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IMPROVEMENT OF SOME ESTIMATIONS RELATED TO THE

REMAINDER IN GENERALIZED TAYLOR’S FORMULA

M. MATIĆ

(communicated by J. Pečarić)

Abstract. We prove an inequality of Grüss type and using it we strictly improve some estimations
of the remainder in generalized Taylor’s formula obtained via harmonic sequence of polynomials.

1. Introduction

In the recent paper [1] Matić et al. considered a generalized Taylor’s formula.
More precisely, the basic result from [1] is the following theorem:

THEOREM 1. Let {Pn(x)} be a harmonic sequence of polynomials, that is

P
′
n(x) = Pn−1(x), for n ∈ N; P0(x) = 1.

Further, let I ⊂ R be a closed interval and a ∈ I. If f : I → R is any function such
that, for some n ∈ N, f (n) is absolutely continuous, then for any x ∈ I

f (x) = f (a) +
n∑

k=1

(−1)k+1
[
Pk(x)f (k)(x) − Pk(a)f (k)(a)

]
+ Rn(f ; a, x), (1.1)

where

Rn(f ; a, x) = (−1)n
∫ x

a
Pn(t)f (n+1)(t)dt.

Formula (1.1) can be regarded as generalized Taylor’s formula. Namely, if we set
in (1.1)

Pn(t) =
(t − x)n

n!
, n ∈ N (1.2)

then we get the classical Taylor’s formula:

f (x) = f (a) +
n∑

k=1

(x − a)k

k!
f (k)(a) + RT

n (f ; a, x), (1.3)
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where the remainder RT
n (f ; a, x) is given as

RT
n (f ; a, x) =

1
n!

∫ x

a
(x − t)nf (n+1)(t)dt.

Further, for x �= a formula (1.1) can be rewritten in perturbed form as

f (x) = T̃n(f ; a, x) + (−1)n [Pn+1(x) − Pn+1(a)]
[
f (n); a, x

]
+ G̃n(f ; a, x), (1.4)

where

T̃n(f ; a, x) = f (a) +
n∑

k=1

(−1)k+1
[
Pk(x)f (k)(x) − Pk(a)f (k)(a)

]
and

G̃n(f ; a, x) = Rn(f ; a, x) − (−1)n [Pn+1(x) − Pn+1(a)]
[
f (n); a, x

]
,

while
[
f (n); a, x

]
is a divided difference defined as

[
f (n); a, x

]
=

f (n)(x) − f (n)(a)
x − a

.

In the case when the polynomials Pn are given by (1.2) we have perturbed Taylor’s
formula

f (x) = f (a) +
n∑

k=1

(x − a)k

k!
f (k)(a) +

(x − a)n+1

(n + 1)!

[
f (n); a, x

]
+ GT

n (f ; a, x), (1.5)

where

GT
n (f ; a, x) = RT

n (f ; a, x) − (x − a)n+1

(n + 1)!

[
f (n); a, x

]
.

The main result in [1] is the estimation of the remainder G̃n(f ; a, x) in perturbed
generalized Taylor’s formula (1.4):

THEOREM 2. Let {Pn(x)} be a harmonic sequence of polynomials. Let I ⊂ R
be a closed interval and a ∈ I . Suppose f : I → R, is such that f (n) is absolutely
continuous. Then for any x ∈ I, x �= a, the perturbed generalized Taylor’s formula
(1.4) is valid. Furthermore, for x > a, if

Γ(x) = sup
t∈[a,x]

f (n+1)(t), γ (x) = inf
t∈[a,x]

f (n+1)(t),

then the remainder G̃n(f ; a, x) satisfies the estimation

∣∣G̃n(f ; a, x)
∣∣ � x − a

2

√
T(Pn, Pn)[Γ(x) − γ (x)], (1.6)

where

T(Pn, Pn) =
1

x − a

∫ b

a
P2

n(t)dt −
(

1
x − a

∫ b

a
Pn(t)dt

)2

.
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As the corollary to the above result an estimate of the remainder GT
n (f ; a, x) in

perturbed Taylor’s formula (1.5) was obtained [1, Corollary 2]:

∣∣GT
n (f ; a, x)

∣∣ � n(x − a)n+1

2[(n + 1)!]
√

2n + 1
[Γ(x) − γ (x)]. (1.7)

This result was an improvement of the result from [2] where the factor (x−a)n+1

4(n!) stands

in place of n(x−a)n+1

2[(n+1)!]
√

2n+1
.

