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(communicated by A. M. Fink)

Abstract. The Hermite-Hadamard inequality is discussed in the light of Choquet’s theory.

It is well known that every convex function f : [a, b] → R can be modified at
the endpoints to become convex and continuous. An immediate consequence of this
remark is the integrability of f . The mean value of f ,

M(f ) =
1

b − a

∫ b

a
f (x) dx,

can then be estimated by the Hermite-Hadamard Inequality,

f

(
a + b

2

)
� M(f ) � f (a) + f (b)

2
, (HH)

which follows easily from the midpoint and trapezoidal approximation to the middle
term. Moreover, under the presence of continuity, equality occurs (in either side) only
for linear functions. An updated account on (HH) are to be found in [2].

What about the case of functions of several variables? A recent paper by S. S.
Dragomir [3] (see also [2]) describes the case of balls in R3 , by proving that

f (a) � 1

Vol BR(a)

∫∫∫
BR(a)

f (x) dV � 1
Area SR(a)

∫∫
SR(a)

f (x) dS

for every continuous convex function f : BR(a) → R . However, as we shall show in
the sequel, more general results are already available in the existing literature. In fact,
the right approach of the entire subject of Hermite-Hadamard type inequalities comes
from Choquet’s theory, a theory whose highlights were presented by R. R. Phelps in his
booklet [5]. For a more advanced material, see the monograph of E. M. Alfsen [1].

The basic observation is that the middle point (a + b)/2 represents the barycenter
of the given interval [a, b] (with respect to a uniform distribution of mass), while the
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right hand side of (HH) represents the mean value of f over the set of extreme points
of the given interval.

Then the two sides of (HH) follow different routes, with different degrees of
generality.

To enter the details, let K be a compact convex subset K of a locally convex
Hausdorff space E and suppose there is given a Radon probability measure μ on K
(which can be thought of as a mass distribution on K ). The μ− barycenter of K is
defined as the unique point xμ of K such that

x′(xμ) =
∫

K
x′(x) dμ(x) (B)

for every continuous linear functional x′ on E; see [5], Proposition 1.1. When E is the
Euclidean n−dimensional space, the normed and the weak convergence are the same,
so that

xμ =
∫

K
x dμ(x)

i.e., the barycenter coincides with the moment of first order of μ .
An immediate consequence of (B) is the validity of the inequality

f (xμ) �
∫

K
f (x) dμ(x)

for every continuous convex function f : K → R , a fact which extends the left part of
the classical Hermite-Hadamard inequality. For details, see the remark before Lemma
4.1 in [5]. Another remark is the following monotonicity property (noticed by S. S.
Dragomir [3] in a particular case):

PROPOSITION 1. Under the above hypothesis, the function

M(t) =
∫

K
f (tx + (1 − t)xμ) dμ(x)

is convex and nondecreasing on [0, 1] .

When E = Rn and μ is the Lebesguemeasure, the value of M at t equals themean
of f |Kt , where Kt denotes the image of K through the mapping x → tx + (1 − t)xμ ,
i.e.,

M(t) =
1

μ(Kt)

∫
Kt

f (x) dμ(x).

Proposition 1 tells us that shrinking K to xμ , via the sets Kt , the mean of f |Kt decreases
to f (xμ) . The proofwill need the following approximation argument, which was shown
to us by Prof. Gheorghe Bucur:

LEMMA 2. Every Radon probability measure μ on K is the pointwise limit of a
net of discrete Radon probability measures μα on K , which have the same barycenter
as μ .

Proof. We have to prove that for every ε > 0 and every finite family f 1, . . . , f n

of continuous real functions on K there exists a discrete Radon probability measure ν
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such that
xν = xμ and sup

1�k�n
|ν(f k) − μ(f k)| < ε.

As K is compact and convex and the f k ’s are continuous, there exists a finite
covering (Dα)α of K by open convex sets such that the oscillation of each of the
functions f k on each set Dα is < ε . Let (ϕα)α be a partition of the unity, subordinated
to the covering (Dα)α and put

ν =
∑

α
μ(ϕα) εx(α)

where x(α) is the barycenter of the measure f → μ(ϕα f )/μ(ϕα) . As Dα is convex
and the support of ϕα is included in Dα , we have x(α) ∈ Dα . On the other hand,

μ(h) =
∑

α
μ(hϕα) =

∑
α

μ(hϕα)
μ(ϕα)

· μ(ϕα) =
∑

α
h(x(α)) · μ(ϕα) = ν(h)

for every continuous affine function h : K → R . Consequenly, μ and ν have the same
barycenter. Finally, for each k ,

|ν(f k) − μ(f k)| =
∣∣∣∑

α
μ(ϕα) f k(x(α)) −

∑
α
μ(ϕα f k)

