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A LAGRANGIAN DUAL METHOD FOR

SOLVING VARIATIONAL INEQUALITIES

STEFAN M. STEFANOV

Abstract. In this paper we consider a variational inequality problem (VIP) defined by a maximal
monotone operator and a feasible set defined by convex inequality constraints and bounds on the
variables. A Lagrangian dual method for solving this problem is presented and its convergence
is proved.

1. Introduction

Variational inequalities arise in different mathematical problems, for example, in
nonlinear optimization; they are connected with operator theory, especially monotone
operators, etc.

Given an operator T , point to set in general, and a closed convex subset X of Rn .
The variational inequality problem VIP (T, X) consists in finding a pair x∗ ∈ X and
g∗ ∈ T(x∗) such that

〈 g∗, x − x∗〉 � 0 ∀x ∈ X, (1)
where 〈 ., .〉 denotes the usual inner product of Rn .

When T is single-valued, VIP (T, X) consists in finding x ∈ X such that

〈T(x∗), x − x∗〉 � 0 ∀x ∈ X, (2)

where T : Rn → Rn and X is a nonempty, closed and convex set in Rn .
If the constraint set X is the nonnegative orthant Rn

+ ≡ {x ∈ Rn : x � 0} of Rn ,
then the VIP reduces to the complementarity problem (CP).

Recall that the nonlinear complementarity problem NCP (F ) is to find a point
x ∈ Rn such that

x � 0, F(x) � 0, 〈 x, F(x)〉 = 0,

where F : Rn → Rn .
Variational inequalities have been studied in many works.
The monograph of Kinderlehrer and Stampacchia [11] is a complete introduction

in this topic.
Equivalenceof variational inequality problems to unconstrainedoptimization prob-

lems is studied in [Peng 16].
Unconstrained optimization reformulations of variational inequality problems are

proposed in [Yamashita, Taji, and Fukushima 26]. Reformulations of variational in-
equalities are also considered in [Andreani and Martı́nez 1].
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Newton-type methods for solving variational inequalities are suggested, e.g., in
[Marcotte and Dussault 14], [Qi 17], [Qi and Sun 18], [Taji, Fukushima, and Ibaraki 25],
etc.

A hybrid projection-proximal point algorithm is proposed in [Solodov and Svaiter
20].

Nesterov and Vial ([15]) introduced a homogeneous analytic center cutting plane
method (HACCPM) which solves monotone VIPs in a conic setting and pseudopolyno-
mial-time complexity. ACCPM is considered, for example, in [Sonnevend 22]. An
ACCPM for pseudomonotone variational inequalities and a complexity bound was
derived in [Goffin, Marcotte, and Zhu 10].

An analytic center quadratic cut method for strongly monotone variational inequal-
ity problems is suggested in [Lüthi and Büeler 12].

Conditions ensuring applicability of cutting plane methods for solving variational
inequalities are derived in [Crouzeix, Marcotte, and Zhu 5].

Descent methods for asymmetric variational inequality problems are suggested in
[Fukushima 8].

Characterization of strong regularity for variational inequalities over polyhedral
sets is considered in [Dontchev and Rockafellar 6].

Complementarity problems are considered, e.g., in [Facchinei and Kanzow 7],
[Gabriel and Moré 9], [Mangasarian and Solodov 13], [Solodov and Svaiter 21], etc.

The VIP and the CP can be reformulated as equivalent unconstrained optimization
problems by using the D− gap function (for the VIP) and the implicit Lagrangian
(for the CP). The implicit Lagrangian was proposed by Mangasarian and Solodov
([13]) for the CP, and Peng ([16]) extended the implicit Lagrangian approach to the
VIP and showed that the implicit Lagrangian can be expressed as the difference of two
regularized gap functions proposed by Fukushima ([8]). Yamashita, Taji and Fukushima
([26]) extended the results of Peng and studied properties of the D−gap function

gαβ(x)
def= fα(x)− f β (x), where α and β are arbitrary parameters with β > α > 0 and

fα is the following regularized gap function fα(x) def= max
y∈X

〈F(x), x−y〉 − α
2
‖y−x‖2 =

〈F(x), x − yα(x)〉 − α
2
‖yα(x) − x‖2, yα(x) def= ΠX

(
x − 1

αF(x)
)

and ΠX(.) is the

projection operator onto the constraint set X .