The estimation (1.6) was obtained by direct application of the key technical result
[1, Lemma 1] which is in fact an easy consequence of the well known Cauchy-Schwarz
and Grüss inequalities.

In this paper we first give an improvement of the above mentioned key result
from [1]. This improvement is a result which is interesting on its own and we prove
it in Section 2. After that we use it to improve the estimation (1.6). We also give a
corresponding improvement of the estimation (1.7) as well as of some other estimations
from [1] which were obtained there as a consequences of the estimation (1.6).

2. An inequality of Grüss type

Let a < x and let g, h : [a, x] → R be two integrable functions. Define

T(g, h) =
1

x − a

∫ x

a
g(t)h(t)dt − 1

(x − a)2

∫ x

a
g(t)dt

∫ x

a
h(t)dt

Then T(g, g) � 0 , T(h, h) � 0 and the following inequality is valid [4, p. 209]

T2(g, h) � T(g, g)T(h, h). (2.1)

On the other hand, if

α � g(t) � A, β � h(t) � B, ∀t ∈ [a, x] ,

for some constants α, A, β and B, then the well known Grüss’ inequality

|T(g, h)| � 1
4
(A − α)(B − β) (2.2)

holds (see [4, p. 206]). Using the inequalities (2.1) and (2.2) the following simple
result is easily obtained [1, Lemma 1]:

LEMMA 1. Let a < x and let g, h : [a, x] → R be two integrable functions. If

α � g(t) � A, ∀t ∈ [a, x] ,

for some constants α and A , then

|T(g, h)| � A − α
2

√
T(h, h). (2.3)
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Now we give an improvement of this result:

THEOREM 3. Let a < x and let g, h : [a, x] → R be two integrable functions such
that

α � g(t) � A, ∀t ∈ [a, x] , (2.4)

for some constants α and A . If

H =
1

x − a

∫ x

a
h(s)ds,

then

|T(g, h)| � A − α
2

· 1
x − a

∫ x

a
|h(t) − H| dt

� A − α
2

·
√

T(h, h), (2.5)

Proof. Consider the function G defined as

G(t) = h(t) − H, t ∈ [a, x]

and corresponding positive and negative parts given by the formulas

G+(t) =
1
2

(|G(t)| + G(t)) , G−(t) =
1
2

(|G(t)| − G(t)) , t ∈ [a, x] .

A simple properties of the functions G+ and G− are well known:

G+(t) � 0, G−(t) � 0, t ∈ [a, x] (2.6)

and
G+(t) + G−(t) = |G(t)| , G+(t) − G−(t) = G(t), t ∈ [a, x] . (2.7)

Obviously we have ∫ x

a
G(t)dt = 0 (2.8)

and it is easy to check that

T(g, h) =
1

x − a

∫ x

a
g(t)G(t)dt. (2.9)

Now, using (2.7) and (2.8) we get∫ x

a
G+(t)dt =

∫ x

a
G−(t)dt =

1
2

∫ x

a
|G(t)| dt. (2.10)

On the other side from (2.4) and (2.6) we get

αG+(t) � g(t)G+(t) � AG+(t), a � t � x

and
−AG−(t) � −g(t)G−(t) � −αG−(t), a � t � x.
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Integrating over [a, x] we further get

α
∫ b

a
G+(t)dt �

∫ x

a
g(t)G+(t)dt � A

∫ x

a
G+(t)dt (2.11)

and

− A
∫ b

a
G−(t)dt � −

∫ x

a
g(t)G−(t)dt � −α

∫ x

a
G−(t)dt. (2.12)

