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INTEGRAL INEQUALITIES OF THE BIHARI TYPE

B. G. PACHPATTE

(communicated by S. Saitoh)

Abstract. In this paper a new integral inequality similar to Bihari’s inequality and its two inde-
pendent variable generalization are established. The discrete analogues of the main results are
also given.

1. Introduction

I. Bihari [3] proved an integral inequality, which has played a fundamental role
in the development of the theory of differential and integral equations. A great deal
of attention has been given to this inequality and many papers dealing with various
genaralizations, extensions and discrete analogues have appeared in the literature, see
[1–10] and the references given therein. However, the well known Gronwall inequality
and its nonlinear version due to Bihari are not directly applicable in certain situations.
It is desirable to find a new inequality of the Bihari type containing the Gronwall type
inequality, which will prove its importance to achieve a diversity of desired goals. The
main purpose of this paper is to establish a new inequality similar to Bihari’s inequality
and its two independent variable generalization. The discrete analogues of the main
results and some applications are also given.

2. Main results

In what follows, we denote by R the set of real numbers. Let R+ = [0,∞) ,
N0 = {0, 1, 2, . . .} and ′ denote the derivative. For any real-valued function z(x, y) ,
x , y ∈ R the first order partial derivatives with respect to x and y are denoted by
D1z(x, y) and D2z(x, y) , respectively. We use the usual convention that the empty sum
is taken to be 0.

Our main result is given in the following theorem.
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THEOREM 1. Let u(t) , f (t) ∈ c(R+, R+) , h(t, s) ∈ c(R2
+, R+) , for 0 � s � t <

∞ and c � 0 , p > 1 are real constants. Let g ∈ c(R+, R+) be a nondecreasing
function, g(u) > 0 for u > 0 and

up(t) � c +
∫ t

0

[
f (s)g(u(s)) +

∫ s

0
h(s,σ)g(u(σ))dσ

]
ds, (2.1)

for t ∈ R+ , then for 0 � t � t1 ,

u(t) � [G−1[G(c) + A(t)]]1/p, (2.2)

where

A(t) =
∫ t

0

[
f (s) +

∫ s

0
h(s,σ)dσ

]
ds, (2.3)

G(r) =
∫ r

r0

ds

g(s1/p)
, r > 0, r0 > 0, (2.4)

G−1 is the inverse function of G and t1 ∈ R+ is chosen so that

G(c) + A(t) ∈ Dom(G−1),

for all t ∈ R+ lying in the interval 0 � t � t1 of R+ .

Proof. We first assume that c > 0 and define a function z(t) by the right hand
side of (2.1). Then z(t) > 0 , z(0) = c , u(t) � (z(t))1/p and

z′(t) =f (t)g(u(t)) +
∫ t

0
h(t,σ)g(u(σ))dσ

�f (t)g((z(t))1/p) +
∫ t

0
h(t,σ)g((z(σ))1/p)dσ

�g((z(t))1/p)
[
f (t) +

∫ t

0
h(t,σ)dσ

]
. (2.5)

From (2.4) and (2.5) we have

d
dt

G(z(t)) =
z′(t)

g((z(t))1/p)

�
[
f (t) +

∫ t

0
h(t,σ)dσ

]
. (2.6)

By setting t = s in (2.6) and integrating it from 0 to t we have

G(z(t)) � G(c) + A(t). (2.7)

Since G−1 is incresing, from (2.7) we have

z(t) � G−1[G(c) + A(t)]. (2.8)



INTEGRAL INEQUALITIES OF THE BIHARI TYPE 651

Using (2.8) in u(t) � (z(t))1/p we have the required inequality in (2.2). If c is
nonnegative, we carry out the above procedure with c + ε instead of c , where ε > 0
is an arbitrary small constant, anb by letting ε → 0 , we obtain (2.2). The interval
0 � t � t1 is obvious.

REMARK 1. We note that the definition of the function G in (2.4) is motivated
from the recent work of Medved [6, p. 298].

If
∫ ∞

r0

ds

g(s1/p)
= ∞ , then G(∞) = ∞ and the inequality in (2.2) is true for

t ∈ R+ .

An interesting and useful special version of Theorem 1 is given in the following

COROLLARY 1. Let u , f , h , c , p be as in theorem 1. If

up(t) � c +
∫ t

0

[
f (s)u(s) +

∫ s

0
h(s,σ)u(σ)dσ

]
ds, (2.9)

for t ∈ R+ , then

u(t) �
[
c(p−1)/p +

(p − 1
p

)
A(t)

]1/(p−1)
, (2.10)

for t ∈ R+ , where A(t) is defined by (2.3).