The implicit Lagrangian is a particular case of the D−gap function with β = 1
α .

Consider the box constrained variational inequality problem: find x∗ ∈ X such that
〈F(x∗), x−x∗〉 � 0 ∀x ∈ X, with F : Rn → Rn a continuously differentiable function

and X
def= {x ∈ Rn : a � x � b}, a ∈ {R ∪ {−∞}}n, b ∈ {R ∪ {∞}}n, a < b . If

a = 0, b = ∞ , then VIP becomes the well-known nonlinear complementarity problem
(NCP). This VIP is also called the mixed complementarity problem.

As mentioned at the beginning, variational inequality problems are connected with
the nonlinear/convex programming (complementary slackness conditions in the The-
orem of John, in Karush–Kuhn–Tucker (KKT) theorem), complementarity problems,
etc.
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For example, the differential version of KKT theorem for problem

min f (x)

subject to
gi(x) � 0, i ∈ I1; li(x) � 0, i ∈ I2; li(x) = 0, i ∈ I3; xj � 0, j ∈ J1,

where I1 ∪ I2 ∪ I3 = I ≡ {1, . . . ,m}; J1 ⊆ J ≡ {1, . . . , n} can be formulated as follows.
Let f and gi be differentiable convex functions, li be affine functions and Slater’s constraint

qualification be satisfied. A necessary and sufficient condition for x∗ to be an optimal solution
to the convex program is that there exists λ∗ ∈ Λ = {λ = (λ1, . . . , λm) : λi � 0, i ∈ I1 ∪ I2}
such that

∂L
∂xj

(x∗,λ∗) � 0, j ∈ J1
∂L
∂λi

(x∗,λ∗) � 0, i ∈ I1 ∪ I2

∂L
∂xj

(x∗,λ∗) = 0, j ∈ J \ J1
∂L
∂λi

(x∗,λ∗) = 0, i ∈ I3

x∗j
∂L
∂xj

(x∗, λ∗) = 0, j ∈ J1 λ∗
i

∂L
∂λi

(x∗, λ∗) = 0, i ∈ I1 ∪ I2

x∗j � 0, j ∈ J1 λ∗
i � 0, i ∈ I1 ∪ I2,

where L is the Lagrangian associated with the convex program.

Third type conditions in the above system are the complementary slackness conditions.
Convex separable minimization problems subject to bounded variables are studied,

for example, in [23], [24], etc. Asmentioned above, complementary slackness conditions
for these problems, which are among the KKT optimality conditions, are connectedwith
complementarity problems and variational inequalities.

In this section we also give some notation used in the paper.

Notation

0 zero or zero vector of appropriate dimension
‖x‖ the Euclidean norm of x ∈ Rn

yTx = 〈 x, y〉 the inner (scalar) product of x, y ∈ Rn

R = R ∪ {±∞} the extended real numbers
Rn

+ the nonnegative orthant {x ∈ Rn : x � 0} of Rn

Rn
++ the positive orthant {x ∈ Rn : x > 0} of Rn

I the unit matrix of appropriate dimension,
the identity mapping

∇F(x) =
(

∂F
∂x1

, . . . , ∂F
∂xn

)T
the gradient of F : Rn → R at x ∈ Rn

F′(x) the Jacobian of F : Rm → Rn at x ∈ Rn

∇F(x) = (F′(x))T the transposed Jacobian of F : Rm → Rn at x ∈ Rn

where F(x) = (F1(x), . . . , Fm(x)) and

∇F(x) =

⎛
⎜⎝

∇F1(x)T

...
∇Fm(x)T

⎞
⎟⎠

m×n

.
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2. Preliminaries on monotone operators and normal cones

Recall that a point to set valued map (or multifunction) A : Rn−→→Rn is an operator
which associateswith each point x ∈ Rn a set (possibly empty) A(x) ⊆ Rn . The inverse
operator is denoted by A−1(y) = {x ∈ Rn : y ∈ A(x)} and we have (A−1)−1 = A .
The domain and range of A are defined by

dom A = {x : A(x) 
= ∅},
rg A = dom A−1 = {y : ∃ x with y ∈ A(x)}.

