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COMPARISON AND SUBHOMOGENEITY OF INTEGRAL MEANS

LÁSZLÓ LOSONCZI

(communicated by Z. Daróczy)

Abstract. The differential and integral means were defined and studied by Elezović and Pečarić
[3]. They gave sufficient conditions for the comparison of two integral (differential) means and
applied this to obtain some other inequalities.

Our aim is to give necessary and sufficient conditions for the comparison of two integral
means and in this way improve theorems 2, 3 of [3]. We also deal with the subhomogeneity and
homogeneity of integral means. As they are special Cauchy means we can use the method of the
author [7] to prove our results.

1. Differential and integral means

If f is a continuous real function on an (open or closed) interval I and f is
differentiable on I◦ (being the interior of I ) then for every x, y ∈ I, x < y there is a
point t ∈]x, y[ such that

f ′(t) =
f (y) − f (x)

y − x
.

This is Lagrange’s mean value theorem.
If f ′ is invertible then t is unique and

t =
(
f ′)−1

(
f (y) − f (x)

y − x

)
.

This number t is called the differential f -mean of x and y and denoted by Df (x, y) .
Similarly if g : I → R is continuous and strictly monotonic on I then for every

x, y ∈ I, x < y there is a unique point s ∈]x, y[ such that

g(s) =
1

y − x

y∫
x

g(u) du.

thus

s = g−1

⎛
⎝ 1

y − x

y∫
x

g(u) du

⎞
⎠ .
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This number s is called the integral g -mean of x and y and denoted by Ig(x, y) .
Clearly, (requiring Df , Ig to have the mean property or requiring them to be

continuous) we have for equal arguments

Df (x, x) = Ig(x, x) = x (x ∈ I).

These means were defined and studied by Elezović and Pec̆arić [3] (we slightly
changed their definition). They gave sufficient conditions for the comparison of differ-
ential and integral means and applied these to obtain some other inequalities.

Our aim is to give necessary and sufficient conditions for the comparison of
differential and integral means and in this way improve theorems 2, 3 of [3]. For this
purpose we shall use the method and results of the author [7] as the means Df , Ig are
special Cauchy means. Due to the importance of the above means we give a proof for
the comparison theorem which is independent from the one in [7]. We also discuss the
subhomogeneity and homogeneity of these means.

As
Df = If ′

it is enough to study the means If only.
Parallel to our means we consider the discrete quasi–arithmetic means

Mϕ(u) := ϕ−1

⎛
⎜⎜⎝

n∑
k=1

ϕ(uk)

n

⎞
⎟⎟⎠ (u = (u1, . . . , un) ∈ In, n � 2)

and quasi–arithmetic integral means

Iϕ(u) := ϕ−1

⎛
⎜⎜⎜⎝

b∫
a
ϕ(u(t)) dt)

b − a

⎞
⎟⎟⎟⎠ (u ∈ R[a, b])

where ϕ : I → R is a strictly monotonic and continuous function on the interval I and
the latter case I = [a, b] and R[a, b] denotes the set of all functions u : [a, b] → R

which are Riemann integrable on [a, b].
If ψ is also a continuous and strictly monotonic function on I then the comparison

of discrete quasi–arithmetic means

Mϕ(u) � Mψ (u) (u ∈ In, n � 2)

or the comparison of quasi–arithmetic integral means

Iϕ(u) � Iψ (u) (u ∈ R[a, b])

holds if and only if⎧⎨
⎩

either ϕ is strictly increasing on I and ϕ ◦ ψ−1 is concave on ψ(I) ,

or ϕ is strictly decreasing on I and ϕ ◦ ψ−1 is convex on ψ(I)
(1)
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where ψ(I) is the range of ψ over I (see e.g. Hardy, Littlewood and Pólya [4],
Losonczi [6]).

As
Ig(x, y) = Ig(u) if u(t) = t ∈ I = Ix,y = [x, y]

and the validity of (1) on I implies its validity on any subinterval, (1) (with ϕ =
f ,ψ = g ) is clearly sufficient for the comparison

If (x, y) � Ig(x, y) (x, y ∈ I).

In Section 2 we show that assuming some differentiability conditions (1) (with ϕ =
f ,ψ = g ) is also necessary for the above comparison.