Proof. Let g(u) = u in Theorem 1. Then (2.1) reduces to (2.9) and

G(r) =
p

p − 1

[
r(p−1)/p − r(p−1)/p

0

]
,

G−1(r) =
[p − 1

p
r + r(p−1)/p

0

]p/(p−1)

and consequently the bound obtained in (2.2) reduces to the bound in (2.10).

REMARK 2. In the special case when p = 2 , then inequality given in corollary 1
reduces to a variant of the inequality given in [7, p. 233]. For an explict bound on a
defferent version of the inequality (2.9), see, also Willett and Wong [10].

An important and useful two independent variable generalization of theorem 1 is
embodied in the

THEOREM 2. Let u(x, y) , f (x, y) ∈ c(R2
+, R+) , h(x, y, s, t) ∈ c(R2

+xR2
+, R+) for

0 � s � x < ∞ , 0 � t � y < ∞ . Let c , p , g , G , G−1 be as in Theorem 1. If

up(x, y) � c +
∫ x

0

∫ y

0

[
f (s, t)g(u(s, t)) +

∫ s

0

∫ t

0
h(s, t,σ,η)g(u(σ,η))dηdσ

]
dsdt

(2.11)
for x , y ∈ R+ , then for 0 � x � x1 , 0 � y � y1 , x , x1 , y , y1 ∈ R+ ,

u(x, y) � [G−1[G(c) + A(x, y)]]1/p, (2.12)

where

A(x, y) =
∫ x

0

∫ y

0

[
f (s, t) +

∫ s

0

∫ t

0
h(s, t,σ,η)dηdσ

]
dtds, (2.13)
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and x1 , y1 ∈ R+ , are chosen so that

G(c) + A(x, y) ∈ Dom(G−1),

for all x , y lying in the intervals 0 � x � x1 , 0 � y � y1 of R+ .

Proof. Let c > 0 and define a function z(x, y) by the right hand side of (2.11).
Then z(0, y) = z(x, 0) = c , u(x, y) � (z(x, y))1/p and

D1z(x, y) =
∫ y

0

[
f (x, t)g(u(x, t)) +

∫ x

0

∫ t

0
h(x, t,σ,η)g(u(σ,η))dηdσ

]
dt

�
∫ y

0

[
f (x, t)g((z(x, t))1/p) +

∫ x

0

∫ y

0
h(x, t,σ,η)g((z(σ,η))1/p)dηdη

]
dt

�g((z(x, y))1/p)
∫ y

0

[
f (x, t) +

∫ x

0

∫ t

0
h(x, t,σ,η)dηdσ

]
dt. (2.14)

From (2.4) and (2.14) we observe that

D1G(z(x, y)) =
D1z(x, y)

g((z(x, y))1/p)

�
∫ y

0

[
f (x, t) +

∫ x

0

∫ t

0
h(x, t,σ,η)dηdσ

]
dt. (2.15)

Keeping y fixed in (2.15), setting x = s and integrating with respect to s from 0 to x
and using the fact that z(0, y) = c , we have

G(z(x, y)) � G(c) + A(x, y). (2.16)

Now substituting the bound on z(x, y) from (2.16) in u(x, y) � (z(x, y))1/p we obtain
the desired bound in (2.12). The proof of the case when c � 0 can be completed as
mentioned in the proof of Theorem1. The domain O � x � x1 , 0 � y � y1 is obvious.

Next, we shall give the following corollary whose proof is similar to that of
corollary 1.

COROLLARY 2. Let u , f , c , p be as in Theorem 2. If

up(x, y) � c +
∫ x

0

∫ y

0

[
f (s, t)u(s, t) +

∫ s

0

∫ t

0
h(s, t,σ,η)u(σ,η)dηdσ

]
dtds, (2.17)

for x , y ∈ R+ , then

u(x, y) �
[
c(p−1)/p +

(p − 1
p

)
A(x, y)

]1/(p−1)
, (2.18)

for x , y ∈ R+ , where A(x, y) is defined by (2.13).

