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NEW GENERALIZATIONS OF INEQUALITIES OF HARDY AND

LEVIN––COCHRAN––LEE TYPE FOR MULTIDIMENSIONAL BALLS

ALEKSANDRA ČIŽMEŠIJA AND JOSIP PEČARIĆ

(communicated by B. Mond)

Abstract. This paper deals with some new sharp generalizations of inequalities of Hardy and
Levin–Cochran–Lee type for n-dimensional balls.

1. Introduction

Let B(r) = B(O, r) be the ball in Rn centered at the origin and of radius r > 0 .
Further, let Sn−1 denote the surface of the unit ball B(1) and let |Sn−1| be its area.
Using polar coordinates in Rn , the volume of the ball B(r) , |B(r)| , is then |B(r)| =∫

B(r) dx =
∫
|x|<r dx =

∫ r
0 tn−1

(∫
Sn−1 dS

)
dt =

∫
Sn−1

(∫ r
0 tn−1dt

)
dS = rn|Sn−1|

n , where

|x| denotes the Euclidean norm of the vector x ∈ Rn . Consequently, |B(1)| = |Sn−1|
n ,

B(r) = rn|B(1)| , and for s > 0 we have∫
B(r)

|B(|x|)|s−1dx =
|B(r)|s

s
(1)

and ∫
B(r)

|B(|x|)|s−1 ln |B(|x|)|dx =
|B(r)|s

s

(
ln |B(r)| − 1

s

)
. (2)

Following the results of M. Christ and L. Grafakos, [1], and those of P. Drábek,
H. P. Heinig, and A. Kufner, [6], in the paper [3] a natural generalization of the classical
Hardy integral inequality (cf. [7]) to balls in Rn centered at the origin was obtained.
That result is given in:

THEOREM A. Let p > 1 and k �= 1 be real numbers. If f is a non-negative

measurable function such that |B(|x|)|1− k
p f ∈ Lp(Rn) , and the function F is defined

on Rn by

F(x) =

⎧⎨
⎩

∫
B(|x|) f (y)dy, k > 1,

∫
Rn\B(|x|) f (y)dy, k < 1,

(3)
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then ∫
Rn

|B(|x|)|−kFp(x)dx �
(

p
|k − 1|

)p ∫
Rn

|B(|x|)|p−kf p(x)dx. (4)

The constant
(

p
|k−1|

)p
is the best possible.

In the same paper the corresponding exponential inequality was also proved. It
is called the Levin–Cochran–Lee inequality for balls and we state it by the following
theorem.

THEOREM B. Let α, γ ∈ R , α �= 0 . If f is a positive measurable function such
that

∫
Rn |B(|x|)|γ−1f (x)dx < ∞ , and the function G is defined on Rn by

G(x) =

⎧⎪⎪⎨
⎪⎪⎩

exp
[

α
|B(|x|)|α

∫
B(|x|)|B(|y|)|α−1 ln f (y)dy

]
, α > 0,

exp
[
− α

|B(|x|)|α
∫

Rn\B(|x|)|B(|y|)|α−1 ln f (y)dy
]
, α < 0,

(5)

then the inequality∫
Rn

|B(|x|)|γ−1G(x)dx � e
γ
α

∫
Rn

|B(|x|)|γ−1f (x)dx (6)

holds. The constant e
γ
α is the best possible.

Observe that G is the weighted geometric mean of f over the ball B(|x|) , or over
its complement Rn \ B(|x|) , with the radial power weight w(y) = |B(|y|)|α−1 .

Both stated results were obtained by using an original approach via mixed-means
inequalities related to integral means of arbitrary real order, with power weights (cf. [3]
and [4]).

It is evident from the proof of Theorem A that (4) holds even if
∫

Rn is replaced
with

∫
B(R) in the case when k > 1 , or with

∫
Rn\B(R) when k < 1 . Similarly, the

proof of Theorem B shows that (6) will stay preserved if we put
∫

B(R) when α > 0 , or∫
Rn\B(R) when α < 0 , instead of

∫
Rn .

Our objective in this paper is to refine these "reduced" inequalities. By making
a careful analysis of the proofs from [3], we provide smaller upper bounds for their
left-hand sides, dependent on R . Moreover, we prove that the constant factors involved
in the right-hand sides of the obtained inequalities are the best possible, that is, they
cannot be replaced with smaller ones.