Adding the inequalities (2.11) and (2.12) together and using the equalities (2.7) and
(2.10) we finally get

−A − α
2

∫ x

a
|G(t)| dt �

∫ x

a
g(t)G(t)dt � A − α

2

∫ x

a
|G(t)| dt,

which is by (2.9) equivalent to the first inequality in (2.5). The second inequality in
(2.5) follows from the well known inequality between the arithmetic mean and the
quadratic mean. Namely, it is easy to check the identity

T(h, h) =
1

x − a

∫ x

a
h2(t)dt −

(
1

x − a

∫ x

a
h(t)dt

)2

=
1

x − a

∫ x

a
[h(t) − H]2 dt.

REMARK 1. The result stated in Lemma 1 is of particular interest in the case when∫ x
a [h(t) − H]2 dt can be evaluated exactly. The same is true for the first inequality in

(2.5) in the case when
∫ x

a |h(t) − H| dt can be evaluated exactly. In this sense the
first inequality in (2.5) is indeed an improvement of the inequality (2.3) because the
equality case in the second inequality in (2.5) can occur only when |h(t) − H| is a
constant function almost everywhere on [a, x] . If |h(t) − H| is not a constant function
almost everywhere on [a, x] , then the second inequality in (2.5) is strict.

REMARK 2. Let us consider the equality case in the first inequality in (2.5) . Let
us denote

I+ = {t ∈ [a, x] : G(t) > 0} , I− = {t ∈ [a, x] : G(t) < 0} .

By the careful inspection of the proof of Theorem 3 we conclude that the equality
occurs in the first inequality in (2.5) if and only if either

g(t) = α, t ∈ I+ and g(t) = A, t ∈ I− (a.e. on [a, x]),

or

g(t) = A, t ∈ I+ and g(t) = α, t ∈ I− (a.e. on [a, x]).
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3. Main results

Assuming the notations from previous sections we can state the main result as
follows:

THEOREM 4. Let {Pn(x)} be a harmonic sequence of polynomials. Let I ⊂ R
be a closed interval and a ∈ I . Suppose f : I → R, is such that f (n) is absolutely
continuous. Then for any x ∈ I, x �= a, the perturbed generalized Taylor’s formula
(1.4) is valid. Furthermore, for x > a, if

Γ(x) = sup
t∈[a,x]

f (n+1)(t), γ (x) = inf
t∈[a,x]

f (n+1)(t), (3.1)

then the remainder G̃n(f ; a, x) satisfies the estimation

∣∣G̃n(f ; a, x)
∣∣ � Γ(x) − γ (x)

2

∫ x

a
|Pn(t) − [Pn+1; a, x]| dt, (3.2)

where

[Pn+1; a, x] =
Pn+1(x) − Pn+1(a)

x − a
.

Proof. As in [1], the remainder G̃n(f ; a, x) can be rewritten as

G̃n(f ; a, x) = (−1)n(x − a)T(f (n+1), Pn),

so that we have ∣∣G̃n(f ; a, x)
∣∣ = (x − a)

∣∣∣T(f (n+1), Pn)
∣∣∣ .

Now we can apply Theorem 3 with g = f (n+1) and h = Pn. Since P′
n+1(t) = Pn(t) we

have

H =
1

x − a

∫ x

a
Pn(t)dt =

Pn+1(x) − Pn+1(a)
x − a

,

and therefore we get

∣∣G̃n(f ; a, x)
∣∣ � Γ(x) − γ (x)

2
·
∫ x

a
|Pn(t) − [Pn+1; a, x]| dt.

COROLLARY 1. Under the assumptions of Theorem 4 the perturbed Taylor’s for-
mula (1.5) is valid. If x > a and if Γ(x) and γ (x) are gjven by (3.1) , then the
remainder GT

n (f ; a, x) satisfies the estimation

∣∣GT
n (f ; a, x)

∣∣ � n(x − a)n+1

(n + 1)!(n + 1) n√n + 1
· [Γ(x) − γ (x)]. (3.3)

Proof. For Pn given by (1.2) we have

[Pn+1; a, x] =
(a − x)n

(n + 1)!
.
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By the substitution t = x + (a − x)s we get∫ x

a
|Pn(t) − [Pn+1; a, x]| dt =

∫ x

a

∣∣∣∣ (t − x)n

n!
− (a − x)n

(n + 1)!