When A is a single-valued map (that is, a function) we can write A(x) = {y} or
A(x) = y .

DEFINITION 1. The multivalued mapping F : X−→→Rn , where X is a nonempty
convex subset of Rn , is said to be:

• monotone on X if for all x1, x2 ∈ X

〈 v1 − v2, x1 − x2〉 � 0 whenever v1 ∈ F(x1), v2 ∈ F(x2);

• strictly monotone on X if for all x1 , x2 ∈ X , x1 
= x2

〈 v1 − v2, x1 − x2〉 > 0 whenever v1 ∈ F(x1), v2 ∈ F(x2);

• strongly monotone with modulus m > 0 on X if for all x1, x2 ∈ X

〈 v1 − v2, x1 − x2〉 � m‖x1 − x2‖2 whenever v1 ∈ F(x1), v2 ∈ F(x2).

When F is single-valued, the monotonicity property takes the form

〈F(x1) − F(x2), x1 − x2〉 � 0 ∀x1, x2 ∈ X;

the strict and strong monotonicity cases are modified similarly.
Recall that a matrix A is called

• positive semidefinite if 〈 y, Ay〉 � 0 for all y ∈ Rn ;
• positive definite if 〈 y, Ay〉 > 0 for all y ∈ Rn, y 
= 0 ; and
• uniformly positive definite with constant m if

〈 x − y, A(x − y)〉 � m‖x − y‖2 ∀x, y ∈ Rn.

When the mapping F is differentiable, F is
• monotone on X if and only if ∇F(x) is positive semidefinite for all x ∈ X ;
• strictly monotone on X if ∇F(x) is positive definite for all x ∈ X ; and
• strongly monotone with modulus m on X if and only if ∇F(x) is uniformly

positive definite with constant m .
When the mapping F is affine such that F(x) = Ax + b with A being an n × n

matrix and b being an n−vector, there is no difference between the strict monotonicity
and the strong monotonicity of F . More specifically, matrix A is positive definite
if and only if F is strongly monotone as well as strictly monotone. Moreover, A is
positive semidefinite if and only if F is monotone. In particular, the identity mapping
I is strictly monotone.
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DEFINITION 2. A monotone mapping F is said to be maximal if its graph is not
properly contained in the graph of any other monotone mapping, that is, if

〈 y − y′, x − x′〉 � 0 ∀x′ ∈ domF, ∀y′ ∈ F(x′) implies y ∈ F(x).

The following properties of maximal monotone operators hold (for details see,
e.g., [Rockafellar and Wets 19, Chapter 12]).

PROPOSITION 1. i) A−1 is maximal monotone if and only if A is maximal mono-
tone.

ii) Let A1, A2 be maximal monotone. Then A1 + A2 is also maximal monotone if
either one of the following conditions is satisfied:

a) int dom A1∩ dom A2 
= ∅,
b) ri (dom A1)∩ ri (dom A2) 
= ∅, where ri A denotes the relative interior of

A .

For a nonempty closed convex set X ∈ Rn denote by X∞ the recession cone of X .
For a closed and proper convex function f : Rn → R∪{+∞} , the recession function f∞
of f is defined by epi (f∞) = (epi f )∞ , where epi f = {(x, r) ∈ Rn ×R : f (x) � r}
is the epigraph of f .

Recall that a vector f̂ (x0) is said to be a subgradient of (a convex function) f at
x0 if the inequality

f (x) − f (x0) � 〈 f̂ (x0), x − x0〉
holds for each x ∈ Rn .

The set containing all subgradients of f at the point x0 is called the subdiffer-
ential of f at x0 and is denoted by ∂f (x0). If ∂f (x0) 
= ∅ , then f is said to be
subdifferentiable at x0. The subdifferential of f is defined as the multivalued mapping
∂f : x−→→∂f (x).