A similar idea has already been applied to series and one-dimensional integrals
(cf. [2] and [5]).

2. The results

First, we give a generalization of Theorem A.

THEOREM 1. Let p, k, R ∈ R be such that p > 1 , k �= 1 , and R > 0 . Suppose
f is a non-negative measurable function and the function F is defined by (3).
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(i) If k > 1 and 0 <
∫

B(R) |B(|x|)|p−kf p(x)dx < ∞ , then

∫
B(R)

|B(|x|)|−kFp(x)dx

<

(
p

k − 1

)p ∫
B(R)

⎡
⎣1 −

( |B(|x|)|
|B(R)|

) k−1
p

⎤
⎦ |B(|x|)|p−kf p(x)dx. (7)

(ii) If k < 1 and 0 <
∫

Rn\B(R) |B(|x|)|p−kf p(x)dx < ∞ , then

∫
Rn\B(R)

|B(|x|)|−kFp(x)dx

<

(
p

1 − k

)p ∫
Rn\B(R)

⎡
⎣1 −

( |B(R)|
|B(|x|)|

) 1−k
p

⎤
⎦ |B(|x|)|p−kf p(x)dx. (8)

The constant
(

p
|k−1|

)p
is the best possible for both inequalities.

Proof. To prove the theorem, we use the following two relations, obtained in [3]
(Theorem 5, relations (7) and (8)), considering a non-negative measurable function f
and parameters r, s, R,α, γ ∈ R , such that r, s �= 0 , r < s , and R > 0 ( f positive in
the case r < 0 ):

⎧⎨
⎩ 1
|B(R)|γ

∫
B(R)

|B(|x|)|γ−1

[
1

|B(|x|)|α
∫

B(|x|)
|B(|y|)|α−1f r(y)dy

] s
r

dx

⎫⎬
⎭

1
s

�

⎧⎨
⎩ 1
|B(R)|α

∫
B(R)

|B(|x|)|α−1

[
1

|B(|x|)|γ
∫

B(|x|)
|B(|y|)|γ−1f s(y)dy

] r
s

dx

⎫⎬
⎭

1
r

(9)

and

⎧⎨
⎩ 1

|B(R)|γ
∫

Rn\B(R)
|B(|x|)|γ−1

[
1

|B(|x|)|α
∫

Rn\B(|x|)
|B(|y|)|α−1f r(y) dy

] s
r

dx

⎫⎬
⎭

1
s

�

⎧⎨
⎩ 1
|B(R)|α

∫
Rn\B(R)

|B(|x|)|α−1

[
1

|B(|x|)|γ
∫

Rn\B(|x|)
|B(|y|)|γ−1f s(y) dy

] r
s

dx

⎫⎬
⎭

1
r

.

(10)
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First, let k > 1 . Setting r = 1 , s = p > 1 , α = 1 and γ = p − k + 1 , (9) becomes

∫
B(R)

|B(|x|)|−kFp(x)dx

� |B(R)|1−k

⎧⎨
⎩
∫

B(R)
|B(|x|)| k−1

p −1

[∫
B(|x|)

|B(|y|)|p−kf p(y)dy

] 1
p

dx

⎫⎬
⎭

p

. (11)

Denote IR =
∫

B(R) |B(|x|)| k−1
p −1dx . Using (1), the right-hand side of (11) is further

equal to

(
p

k − 1

)p
⎧⎨
⎩ 1

IR

∫
B(R)

|B(|x|)| k−1
p −1

[∫
B(|x|)

|B(|y|)|p−kf p(y)dy

] 1
p

dx

⎫⎬
⎭

p

<

(
p

k − 1

)p 1
IR

∫
B(R)

|B(|x|)| k−1
p −1

∫
B(|x|)

|B(|y|)|p−kf p(y)dydx

=
(

p
k − 1

)p−1

|B(R)| 1−k
p

∫
B(R)

|B(|x|)| k−1
p −1

∫
B(|x|)

|B(|y|)|p−kf p(y)dydx

=
(

p
k − 1

)p−1

|B(R)| 1−k
p

∫
B(R)

|B(|y|)|p−kf p(y)
∫

B(R)\B(|y|)
|B(|x|)| k−1

p −1dx dy

=
(

p
k − 1

)p ∫
B(R)

⎡
⎣1 −

( |B(|y|)|
|B(R)|

) k−1
p

⎤
⎦ |B(|y|)|p−kf p(y)dy, (12)

so (7) is proved. The sequence of inequalities yielding the last line of (12) is obtained
by applying Jensen’s inequality to the convex function t �→ tp , Fubini’s theorem and
the relation (1). Note that the inequality sign in the second line of (12) is strict since f
fulfills the conditions from the statement of Theorem 1.