∣∣∣∣ dt

=
(x − a)n+1

n!

∫ 1

0

∣∣∣∣sn − 1
n + 1

∣∣∣∣ ds

=
2n(x − a)n+1

(n + 1)!(n + 1) n√n + 1

and (3.3) follows from (3.2).

REMARK 3. By δn and Δn denote the right hand sides of (3.3) and (1.7), re-
spectively Then we have.

δn

Δn
=

2
√

2n + 1

(n + 1) n√n + 1
< 1, n = 1, 2, · · ·

which shows that the estimate (3.3) is indeed better than the estimate (1.7) . Moreover
we have lim

n→∞(δn/Δn) = 0.

In [1] another three special cases of perturbed generalized Taylor’s formula (1.4)
were considered. The first of them is obtained when we choose harmonic polynomials
Pn defined as

Pn(t) =
1
n!

(
t − a + x

2

)n

, n ∈ N. (3.4)

In this case (1.4) reduces to the formula

f (x) = f (a) +
n∑

k=1

(x − a)k

2kk!
[f (k)(a) − (−1)kf (k)(x)]

+
(x − a)n+1[1 + (−1)n]

(n + 1)!2n+1

[
f (n); a, x

]
+ GM

n (f ; a, x), (3.5)

where

GM
n (f ; a, x) =

(−1)n

n!

∫ x

a

(
t − a + x

2

)n

f (n+1)(t)dt

− (x − a)n+1[1 + (−1)n]
(n + 1)!2n+1

[
f (n); a, x

]
. (3.6)

The second special case is obtained when harmonic polynomials Pn are defined as

Pn(t) =
(x − a)n

n!
Bn

(
t − a
x − a

)
, n ∈ N, (3.7)

where Bn (·) , n ∈ N are the well known Bernoulli polynomials (for details on the
properties of Bernoulli polynomials and Bernoulli numbers Bn = Bn (0) see [3, Chapter
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23]). When Pn are defined by (3.7), formula (1.4) reduces to

f (x) = f (a) +
x − a

2
[f ′(x) + f ′(a)]f (a) +

x − a
2

[f ′(x) + f ′(a)]

−
[ n

2 ]∑
k=1

(x − a)2k

(2k)!
B2k

[
f (2k)(x) − f (2k)(a)

]
+ GB

n (f ; a, x), (3.8)

where
[

n
2

]
denotes the greatest integer less than or equal to n

2 and

GB
n (f ; a, x) = (−1)n (x − a)n

n!

∫ x

a
Bn

(
t − a
x − a

)
f (n+1)(t)dt. (3.9)

Finally the third special case of perturbed generalized Taylor’s formula (1.4) considered
in [1] is obtained when we choose

Pn(t) =
(x − a)n

n!
En

(
t − a
x − a

)
, n ∈ N, (3.10)

where En (·) , n ∈ N are the well known Euler polynomials which are closely related
to the Bernoulli polynomials (for details on the properties of Euler polynomials and
Euler numbers En = 2nEn

(
1
2

)
see [3, Chapter 23]). In this case formula (1.4) reduces

to

f (x) = f (a) + 2

[ n+1
2 ]∑

k=1

(x − a)2k−1(4k − 1)
(2k)!

B2k

[
f (2k−1)(x) + f (2k−1)(a)

]

+
4(−1)n(x − a)n+1(2n+2 − 1)Bn+2

(n + 2)!

[
f (n); a, x

]
+ GE

n (f ; a, x), (3.11)

where
[

n+1
2

]
denotes the greatest integer less than or equal to n+1

2 and

GE
n (f ; a, x) = (−1)n (x − a)n

n!