2. Comparison and equality of integral means

The strict monotonicity and continuity of f guarantees the existence of If . We
need however stronger regularity conditions to find criteria for the comparison of integral
means. Denote by E(I) the set of functions f : I → R which are differentiable on I
and their derivatives do not vanish on I. Clearly f ∈ E(I) ensures the existence of If .
As usual Cn(I) denotes the space of all functions f : I → R which have continuous
n th derivative on I.

THEOREM 1. Suppose that I is a real interval, f , g ∈ E(I); f , g ∈ C2(I). The
inequality

If (x, y) � Ig(x, y) (x, y ∈ I) (2)
holds if and only if one of the eight conditions

f ′′(x)
f ′(x)

� g′′(x)
g′(x)

(x ∈ I) (3)

ln

∣∣∣∣ f ′

g′

∣∣∣∣ is decreasing on I (4)

ln

∣∣∣∣g′f ′

∣∣∣∣ is increasing on I (5)

f (u) − f (v)
f ′(v)

� g(u) − g(v)
g′(v)

(u, v ∈ I) (6)

f ′ (g−1(t)
) d2

dt2
f
(
g−1(t)

)
� 0 (t ∈ f (I)) (7)

g′
(
f −1(t)

) d2

dt2
g
(
f −1(t)

)
� 0 (t ∈ g(I)) (8)⎧⎨

⎩
either f is strictly increasing on I and f ◦ g−1 is concave on g(I) ,

or f is strictly decreasing on I and f ◦ g−1 is convex on g(I)
(9)

⎧⎨
⎩

either g is strictly decreasing on I and g ◦ f −1 is concave on f (I) ,

or g is strictly increasing on I and g ◦ f −1 is convex on f (I)
(10)

is satisfied.
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Proof. Necessity. We show that (2) implies (3) and that (3) is equivalent to (4),
(5), (6), (7), (8), (9), (10).

It is easy to check that If can be written in the form

If (x, y) = f −1

⎛
⎝ 1∫

0

f ((1 − t)x + ty) dt

⎞
⎠ .

The advantage of this form is that it is valid for all x, y ∈ I.
Differentiating behind the integral sign we obtain that

∂1 If (x, y) =

1∫
0
(1−t)f ′ ((1−t)x+ty) dt

f ′ [If (x, y)]
,

∂2
1 If (x, y) =

1∫
0
(1 − t)2f ′′ ((1−t)x+ty) dt

f ′ [If (x, y)]
−

(
1∫
0
(1−t)f ′ ((1−t)x+ty) dt

)2

f ′′ [If (x, y)]

f ′ [If (x, y)]
3

where ∂1 denotes partial differentiation operator with respect to the first variable. From

this, by If (x, x) = x,
1∫
0
(1 − t) dt = 1/2,

1∫
0
(1 − t)2 dt = 1/3 we obtain

∂1 If (x, y)|y=x =
1
2
,

∂2
1 If (x, y)|y=x =

1
12

f ′′(x)
f ′(x)

.

Denoting the difference of the right and left hand sides of (2) by Φ(x, y) we get for any
x, y ∈ I by Taylor’s formula that

Φ(x, y) = Φ(y, y) + ∂1Φ(y, y)(x − y) +
∂2

1Φ(ξ , y)
2

(x − y)2 =
∂2

1Φ(ξ , y)
2

(x − y)2 � 0

where ξ is a value between x and y . Thus ∂2
1Φ(ξ , y) � 0 and taking the limit y → x

we obtain, by the continuity of f ′′, g′′, that

∂2
1 Φ(x, x) =

1
12

(
f ′′(x)
f ′(x)

− g′′(x)
g′(x)

)
� 0

proving that (3) is necessary for (2).
Next we show that (3 is equivalent to (4), (5), (6), (7), (8), (9), (10) provided that

f , g ∈ E(I); f , g ∈ C2(I). Using the identity (ln |f ′|)′ = f ′′/f ′ we get

g′′(x)
g′(x)

− f ′′(x)
f ′(x)

= −
(

ln

∣∣∣∣ f ′

g′

∣∣∣∣
)′

=
(

ln

∣∣∣∣g′f ′

∣∣∣∣
)′

which shows that (3) is equivalent to (4) and (5).
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Let
H(t) := f