REMARK 3. We not that, the upper bound on the inequality (2.17) when p = 1
and h = 0 is etablished by Wendroff (see [2, p. 154]). For various generalizations of
Wendroff’s inequality, see [1,7].
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3. Discrete analogues

The discrete analogue of the inequality given in Theorem 1 is established in the
following

THEOREM 3. Let u(n) , f (n) , h(n, s) , 0 � s � n < ∞ , n , s ∈ N0 be real-valued
nonnegative functions. Let p , c , g , G , G−1 be as in Theorem 1. If

up(n) � c +
n−1∑
s=0

[
f (s)g(u(s)) +

s−1∑
σ=0

h(s,σ)g(u(σ))
]
, (3.1)

for n ∈ N0 , then for 0 � n � n1 , n , n1 ∈ N0 ,

u(n) � [G−1[G(c) + B(n)]]1/p, (3.2)

where

B(n) =
n−1∑
s=0

[
f (s) +

s−1∑
σ=0

h(s,σ)
]
, (3.3)

and n1 ∈ N0 is chosen so that

G(c) + B(n) ∈ Dom(G−1),

for all n ∈ N0 lying in 0 � n � n1 .

Proof. First we assume that c > 0 and define a function z(n) by the right hand
side of (3.1). Then z(n) > 0 , z(0) = c , u(n) � (z(n))1/p and

z(n + 1) − z(n) =f (n)g(u(n)) +
n−1∑
σ=0

h(n,σ)g(u(σ)).

�g((z(n))1/p)
[
f (n) +

n−1∑
σ=0

h(n,σ)
]
. (3.4)

From (2.4) and (3.4) we observe that

G(z(n + 1)) − G(z(n)) =
∫ z(n+1)

z(n)

ds
g(s1/p)

� z(n + 1) − z(n)
g((z(n))1/p)

�f (n) +
n−1∑
σ=0

h(n,σ). (3.5)

By takin n = s in (3.5) and summing up over s from 0 n − 1 , it follows that

G(z(n)) � G(c) + B(n). (3.6)
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From (3.6) we have

z(n) � G−1[G(c) + B(n)] (3.7)

Using (3.7) in u(n) � (z(n))1/p we have the required inequality in (3.2). The proof
of the case when c � 0 can be completed as mentioned in the proof of Theorem 1,
0 � n � n1 is obvious.

COROLLARY 3. Let u , f , h , c , p be as in Theorem 3. If

up(n) � c +
n−1∑
s=0

[
f (s)u(s) +

s−1∑
σ=0

h(s,σ)u(σ)
]
, (3.8)

for n ∈ N0 , then

u(n) �
[
c(p−1)/p +

(p − 1
p

)
B(n)

]1/(p−1)
, (3.9)

for n ∈ N0 , where B(n) is defined by (3.3).

The proof is similar to that of mentioned in corollary 1, and we omit it here.

REMARK 4. We note that, the discrete version of Bihari’s inequality is established
by Hull and Luxemberg in [4]. For other useful nonlinear discrete inequalities, see
[8–10].

The following result is the discrete analogue of the inequality given in Theorem 2.

THEOREM 4. Let u(m, n) , f (m, n) , h(m, n, s, t) , 0 � s � m < ∞ , 0 � t � n <
∞ , m , n , s , t ∈ N0 , be real-valued nonnegativ functions. Let c , p , g , G , G−1 be
as in Theorem 1. If

up(m, n) � c +
m−1∑
s=0

n−1∑
t=0

[
f (s, t)g(u(s, t)) +

s−1∑
σ=0

t−1∑
η=0

h(s, t,σ,η)g(u(σ,η))
]
, (3.10)

for m , n ∈ N0 , then for 0 � m � m1 , 0 � n � n1 , m , m1 , n , n1 ∈ N0 ,

u(m, n) � [G−1[G(c) + B(m, n)]]1/p, (3.11)

where

B(m, n) =
m−1∑
s=0

n−1∑
t=0

[
f (s, t) +

s−1∑
σ=0

t−1∑
η=0

h(s, t,σ,η)
]

(3.12)

and m1 , n1 ∈ N0 are chosen so that

G(c) + B(m, n) ∈ Dom(G−1)

for all m , n lying in 0 � m � m1 , 0 � n � n1 .
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Proof. First we assume that c > 0 and define a function z(m, n) by the right hand
side fo (3.10). Then z(0, n) = z(m, 0) = c , u(m, n) � (z(m, n))1/p and

z(m + 1, n) − z(m, n) =
n−1∑
t=0

[
f (m, t)g(u(m, t)) +

m−1∑
σ=0

t−1∑
η=0

h(m, t,σ,η)g(u(σ,η))
]

�
n−1∑
t=0

[
f (m, t)g((z(m, t))1/p)

+
m−1∑
σ=0

t−1∑
η=0

h(m, t,σ,η)g((z(σ,η))1/p)
]

�g((z(m, n))1/p)
n−1∑
t=0

[
f (m, t)

m−1∑
σ=0

t−1∑
n=0

h(m, t,σ,η)
]
.