∫ x

a
En

(
t − a
x − a

)
f (n+1)(t)dt

−4(−1)n(x − a)n+1(2n+2 − 1)Bn+2

(n + 2)!

[
f (n); a, x

]
. (3.12)

Similarly as we did in the case of perturbed Taylor’s formula (1.5), we can use the
inequality (3.2) to improve the estimations from [1, Corollary 3] related to the formulas
(3.5), (3.8) and (3.11):

COROLLARY 2. Let the assumptions of Theorem 4 be satisfied. For x > a let
Γ(x) and γ (x) be defined by (3.1) .
(i) If Pn(·) are defined by (3.4) , then (3.5) holds and∣∣GM

n (f ; a, x)
∣∣

� (x − a)n+1

(n + 1)!2n+1

[
1 − (−1)n

2
+

(1 + (−1)n)n
(n + 1) n√n + 1

]
· [Γ(x) − γ (x)]. (3.13)
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(ii) If Pn(·) are defined by (3.7) , then (3.8) holds and

∣∣GB
n (f ; a, x)

∣∣ � (x − a)n+1

n!

∫ 1
2

0
|Bn(s)| ds · [Γ(x) − γ (x)]. (3.14)

Moreover, if n = 2r − 1 , r � 1 , then∣∣GB
2r−1(f ; a, x)

∣∣ � (x − a)2r

(2r)!
2(1 − 2−2r) |B2r| · [Γ(x) − γ (x)]. (3.15)

(iii) If Pn(·) are defined by (3.10) , then (3.11) holds and∣∣GE
n (f ; a, x)

∣∣
� (x − a)n+1

n!

∫ 1
2

0

∣∣∣∣En(s) − 4(2n+2 − 1)Bn+2

(n + 1)(n + 2)

∣∣∣∣ ds · [Γ(x) − γ (x)]. (3.16)

Moreover, if n = 2r − 1 , r � 1 , then

∣∣GE
2r−1(f ; a, x)

∣∣ � (x − a)2r

(2r)!
2−2r |E2r| · [Γ(x) − γ (x)]. (3.17)

Proof. (i) If Pn(·) are defined by (3.4), then we have

[Pn+1; a, x] =
1

(n + 1)!(x − a)

[(
x − a + x

2

)n+1

−
(

a − a + x
2

)n+1
]

=
1

(n + 1)!

(
a − x

2

)n 1 + (−1)n

2
.

Therefore, using the substitution t = a+x
2 + a−x

2 s we get∫ x

a
|Pn(t) − [Pn+1; a, x]| dt

=
1
n!

∫ x

a

∣∣∣∣
(

t − a + x
2

)n

−
(

a − x
2

)n 1 + (−1)n

2(n + 1)

∣∣∣∣ dt

=
1
n!

(
x − a

2

)n+1 ∫ 1

−1

∣∣∣∣sn − 1 + (−1)n

2(n + 1)

∣∣∣∣ ds

=
(x − a)n+1

n!2n

∫ 1

0

∣∣∣∣sn − 1 + (−1)n

2(n + 1)

∣∣∣∣ ds.

Further, we have∫ 1

0

∣∣∣∣sn − 1 + (−1)n

2(n + 1)

∣∣∣∣ ds =

{
1

n+1 , when n is odd,
2n

(n+1)2 n√n+1
, when n is even,

so that∫ x

a
|Pn(t) − [Pn+1; a, x]| dt =

(x − a)n+1

(n + 1)!2n

[
1 − (−1)n

2
+

(1 + (−1)n)n
(n + 1) n√n + 1

]
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and (3.13) follows from (3.2).
(ii) If Pn(·) are defined by (3.7), then

[Pn+1; a, x] =
(x − a)n+1

(n + 1)!(x − a)
[Bn+1(1) − Bn+1(0)] = 0,

since [3, Formula 23.1.6]

Bk(t + 1) − Bk(t) = ktk−1, k = 0, 1, · · ·
implies Bn+1(1)−Bn+1(0) = 0 . Therefore, using the substitution t = a + (x− a)s we
get ∫ x

a
|Pn(t) − [Pn+1; a, x]| dt =

(x − a)n

n!