(
g−1(t)

)
� 0 (t ∈ g(I)).

then

f ′ (g−1(t)
)

H′′(t) = f ′ (g−1(t)
) ( f ′′ (g−1(t)

)
(g′ (g−1(t)))2 − f ′ (g−1(t)

)
g′′
(
g−1(t)

)
(g′ (g−1(t)))3

)

=

(
f ′ (g−1(t)

)
g′ (g−1(t))

)2(
f ′′ (g−1(t)

)
f ′ (g−1(t))

− g′′
(
g−1(t)

)
g′ (g−1(t))

)

which shows that (3) and (7) are equivalent. We can prove the equivalence of (3) and
(8) in a similar way rewriting the second derivative of K(t) := g

(
f −1(t)

)
(t ∈ g(I))

in a suitable form. Assume now that f ′(x) > 0 (x ∈ I). Then (7) means exactly that
H is concave on g(I) A well-known characterization of the concavity of H is

H(s) − H(t) � (s − t)H′(t) (t, s ∈ g(I))

(see e.g. [8]) which can be written as

f
(
g−1(s)

)− f
(
g−1(t)

)
� (s − t)

f ′ (g−1(t)
)

g′ (g−1(t))
(t, s ∈ J).

Substituting here s = g(u), t = g(v) u, v ∈ I one can see that (6) is equivalent to the
concavity of H on g(I) i.e. to (7) and thus also to (3). The case when f ′(x) < 0 (x ∈ I)
can be treated similarly.

Using characterization of C2 convex (concave), strictly monotonic functions it is
obvious that (9) is equivalent to (7) and (10) is equivalent to (8).

We remark that the equivalence of (3) and (7) has also been discussed in [2].
Sufficiency. We show that (6) implies (2). Assume again that f ′(x) > 0 (x ∈ I).

Let x, y ∈ I and substitute

u = (1 − t)x + ty, v = Ig(x, y)

in (6) and integrate from 0 to 1 with respect to t. The right hand side of the inequality
so obtained will be zero by the definition of Ig thus we have

1∫
0

f ((1 − t)x + ty) dt − f (Ig(x, y))

f ′ (Ig(x, y))
� 0

hence

(If (x, y) =) f −1

⎛
⎝ 1∫

0

f ((1 − t)x + ty) dt

⎞
⎠ � Ig(x, y)

as we stated. The case f ′ < 0 is similar. �
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REMARK 1. According to Theorem 1 (2)⇔ (9) (or (10)) provided that f , g ∈
E(I); f , g ∈ C2(I). As we have seen the implication (9) (or (10))⇒ (2) holds if
we assume only the minimal conditions on f and g : their strict monotonicity and
continuity. It is quite natural to ask if the reverse implication holds if only the strict
monotonicity and continuity of f , g is assumed. This is very likely to be true but our
method is definitely not suitable to prove it.

H′′(t) � 0 (t ∈ g(I)) if and only if H′(t) = f ′ (g−1(t)
)
/g′
(
g−1(t)

)
is increasing

on g(I). This holds if and only if either f ′/g′ is increasing and g is increasing on I
or f ′/g′ is decreasing and g is decreasing on I. The inequality H′′(t) � 0 (t ∈ g(I))
can be characterized similarly. By this we get still another form of the comparison (cf.
[3] Theorem 2).

THEOREM 2. Suppose that I is a real interval, f , g ∈ E(I); f , g ∈ C2(I).
The inequality

If (x, y) � Ig(x, y) (x, y ∈ I) (2)

holds if and only if one of the following conditions hold:

(i) f is increasing, g is increasing and f ′/g′ decreasing on I,
(ii) f is increasing, g is decreasing and f ′/g′ increasing on I,
(iii) f is decreasing, g is increasing and f ′/g′ increasing on I,
(iv) f is decreasing, g is decreasing and f ′/g′ decreasing on I.

Applying this result and Theorem 1 and using the identity Dg = Ig′ we obtain

THEOREM 3. Suppose that I is a real interval, f ∈ E(I); f ∈ C3(I) and f ′′(x) �=
0 (x ∈ I).