DEFINITION 3. The normal cone operator associated with a closed convex set X
is defined by

NX(x) =
{ {y : 〈 y, v − x〉 � 0 ∀v ∈ X}, if x ∈ X

∅, otherwise.

We have dom NX = X , and NX(x) = {0} when X = Rn or x ∈ int X .
NX is a maximal monotone operator on Rn . Moreover, NX = ∂δ(.|X) where

δ(.|X) is a closed proper convex function (indicator function) defined as follows

δ(x|X) =
{

0, if x ∈ X
+∞, otherwise.

In terms of NX , we can rewrite the VIP (1) as the one of finding the zero of the
generalized equation

0 ∈ T(x) + NX(x). (3)

Problem (3) can be considered as another equivalent primal formulation of the VIP (1).
Problem (3) is also called variational condition for any set X ⊂ Rn and any mapping
T : X → Rn . When X is convex, (3) can be written equivalently in the form (1) or (2).
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The multivalued mapping F : Rn−→→Rn defined by F(x) def= T(x) + NX(x) and
F(x) = ∅ when x 
∈ X , is strictly monotone when T is strictly monotone relative to X .
Then the solution set has at most one element.

3. Lagrangian duality for box constrained VIPs

3.1. Introduction. Main results

It is known that x∗ is a solution of the VIP (1) if and only if

x∗ ∈ arg min{〈 g∗, x − x∗〉 : x ∈ X}, (4)

where g∗ ∈ T(x∗) . Consider the case where T is a maximal monotone mapping from
Rn into itself, the constraint set X is explicitly defined by X = {x : f i(x) � 0, i =
1, . . . , m, aj � xj � bj, j = 1, . . . , n} and f i : Rn → R ∪ {+∞} are closed proper
convex functions. Without loss of generality suppose that at least one f i is continuous.
Denote F(x) = (f 1(x), . . . , f m(x))T .

Let Φ def= ∩m
i=1 dom f i be an open set.

With the convex optimization problem

min{〈 g∗, x − x∗〉 : f i(x) � 0, i = 1, . . . , m, aj � xj � bj, j = 1, . . . , n} (5)

we can associate a Lagrangian defined by L : Rn × Rm+2n → R ,

L(x,μ; x∗) =

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈 g∗, x−x∗〉+
m∑

i=1

λif i(x)+
n∑

j=1

[uj(aj−xj)+vj(xj−bj)], if x∈Φ∩C, μ∈Rm+2n
+

−∞, if μ 
∈ Rm+2n
+

+∞, otherwise,
(6)

where μ = (λ , u, v) ∈ Rm+2n
+ is the dual variables vector and C = {aj � xj � bj, j =

1, . . . , n} .
The dual problem is then

sup
μ�0

inf{L(x,μ; x∗) : x ∈ Φ ∩ C}. (7)

It is known that (x∗,μ∗) ∈ (Φ ∩ C) × Rm+2n
+ is a saddle point of L if and only if

x∗ (∈ Φ ∩ C) and μ∗ (� 0) are optimal solutions to the primal and dual problem,
respectively, with no duality gap, that is, with equal optimal values of the primal and
dual problems.

THEOREM 1. Let Slater’s constraint qualification be satisfied for the constraint set
X . x∗ ∈ Rn solves (3) if and only if there exists μ∗ ∈ Rm+2n

+ such that (x∗,μ∗) solves
the problem

(0, 0) ∈ W(x∗,μ∗), (8)
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where

W(x,μ) ≡
{

(y, w) ∈ Rn × Rm+2n
+ :

y ∈ T(x) +
m∑

i=1

λi∂f i(x) − u + v, w ∈
(
− F(x) + NRm

+
(μ), x − a, b − x)

)}
,

(9)

if (x,μ) ∈ dom W = (dom T ∩Φ ∩ C) × Rm+2n
+ 
= ∅ , and W(x,μ) = ∅ , otherwise.