∫ x

a

∣∣∣∣Bn

(
t − a
x − a

)∣∣∣∣ dt

=
(x − a)n+1

n!

∫ x

a
|Bn(s)| ds

=
(x − a)n+1

n!
2
∫ 1

2

a
|Bn(s)| ds.

The last equality follows from [3, Formula 23.1.8]

Bk(1 − t) = (−1)kBk(t), k = 0, 1, · · · .

Now (3.14) follows from (3.2). Further, for n = 2r − 1 we have [3, Formula 23.1.14]

(−1)rB2r−1(t) > 0, 0 < t <
1
2
,

so that ∫ 1
2

0
|B2r−1(s)| ds =

∣∣∣∣∣
∫ 1

2

0
B2r−1(s)ds

∣∣∣∣∣
=

1
2r

∣∣∣∣B2r

(
1
2

)
− B2r(0)

∣∣∣∣
=

1
2r

∣∣−(1 − 21−2r)B2r − B2r

∣∣
=

1 − 2−2r

r
|B2r| .

We used the facts that B2r(0) = B2r and [3, Formula 23.1.21] B2r
(

1
2

)
= −(1 −

21−2r)B2r .Now the inequality (3.15) follows from (3.14).
(iii) If Pn(·) are defined by (3.10), then

[Pn+1; a, x] =
(x − a)n+1

(n + 1)!(x − a)
[En+1(1) − En+1(0)]

=
(x − a)n

(n + 2)!
4(2n+2 − 1)Bn+2,



REMAINDER IN GENERALIZED TAYLOR’S FORMULA 647

since [3, Formula 23.1.20]

Ek(0) = −Ek(1) = −2(2k+1 − 1)Bk+1

k + 1
, k = 1, 2, · · · .

Therefore, using the substitution t = a + (x − a)s we get∫ x

a
|Pn(t) − [Pn+1; a, x]| dt =

(x − a)n

n!

∫ x

a

∣∣∣∣En

(
t − a
x − a

)
− 4(2n+2 − 1)Bn+2

(n + 1)(n + 2)

∣∣∣∣ dt

=
(x − a)n+1

n!

∫ x

a

∣∣∣∣En(s) − 4(2n+2 − 1)Bn+2

(n + 1)(n + 2)

∣∣∣∣ ds

=
(x − a)n+1

n!
2
∫ 1

2

a

∣∣∣∣En(s) − 4(2n+2 − 1)Bn+2

(n + 1)(n + 2)

∣∣∣∣ ds

The last equality follows from [3, Formula 23.1.8]

Ek(1 − t) = (−1)kEk(t), k = 0, 1, · · ·
and the fact that Bk = 0 for odd k � 3 . Now (3.16) follows from (3.2). Further, for
n = 2r − 1 we have [3, Formula 23.1.14]

(−1)rE2r−1(t) > 0, 0 < t <
1
2
,

so that ∫ 1
2

a

∣∣∣∣En(s) − 4(2n+2 − 1)Bn+2

(n + 1)(n + 2)

∣∣∣∣ ds =
∫ 1

2

0
|E2r−1(s)| ds

=

∣∣∣∣∣
∫ 1

2

0
E2r−1(s)ds

∣∣∣∣∣
=

1
2r

∣∣∣∣E2r

(
1
2

)
− E2r(0)

∣∣∣∣
=

1
2r

2−2r |E2r| .

We used the facts that B2r+1 = 0, E2r(0) = 0 and [3, Formula 23.1.21] E2r
(

1
2

)
=

2−2rE2r . Now the inequality (3.17) follows from (3.16).

REMARK 4. By the observations given in Remark 1, we conclude that the estima-
tions given in (3.13) , (3.14) and (3.16) are strict improvements of the corresponding
results from [1] .

REMARK 5. Applying the observations given in Remark 2 it is not hard to see that
all the inequalities proved in this section are strict except in a trivial case when f (n+1)

is constant on I, that is when f is polynomial whose degree is at most n + 1 .
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