For the case k < 1 , inequality (8) is proved analogously, but this time by starting
from (10), rewritten with r = 1 , s = p > 1 , α = 1 and γ = p− k + 1 as parameters,
and then applying Jensen’s inequality and Fubini’s theorem.

The proof that
(

p
|k−1|

)p
is the best possible constant for the inequalities (7)

and (8) follows. For any ε > 0 and the function f ε : B(R) → R defined by

f ε(x) = |B(|x|)| k−1+ε
p −1 , the left-hand side of (7) is equal to

Lε =
∫

B(R)
|B(|x|)|−k

(∫
B(|x|)

f ε(y)dy

)p

dx

=
(

p
k − 1 + ε

)p ∫
B(R)

|B(|x|)|ε−1dx =
(

p
k − 1 + ε

)p |B(R)|ε
ε

,
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while on the right-hand side we have

Rε =
(

p
k − 1

)p ∫
B(R)

⎡
⎣1 −

( |B(|x|)|
|B(R)|

) k−1
p

⎤
⎦ |B(|x|)|p−kf p

ε (x)dx

�
(

p
k − 1

)p ∫
B(R)

|B(|x|)|p−kf p
ε (x)dx

=
(

p
k − 1

)p ∫
B(R)

|B(|x|)|ε−1dx =
(

p
k − 1

)p |B(R)|ε
ε

.

Therefore, 1 � Rε
Lε

�
(

k−1+ε
k−1

)p
→ 1 , as ε → 0 . Hence,

(
p

k−1

)p
is the best possible

constant for (7). The proof that
(

p
1−k

)p
is the best possible constant for (8) is similar,

if the function f ε : Rn \ B(R) → R , f ε(x) = |B(|x|)| k−1−ε
p −1 , is considered. �

By using a similar approach we can obtain a generalization of Theorem B of the
same type as the generalization of Theorem A given in Theorem 1. That result is given
in the following theorem.

THEOREM 2. Suppose f is a positive measurable function, α, γ , R ∈ R are such
that α �= 0 , R > 0 , and the function G is defined by (5).

(i) If α > 0 and 0 <
∫

B(R) |B(|x|)|γ−1f (x)dx < ∞ , then

∫
B(R)

|B(|x|)|γ−1G(x)dx

< e
γ
α

∫
B(R)

[
1 −

( |B(|x|)|
|B(R)|

)α]
|B(|x|)|γ−1f (x)dx. (13)

(ii) If α < 0 and 0 <
∫

Rn\B(R) |B(|x|)|γ−1f (x)dx < ∞ , then

∫
Rn\B(R)

|B(|x|)|γ−1G(x)dx

< e
γ
α

∫
Rn\B(R)

[
1 −

( |B(R)|
|B(|x|)|

)−α
]
|B(|x|)|γ−1f (x)dx. (14)

The constant e
γ
α is the best possible for both inequalities.
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Proof. The proof is based on two relations, obtained in [3]. Let s > 0 be arbitrary.
If α > 0 , then the inequality

{
1

|B(R)|γ
∫

B(R)
|B(|x|)|γ−1Gs(x)dx

} 1
s

� exp

⎡
⎣ α
|B(R)|α

∫
B(R)

|B(|x|)|α−1 ln

(
1

|B(|x|)|γ
∫

B(|x|)
|B(|y|)|γ−1f s(y)dy

) 1
s

dx

⎤
⎦

(15)

holds (cf. [3], relation (18) from Theorem 6). By setting s = 1 in (15) and considering
(2), we have∫

B(R)
|B(|x|)|γ−1G(x)dx

� |B(R)|γ exp

[
α

|B(R)|α
∫

B(R)
|B(|x|)|α−1

· ln

(
1

|B(|x|)|γ
∫

B(|x|)
|B(|y|)|γ−1f (y)dy

)
dx

]

= |B(R)|γ exp

[
− αγ
|B(R)|α

∫
B(R)

|B(|x|)|α−1 ln |B(|x|)|dx

+
α

|B(R)|α
∫

B(R)
|B(|x|)|α−1 ln

(∫
B(|x|)

|B(|y|)|γ−1f (y)dy

)
dx

]

= e
γ
α exp

[
α

|B(R)|α
∫

B(R)
|B(|x|)|α−1 ln

(∫
B(|x|)

|B(|y|)|γ−1f (y)dy

)
dx

]
.