∣∣∣
=

∣∣∣∣∑α
μ(ϕα)

[
f k(x(α)) − μ(ϕα f k)

μ(ϕα)

]∣∣∣∣
� ε ·

∑
α
μ(ϕα) = ε. �

Proof of Proposition 1. A straightforward computation shows that M(t) is convex
and M(t) � M(1) . Then, assuming the inequality M(0) � M(t) , from the convexity
of M(t) we infer

M(t) − M(s)
t − s

� M(s) − M(0)
s

� 0

for 0 � s < t � 1 i.e., M(t) is nondecreasing. To end the proof, it remains to show
that M(t) � M(0) = f (xμ) . For, choose a net (μα)α of discrete Radon probability
measures on K , as in Lemma 2 above. Clearly,

f (xμ) �
∫

K
f (tx + (1 − t)xμ) dμα(x) for all α

and thus the desired conclusion follows by passing to the limit over α . �
The extension of the right hand inequality in (HH) is a bit more subtle and makes

the object of Choquet’s theory, briefly summarized in the sequel. Given two Radon
probability measures μ and λ on K , we say that μ is majorized by λ (i.e., μ ≺ λ )
if ∫

K
f (x) dμ(x) �

∫
K

f (x) dλ (x)

for every continuous convex function f : K → R . As noticed in [5], ≺ is a partial
ordering on the set of all Radon probability measures on K .
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THE CHOQUET THEOREM 3. ([5], ch. 3). Let μ be a Radon probability measure
on a metrizable compact convex subset K of a locally convex Hausdorff space E . Then
there exists a maximal Radon probability measure λ � μ such that the following two
conditions are verified:

i) The barycenter of K with respect to λ and μ is the same;
ii) The set Ext K of all extremal points of K is a Gδ− subset of K and λ is

concentrated on Ext K (i.e., λ (K \ Ext K ) = 0) .

Under the hypotheses of the above result we get

f (xμ) �
∫

K
f (x) dμ(x) �

∫
Ext K

f (x) dλ (x) (Ch)

for every continuous convex function f : K → R , a fact which represents a full
extension of (HH) in the case of metrizable compact convex sets. Notice that the right
part of (Ch) reflects the maximum principle for convex functions.

In general, λ is not unique, except for the case of simplices; see [5], ch. 9.
Another useful remark is that every Radon probability measure λ , concentrated

on Ext K , for which (Ch) holds, is maximal. Cf. [5], Corollary 9.8.
According to the above discussion, if K = [a, b] , then necessarily λ is a convex

combination of the Dirac measures εa and εb , say λ = (1−α)εa +αεb . This remark
yields Fink’s Hermite-Hadamard type inequality [4] in the case of probability measures:∫ b

a
f (x) dμ(x) � b − xμ

b − a
· f (a) +

xμ − a

b − a
· f (b) (F)

for every continuous convex functions f : [a, b] → R and every Radon probability
measure μ on [a, b]; as usually, xμ denotes the barycenter of μ , i.e, xμ =

∫ b
a x dμ(x) .

In fact, checking ∫ b

a
f (x) dμ(x) � (1 − α) · f (a) + α · f (b)

for f (x) = (x − a)/(b − a) and f (x) = (b − x)/(b − a) we obtain

α � xμ − a

b − a
and respectively 1 − α � b − xμ

b − a

i.e., α = (xμ − a)/(b − a) .
The argument above can be extended easily for all continuous convex functions

defined on n−dimensional simplices K = [A0, A1, . . . , An] in Rn . Then the corre-
sponding analogue of (F) for Radon probability measures μ on K will read as

f (Xμ) �
∫

K
f (x) dμ �

n∑
k=0

Voln ([A0, A1, . . . , Âk, . . . , An] · f (Ak);

here Xμ denotes the barycenter of μ , and [A0, A1, . . . , Âk, . . . , An] denotes the sub-
simplex obtained by replacing Ak by Xμ ; this is the sub-simplex opposite to Ak , when
adding Xμ as a new vertex. Voln represents the Lebesgue measure in Rn .
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In the case of closed balls K = BR(a) in R3 , Ext K coincides with the sphere
SR(a) ; the paper by Dragomir [3] illustrates the aforementioned theorem of Choquet in
the case where μ is the normalized Lebesgue measure on BR(a) . His argument, based
on Calculus, avoids Choquet’s theory, but it cannot be extended to arbitrary compact
convex sets and arbitrary Radon probability measures on them.

The Choquet theory is today a well established subject in Mathematics, with many
extensions and ramifications, and Theorem 3 above is just the beginning of the story.
The reader will find much fun formulating many other results in the Choquet theory as
Hermite-Hadamard type inequalities.
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