norm in M :

‖f ‖M = sup{‖f · g‖ : g ∈ H2, ‖g‖ � 1}
satisfies:

‖f ‖M = ‖Mf ‖.
We turn now to the definition of the d -dimensional analogue of the unilateral shift.
Let e1, e2, . . . , ed be an orthonormal basis for E = Cd , and define z1, z2, . . . , zd ∈

P by:
zk(z) =< z, ek >, z ∈ Cd.

Such a d -tuple of linear functionalswill be called a system of coordinate functions.
Let z1, z2, . . . , zd be a system of cordinate functions for Cd and let Sk = Mzk ,

k = 1, 2, . . .d .
The d -tuple of operators:

S = (S1, S2, . . . , Sd)

is called the d -dimensional shift or, briefly, the d -shift.
Perhaps the most natural generalization of von Neumann’s inequality for d -

dimensional operator theory would make the following assertion.
Let T = (T1, . . . , Td) be a d -contraction and let f = f (z1, . . . , zd) be a polyno-

mial in d -complex variables z1, . . . , zd . Then:

‖f (T1, . . . , Td)‖ � sup
‖z‖�1

|f (z1, . . . , zd)‖.

In [1], W. Arveson show that this inequality fails rather spectacuralrly for the d -shift,
in that there is no constant k for wich:

‖f (S1, . . . , Sd)‖ � sup
‖z‖�1

|f (z1, . . . , zd)|,

holds for all polynomials f .
W. Arverson in [1] establishes an appropiate version for von Neumann’s inequality

for dimension d � 2 .

THEOREM 1.1. Let T = T1, . . . , Td be an arbitrary d -contraction acting on a
Hilbert space H . Then for every polynomial f in d complex variables we have:

‖f (T1, . . . , Td)‖ � ‖f ‖M ,

‖f ‖M being the norm of f in the multiplier algebra M of H2 .

Proof. The proof of this theorem given by W. Arveson in [1] is based on the notion
of A -morphism. In this paper we will give a more simple proof, without using the
notion of A -morphism, based on dilations, as in the case of proving von Neumann’s
inequality for a single contraction.



ABOUT VON NEUMMANN’S INEQUALITY FOR d -CONTRACTIONS 595

2. Proof of the theorem 1.1

REMARK 2.1. Every d -contraction (T1, . . . , Td) in B(H) gives rise to a normal
completely positive map P on B(H) by way of:

P(A) = T1AT∗
1 + . . . + TdAT∗

d , A ∈ B(H).

Because:
T1T

∗
1 + . . . + TdT

∗
d � 1

we have P(1) � 1 , and in fact the sequence An = Pn(1) is decreasing: A0 = 1 �
A1 � A2 � . . . � 0 . Thus:

A∞ = lim
n→∞Pn(1)

exists as a limit in the strong operator topology and satisfies: 0 � A∞ � 1 .
A d -contraction T = (T1, . . . , Td) is called null if A∞ = 0 . Notice that if the

row norm of T is less than 1, i.e., T1T∗
1 + . . . TdT∗

d � r · 1 fore some 0 < r < 1 , then:
‖P‖ = ‖P(1)‖ � r < 1 and hence T is a null d -contraction.

THEOREM 2.2. [1] Let (T1, . . . , Td) be a d -contraction on a Hilbert space H ,
define the operator

Δ = (1 − T1T
∗
1 − . . . − TdT

∗
d )1/2

and the subspace K = ΔH . Let E be a d -dimensional Hilbert space and let:

F+(E) = C ⊕ E ⊕ E2 ⊕ . . .

be the symmetric Fock space over E.
Then for every orthonormal basis e1, . . . , ed for E there is a unique bounded

operator L : F+(E) ⊗ K �→ H satisfying

L(1 ⊗ ξ) = Δξ and

L(ei1ei2 . . . ein ⊗ ξ) = Ti1 . . . TinΔξ (2.1)

for every i1, . . . , in ∈ {1, 2, . . .d}, n = 1, 2, . . . .
In general we have ‖L‖ � 1 , and if (T1, . . . , Td) is a null d -tuple, then L is a

coisometry.

REMARK 2.3. We may consider the d -shift (S1, . . . , Sd) is defined on F+(E) by:

Skξ = ekξ , k = 1, 2, . . . , d,

where ekξ denotes the projection of ek⊗ξ ∈ F (E) to the symmetric subspace F+(E) .
(2.1) implies that:

L(f (S1, . . . , Sd) ⊗ 1K) = f (T1, . . . , Td)L (2.2)

for every polynomial f in d variables.

In general, a dilation theorem is a result wich characterizes some class of maps
into B(H) as a compressions to H of “nicer” maps into B(K) , where K is a Hilbert
space containing H .
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REMARK 2.4. If (T1, . . . , Td) is a null d -contraction, then L is a coisometry. In
this case we may identify H with the subspace L∗H of F+(E) ⊗ K .

With this identification, L becomes the projection of F+(E) ⊗ K onto H, PH .
Thus, we see that (2.2) implies:

f (T1, . . . , Td) = PH(f (S1, . . . , Sd) ⊗ 1K)|H, (2.3)

for every polynommial f in d variables.
So that when (T1, . . . , Td) is a null d -contraction, theorem 2.2[1] is a dilation

result in the sense described above.

REMARK 2.5. If (T1, . . . Td) is a null d -contraction, (2.3) implies:

‖f (T1, . . . , Td)‖ � ‖f ‖M (2.4)

for every polynomial f in d varibles.

REMARK 2.6. The general case is deduced from this by a simple device. Let
T = (T1, . . . , Td) be any d -contraction, choose a number r so that: 0 < r < 1 , and
set:

Tr = (rT1, . . . , rTd).

The row norm of the d -tuple Tr is at most r , hence Tr is a null d -contraction.
(2.4) implies:

‖f (rT1, . . . , rTd)‖ � ‖f ‖M ,

for every polynomial f in d variables, whence obtain:

‖f (rT1, . . . , rTd)‖ � ‖f ‖M ,

for every polynomial f in d variables.
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