The inequality
Dg(x, y) � Ig(x, y) (x, y ∈ I)

holds if and only if one of the following conditions hold:

(i) g is convex, g is increasing and g′′/g′ decreasing on I,
(ii) g is convex, g is decreasing and g′′/g′ increasing on I,
(iii) g is concave, g is increasing and g′′/g′ increasing on I,
(iv) g is concave, g is decreasing and g′′/g′ decreasing on I.

THEOREM 4. Suppose that I is a real interval, f ∈ E(I); f ∈ C3(I) and f ′′(x) �=
0 (x ∈ I).

The inequality
Dg(x, y) � Ig(x, y) (x, y ∈ I)

holds if and only if

the function ln

∣∣∣∣g′′g′

∣∣∣∣ is decreasing on I.

The inequality
Dg(x, y) � Ig(x, y) (x, y ∈ I)
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holds if and only if

the function ln

∣∣∣∣g′′g′

∣∣∣∣ is increasing on I.

Concerning the equality of integral means we have

THEOREM 5. Suppose that I is a real interval, f , g ∈ E(I); f , g ∈ C2(I).
The equality

If (x, y) = Ig(x, y) (x, y ∈ I) (11)

holds if and only if there is are constants c �= 0, d such that

f (x) = cg(x) + d (x ∈ I). (12)

Proof. (11) holds if and only if both (2) and its reverse inequality

If (x, y) � Ig(x, y) (x, y ∈ I)

are satisfied. By Theorem 1 these hold if and only if ln

∣∣∣∣ f ′

g′

∣∣∣∣ is both decreasing and

increasing on I i.e. if and only if it is a constant function, which is equivalent to
(12). �

Similarly we get

THEOREM 6. Suppose that I is a real interval, f , g ∈ E(I); f ∈ C3(I), g ∈ C2(I).
The equality

Df (x, y) = Ig(x, y) (x, y ∈ I)

holds if and only if there are constants c �= 0, d such that

f ′(x) = cg(x) + d (x ∈ I).

3. Subhomogeneity of integral means

The concept of subhomogeneous functions was introduced in [5].

THEOREM 7. Suppose that f ∈ E(R+); f ∈ C3(R+) where R+ =]0,∞[. Let
F(x) = xf ′(x) (x ∈ R+) and assume that F′(x) = f ′(x) + xf ′′(x) �= 0 for x ∈ R+.
The mean If is positive subhomogeneous with respect to the function (t, x) → tx, i.e.

If (tx, ty) � tIf (x, y) (x, y ∈ R+, t ∈]1,∞[) (13)

holds if and only if

x → sign

[
1 + x

f ′′(x)
f ′(x)

]
ln

∣∣∣∣1 + x
f ′′(x)
f ′(x)

∣∣∣∣ (x ∈ R+) is decreasing on R+. (14)
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Proof. By Theorem 2 of [5] (13) holds if and only if

x∂1If (x, y) + y∂2If (x, y) � If (x, y) (x, y ∈ R+).

This can be written as

1∫
0

((1 − t)x + ty) f ′ ((1 − t)x + ty) dt

f ′ (If (x, y))
� If (x, y)

or, by the help of the function F(x) := xf ′(x) (x ∈ R+), if f ′ > 0

F (IF(x, y)) � F (If (x, y)) (x, y ∈ R+).

If F′ > 0 this is equivalent to

IF(x, y) � If (x, y) (x, y ∈ R+). (15)

Thus, if sign

[
F′(x)
f ′(x)

]
= 1 then (13) holds if and only if (15) is valid while in the case

sign

[
F′(x)
f ′(x)

]
= −1 (13) holds if and only if the reverse of (15) is valid. Applying

Theorem 1 (using condition (4)) we get (14). �

REMARK 2. (14) is also necessary and sufficient for the inequality

If (tx, ty) � tIf (x, y) (x, y ∈ R+, t ∈]0, 1[) .

If in (13) we require t ∈]0, 1[ or reverse the inequality sign in (13) (but keep t ∈]1,∞[ )
then Theorem 7 remains valid if we replace the word decreasing by increasing in (14).

THEOREM 8. Suppose that f ∈ E(R+); f ∈ C2(R+). Themean If is homogeneous
i.e.