Proof. We have

∂(〈 g∗, x − x∗〉 + δ(x|Φ ∩ C))|x=x∗ = ∂(〈 g∗, x − x∗〉 + δ(x|Φ)|x=x∗ + δ(x|C))|x=x∗

= g∗ + NΦ(x∗) + NC(x∗),

and since Φ is open then NΦ(x∗) = {0} . Therefore for the primal and dual problem
we get

0 ∈ g∗ +
m∑

i=1

λ ∗
i ∂f i(x∗) − u∗ + v∗ (10)

and
0 ∈ ( − F(x∗) + NRm

+
(λ ∗), x∗ − a, b − x∗

)
, (11)

respectively, where g∗ ∈ T(x∗) . Since 〈 g∗, x − x∗〉 � 0 ∀x ∈ X then the optimal
value of problem (5) is 0.

Since Slater’s constraint qualification is satisfied, that is, there exists x ∈ X :
f i(x) < 0, i = 1, . . . , m then there exists a KKT vector μ . The relations (10) and (11)
are the KKT necessary and sufficient optimality conditions for problem (5).

Thus μ∗ can be interpreted as the solution of the Lagrangian dual VIP:

find μ∗ ∈ Rm+2n
+ , d∗ ∈ G(μ∗) × A(x∗) × B(x∗) : 〈 d∗,μ − μ∗〉 � 0 ∀μ ∈ Rm+2n

+ ,
(12)

where
G(μ) ≡ {−F(x) : x ∈ M(μ)}, (13)

M(μ) ≡
{

x ∈ Rn : 0 ∈ T(x) +
m∑

i=1

λi∂f i(x) − u + v
}

, (14)

A(x) = {x − a}, B(x) = {b − x}. (15)

The dual problem (12) can also be written as

0 ∈ TD(μ∗)

where
TD(μ) ≡

{
G(μ) + NRm

+
(λ )

}
× A(x) × B(x).

Using (10) and (11), we obtain the primal-dual formulation (8) of VIP where
W(x,μ) is defined through (9). �

Thus, (3), (8) and (12) are equivalent primal, primal-dual and dual formulation of
VIP (1), respectively.

The following operators
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TP := T + NX (primal)
TPD := W (primal-dual)
TD := G + NRm

+
(dual)

are associated with these three formulations, respectively.
Denote by X∗ = (T + NX)−1(0), Z∗ = W−1(0, 0), M∗ the set of solutions to

problems (3), (8) and (12), respectively.
From Proposition 1, ii) a) it follows that TP is maximal monotone when dom T∩

int X 
= ∅ .

THEOREM 2. Let T : Rn−→→Rn be maximalmonotone such that dom T∩Φ∩C 
= ∅ .
Then the primal-dual operator W (9) is also maximal monotone.

Proof. Let

D(x,μ) =
{

T(x) × {0} × {0} × {0}, if x ∈ dom T
∅, otherwise,

E(x,μ) =

=

⎧⎪⎨
⎪⎩

[ m∑
i=1

λi∂f i(x)
]
× [−F(x)+NRm

+
(λ )

]×(x−a)×(b−x), if x∈Φ∩C, λ ∈ Rm
+

∅, otherwise.

Then the operator W can be decomposed as W = D + E . Since T is maximal
monotone, D is also maximal monotone. If we define h : (Φ ∩ C) × Rm

+ → R by
h(x, λ ) =

∑m
i=1 λif i(x), then E(x,μ) = ∂xh(x, λ )×(− ∂̂λh(x, λ )

)×(x−a)×(b−x),
where ∂̂ is the upper subdifferential. (Recall that the upper subdifferential ∂̂f (x) is
defined by ∂̂f (x) = {ζ ∈ Rn : f (x) − f (x) � 〈 ζ , x − x〉 ∀ x ∈ Rn}.)