(16)

By using Jensen’s inequality for the convex function t �→ et , the last line of (16) is less
than

e
γ
α

α
|B(R)|α

∫
B(R)

|B(|x|)|α−1
∫

B(|x|)
|B(|y|)|γ−1f (y)dydx. (17)

Applying Fubini’s theorem and (1), the term (17) is further equal to

e
γ
α

α
|B(R)|α

∫
B(R)

|B(|y|)|γ−1f (y)
∫

B(R)\B(|y|)
|B(|x|)|α−1dxdy

= e
γ
α

∫
B(R)

[
1 −

( |B(|y|)|
|B(R)|

)α]
|B(|y|)|γ−1f (y)dy,

so (13) is proved. Owing to the conditions of the theorem, the sign of inequality in (13)
is strict.
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Now, we discuss the best possible constant for (13). For any ε > 0 , let the
function f ε : B(R) → R be defined by f ε(x) = αe−

γ
α |B(|x|)|αε−γ . Calculating the

left-hand side of (13) for f ε , we obtain

Lε =
∫

B(R)
|B(|x|)|γ−1 exp

(
α

|B(|x|)|α
∫

B(|x|)
|B(|y|)|α−1 ln f ε(y)dy

)
dx

=
∫

B(R)
|B(|x|)|γ−1 exp

[
α

|B(|x|)|α ln
(
αe−

γ
α
)∫

B(|x|)
|B(|y|)|α−1dy

+
α

|B(|x|)|α (αε − γ )
∫

B(|x|)
|B(|y|)|α−1 ln |B(|y|)|dy

]
dx

= αe−ε
∫

B(R)
|B(|x|)|αε−1dx = e−ε |B(R)|αε

ε
.

On the other hand, the right-hand side of (13), rewritten for f ε , can be estimated as
follows:

Rε = e
γ
α

∫
B(R)

[
1 −

( |B(|x|)|
|B(R)|

)α]
|B(|x|)|γ−1f ε(x)dx

� e
γ
α

∫
B(R)

|B(|x|)|γ−1f ε(x)dx = α
∫

B(R)
|B(|x|)|αε−1dx =

|B(R)|αε
ε

.

Since 1 � Rε
Lε

� eε → 1 , as ε → 0 , the constant e
γ
α is the best possible constant

factor for the inequality (13).

In the case α < 0 , the inequality (14) is a consequence of the relation

{
1

|B(R)|γ
∫

Rn\B(R)
|B(|x|)|γ−1Gs(x)dx

} 1
s

� exp

⎡
⎣− α

|B(R)|α
∫

Rn\B(R)
|B(|x|)|α−1 ln

(
1

|B(|x|)|γ
∫

Rn\B(|x|)
|B(|y|)|γ−1f s(y)dy

) 1
s

dx

⎤
⎦
(18)

([3], inequality (19) from Theorem 6), derived by the same technique as (13) from (15).
The proof that e

γ
α is the best possible constant for (14) is also similar to the proof in

the case α > 0 , if the function f ε : Rn \ B(R) → R , f ε(x) = −αe−
γ
α |B(|x|)|αε−γ , is

considered. �
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RE F ER EN C ES

[1] M. CHRIST AND L. GRAFAKOS, Best constants for two nonconvolution inequalities, Proc. Amer. Math.
Soc. 123, No. 6 (1995), 1687–1693.
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[4] A. ČIŽMEŠIJA AND J. PEČARIĆ, Classical Hardy’s and Carleman’s inequalities and mixed means,
in: T. M. Rassias (ed.), Survey on Classical Inequalities, Kluwer Academic Publishers, Dor-
drecht/Boston/London, 2000, p.p. 27–65.

[5] A. ČIŽMEŠIJA AND J. PEČARIĆ, Some new generalisations of inequalities of Hardy and Levin–Cochran–
Lee, Bull. Austral. Math. Soc. 63 (2001), 105–113.
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