If (tx, ty) = tIf (x, y) (x, y, t ∈ R+) (16)

holds if and only if

either If (x, y) =
(

yβ+1 − xβ+1

(β + 1)(y − x)

)1/β

(x, y ∈ R+, x �= y)

or If (x, y) = exp

(
y ln(y/e) − x ln(x/e)

y − x

)
(x, y ∈ R+, x �= y)

(17)

where β �= 0 is an arbitrary constant.

Proof. Assuming f ∈ C3(R+) and (xf ′(x))′ �= 0 we could easily find f using
Theorem 7. To avoid the excess regularity conditions we apply another method.
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For any fixed t ∈ R+ we have

1
t
If (tx, ty) =

1
t
f −1

⎛
⎜⎜⎜⎝

ty∫
tx

f (u) du

ty − tx

⎞
⎟⎟⎟⎠ =

1
t
f −1

⎛
⎜⎜⎝

y∫
x

f (tv) dv

y − x

⎞
⎟⎟⎠ = If t(x, y)

where f t(x) := f (tx) (x ∈ R+). Thus (16) is equivalent to

If t(x, y) = If (x, y) (x, y, t ∈ R+) .

By Theorem 5 this is valid if and only if there is a function c : R+ → R − {0} such
that

f ′
t (x) = tf ′(tx) = c(t)f ′(x) (x, y, t ∈ R+)

is satisfied. With x = 1 we obtain that c(t) = tf ′(t)/f ′(1). Substituting this and
introducing the function h(x) := f ′(x)/f ′(1) our equation goes over into the Cauchy
functional equation

h(xt) = h(t)h(x) (t, x ∈ R+).
The solutions continuous at one point of this equation are (see e.g. Aczél [1]) of the
form h(x) = xα , (x ∈ R+) where α ∈ R is an arbitrary constant. From f ′(x)/f ′(1) =
h(x) = xα we obtain (by separating the cases α = −1,α �= −1 and introducing new
constants) that

either f (x) = axβ + b (x ∈ R+)
or f (x) = a ln x + b (x ∈ R+)

where β �= 0, a �= 0, b ∈ R arbitrary constants. The corresponding means are clearly
the ones given by (17). �

REMARK 3. From (17) one can see that the homogeneous integral means are
exactly the Stolarsky [9], [10] means with parameters (β + 1, 1) with β �= 0 and
(1, 1) corresponding to β = 0.

THEOREM 9. Suppose that f ∈ E(R), f ∈ C3(R) and f ′′(x) �= 0 (x ∈ R). The
mean If is positive subhomogeneous with respect to the function (t, x) → x + t, i.e.

If (x + t, y + t) � If (x, y) + t (x, y ∈ R, t ∈ R+) (18)

holds if and only if

x → sign

[
f ′′(x)
f ′(x)

]
ln

∣∣∣∣ f ′′(x)
f ′(x)

∣∣∣∣ (x ∈ R) is decreasing on R. (19)

Proof. By Theorem 1 of [5] (18) holds if and only if

∂1If (x, y) + ∂2If (x, y) � 1 (x, y ∈ R).

This can be written as
1∫
0

f ′ ((1 − t)x + ty) dt

f ′ (If (x, y))
� 1
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or in the case f ′(x) > 0

f ′ (Df (x, y)) � f ′ (If (x, y)) (x, y ∈ R)

which is equivalent to
Df (x, y) � If (x, y) (x, y ∈ R (20)

provided that f ′′(x) > 0. Thus, if sign

[
f ′′(x)
f ′(x)

]
= 1 the inequality (18) is equivalent

to (20) while if sign

[
f ′′(x)
f ′(x)

]
= −1 the inequality (18) is equivalent to the reverse of

(20). Applying Theorem 4 completes the proof. �

REMARK 4. (19) is necessary and sufficient for the inequality

If (x + t, y + t) � If (x, y) + t (x, y ∈ R, t ∈] −∞, 0[) .

If in (18) we require t ∈] − ∞, 0[ or reverse the inequality sign in (18) (but keep
t ∈]0,∞[ ) then our Theorem 9 remains valid if we replace the word decreasing by
increasing in (19).
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