Therefore E is maximal monotone, whence applying Proposition 1, ii) a) to
operators D and E yields W is maximal monotone. �

3.2. Auxiliary consideration

Let function ϕ be defined as follows

ϕ(t) =
{ ν

2 (t − 1)2 + ρ(t − log t − 1), if t > 0
+∞, otherwise,

(16)

where ν > ρ > 0 are given fixed parameters.
Define for any v ∈ Rp

++ the function d(u, v) associated with ϕ

d(u, v) =

⎧⎪⎨
⎪⎩

p∑
i=1

ν
2
(ui − vi)2 + ρ

(
v2
i log

vi

ui
+ uivi − v2

i

)
, if v ∈ Rp

++

+∞, otherwise.

(17)

The following properties of ϕ hold true, see [Auslender, Teboulle, and Ben-Tiba
3, 4].
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PROPOSITION 2. Let ϕ be defined by (16). Then
1. ϕ is a differentiable strongly convex function on R++ with modulus ν > 0 .
2. lim

t→0
ϕ′(t) = −∞.

3. The conjugate of ϕ is

ϕ∗(s) =
ν
2

t2(s) + ρ log t(s) − ν
2
,

where

t(s) =
1
2ν

[
ν − ρ + s +

√
(ν − ρ + s)2 + 4ρν

]
= (ϕ∗)′(s).

4. dom ϕ∗ = R, ϕ∗ ∈ C∞(R).
5. (ϕ∗)′(s) = (ϕ′)−1(s) is Lipschitz for all s ∈ R with Lipschitz constant 1

ν .
6. ϕ∗ is a strictly convex and increasing function on R .
7. (ϕ∗)′′(s) < 1

ν for all s ∈ R.
8. (ϕ∗)∞(−1) = 0 and (ϕ∗)∞(1) = +∞ where (ϕ∗)∞ is the recession

function of ϕ∗.

Suppose that following assumptions are satisfied.

Assumptions

1. T is a maximal monotone operator with Φ = ∩m
i=1 dom f i an open subset

of int dom T .
2. The solution set of VIP (1) is nonempty and compact.
3. Slater’s constraint qualification is satisfied for some x ∈ dom T .

For γ > 0, μ > 0 and ϕ (16) consider the multifunction

H(x,μ, γ ) =

⎧⎪⎨
⎪⎩

T(x) +
m∑

i=1

λi(ϕ∗
i )′(γ f i(x)/λi)∂f i(x) − u + v, if x ∈ Φ ∩ C

∅, otherwise.

THEOREM 3. Let ϕ be defined by (16) and Assumptions 1 – 3 be satisfied. Then
for every γ > 0 , for every μ ∈ Rm

++ , the operator H(.,μ, γ ) is maximal monotone on
Rn .

Proof. From Proposition 2, 8. it follows that (ϕ∗)∞(−1) = 0, (ϕ∗)∞(1) = +∞ .
Let γ > 0 and μ > 0 be fixed. From Proposition 2.1 [2] it follows that the function

g(x) def=
1
γ

m∑
i=1

λiϕ∗(γ f i(x)/λi)

is closed, proper and convex with dom g = ∩m
i=1 dom f i 
= ∅ . Moreover,

g∞(d) =
{

0, if (f i)∞(d) � 0 ∀ i
+∞, otherwise.

Since Φ = ∩m
i=1 dom f i is open, then H = T + ∂g − u + v. Applying Assumption 1

(Φ ⊂ int dom T ) and Proposition 1, ii) a) yields H is maximal monotone. �
It can be proved that the solution set H−1(0,μ, γ ) of the generalized equation

0 ∈ H(x,μ, γ ) is nonempty.
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3.3. The primal-dual method (PDM)

The primal-dual method is based on solving VIP (1) by solving the equivalent
primal-dual problem (8):

0 ∈ W(x,μ), (8′)
where W is defined by (9), assuming that W is maximal monotone (for example, under
assumptions of Theorem 2) and Slater’s constraint qualification holds true for x ∈ dom
T .

Consider the following distance-like functional

D((x,μ), (y, w)) def=
1
2
‖x − y‖2 + d(μ, w),

where d(u, v) is defined by (17).
Beginning with an initial guess (x0,μ0) ∈ Rn × Rm+2n

++ , generate a sequence
{(xk,μk)} ⊂ Rn × Rm+2n

++ satisfying

0 ∈ W(xk,μk) +
1
γk
∇(x,μ)D((xk,μk), (xk−1,μk−1)), (18)

where γk � γ > 0, μk = (λ k, uk, vk) .

THEOREM 4. Let W be the maximal monotone operator defined by (9). Then
(i) There exists a unique (xk,μk) ∈ Rn × Rm+2n

++ satisfying (18) for all γk >
0, μk−1 > 0 .

(ii) If the solution set of problem (8) is nonempty, then the sequence {(xk,μk)}
generated by (18) converges to a solution (x∗,μ∗) ∈ X∗ × M∗ .

The proof of Theorem 4 is similar to that of a theorem from [3].
The iterative process (18) can be written as follows

0 ∈ T(xk) +
m∑

i=1

λ k
i ∂f i(xk) − uk + vk +

xk − xk−1

γk
, (19)

0 ∈ F(xk) + γk
[
λ k

1ϕ
′
(λ k−1

1

λ k
1

)
, . . . , λ k

mϕ
′
(λ k−1

m

λ k
m

)]
+ NRm

+
(λ k). (20)

This consideration leads to the so-called primal-dual method.
Let ϕ be defined by (16), (x0,μ0) ∈ Rn × Rm+2n

++ and γk � γ > 0 ∀k � 1 .
Generate the sequence {(xk,μk)} through

0 ∈ H(xk,μk−1, γk) +
xk − xk−1

γk
, (21)

μk
i = μk−1

i (ϕ∗)′(γkf i(xk)/μk−1
i ), i = 1, . . . , m + 2n. (22)

For fixed μk−1 > 0, γk > 0 define the multifunction

Hk(x)
def= H(x,μk−1, γk) +

x − xk−1

γk
.

Using this notation, (21) can be written as

0 ∈ Hk(xk). (21′)



A LAGRANGIAN DUAL METHOD FOR SOLVING VARIATIONAL INEQUALITIES 607

THEOREM 5. Let ϕ be defined by (16), T be a maximal monotone mapping and
Slater’s constraint qualification be satisfied for some x ∈ dom T . Then operator Hk

is maximal monotone and strongly monotone with modulus 1
γk

, that is,

〈 y − y′, x − x′〉 � 1
γk
‖x − x′‖2 ∀y ∈ Hk(x), y′ ∈ Hk(x′).

Proof. Using definition of H and that Slater’s constraint qualification is satisfied
for some x ∈ dom T , we get H = T + ∂g − u + v and H is maximal monotone.
Define Rk(x) = 1

2γk
‖x− xk−1‖2. By definition of Hk , Hk = H +∇Rk , and since ∇Rk

is strongly monotone then Hk is also strongly monotone. �
Since themultifunction Hk(x) in (21) ismaximalmonotone and stronglymonotone

then the existence and uniqueness of the sequence {xk} in (21) is guaranteed.

THEOREM 6. Let T be a maximal monotone operator on Rn , W be also maximal
monotone, Slater’s constraint qualification hold for x ∈ dom T , and the solution set
of (8) be nonempty. Then the primal-dual sequence {(xk,μk)}, generated by PDM,
converges to a primal-dual solution (x∗,μ∗) ∈ X∗ ×M∗ of (8), that is, to a solution of
VIP (1) and dual problem (12), respectively.

Proof. Since the sequence {(xk,μk)} , generated by PDM, is given by (18), then
Theorem 4 implies that {(xk,μk)} converges to a solution of problem (8). �

4. Extensions and concluding remarks

PDM can be modified to solve the standard nonlinear complementarity problem
with

T : Rn → Rn , single-valued and continuous,
T(x) = (T1(x), . . . , Tn(x))T , X = Rn

+
as follows

Ti(xk) − λ k
i (ϕ∗)′(−γkxk/λ k−1

i ) − uk
i + vk

i +
xk
i − xk−1

i

γk
= 0, i = 1, . . . , n (23)

μk
i = μk−1

i (ϕ∗)′(−γkxk/μk−1
i ), i = 1, . . . , m + 2n. (24)

Since (24) is a system of equations, it can be solved via a Newton-type method.
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