(3.13)

From (2.4), (3.13) we observe that

G(z(m + 1, n)) − G(z(m, n)) =
∫ z(m+1,n)

z(m,n)

ds

g(s1/p)
� z(m + 1, n) − z(m, n)

g((z(m, n))1/p)

�
n−1∑
t=0

[
f (m, t) +

m−1∑
σ=0

t−1∑
η=0

h(m, t,σ,η)
]
.

(3.14)

Keeping n fixed in (3.14), setting m = s and summing over s from 0 to m − 1 we
obtain

G(z(m, n)) � G(c) + B(m, n). (3.15)
Now substituting the bound on z(m, n) from (3.15) in u(m, n) � (z(m, n))1/p , we
obtained required inequality in (3.11). The proof of the case when c � 0 can be
completed as mentioned in the proof of Theorem 1. The domain 0 � m � m1 ,
0 � n � n1 is obvious.

As an immediate consequence of Theorem 4 is given in the following

COROLLARY 4. Let u , f , h , c , p be as in Theorem 4. If

up(m, n) � c +
m−1∑
s=0

n−1∑
t=0

[
f (s, t)u(s, t) +

s−1∑
σ=0

t−1∑
η=0

h(s, t,σ)u(σ,η)
]
, (3.16)

for m , n ∈ N0 , then

u(m, n) �
[
c(p−1)/p +

(p − 1
p

)
B(m, n)

]1/(p−1)
, (3.17)

for m , n ∈ N0 , where B(m, n) is defined by (3.12).

The proof is similar to that of corollary 1. We omit the details.

REMARK 5. We note that the inequalities established in Theorems 2 and 4 can
be extended very easily to functions of several independent variables. The precise
formulations of these results are very close to that of given above and closely looking
at the results given in [7, pp. 396–409] and [9].
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4. Applications

In this section, we present some direct applications of Theorems 1 and 2 to obtain
the explicit bounds on the solutions of certain differential equations.

EXAMPLE 1. As a first application, we obtain a bound on the solution of the
differential equation

xp−1(t)x′(t) = h(t, x(t)), x(0) = x0, (4.1)

where x0 , p > 1 are constants, x : R+ → R , h : R+ × R → R are continuous
functions. Let x(t) be a solution of (4.1), then x(t) satisfies the integral equation

xp(t)
p

− xp
0

p
=

∫ t

0
h(s, x(s, ))ds. (4.2)

We assume that the function h satisfies the condition

|h(t, x(t))| � f (t)g(|x(t)|), (4.3)

where f and g are as defined in Theorem 1. From (4.2) and (4.3) we observe that

|x(t)|p � |x0|p +
∫ t

0
pf (s)g(|x(s)|)ds. (4.4)

Now a suitable application of Theorem 1 yields

|x(t)| �
[
G−1

[
G

(
|x0|p

)
+

∫ t

0
pf (s)ds

]]1/p
, (4.5)

for 0 � t � t1 , t , t1 ∈ R+ , where G , G−1 are defined in Theorem 1. Then right hand
side of (4.5) gives the bound on the solution of (4.1) in terms of the known functions.

EXAMPLE 2. As a second application we establish the bound on the solution of the
following partial differential equation

∂

∂y

(
up−1(x, y)

∂

∂x
u(x, y)

)
= F(x, y, u(x, y)), (4.6)

with the given intial boundary conditions

u(x, 0) = σ(x), u(0, y) = τ(y), σ(0) = τ(0) = 0, (4.7)

where p > 1 is a real constant, u : R2
+ → R , F : R2

+ × R → R , σ , τ : R+ → R are
continuous functions. Let u(x, y) : R2

+ → R is a solution of (4.6)–(4.7). It is easy to
observe that the problem (4.6)–(4.7) is equivalent to the integral equation

up(x, y) = σp(x) + τp(y) + p
∫ x

0

∫ y

0
F(s, t, u(s, t))dtds. (4.8)
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We assume that

|F(x, y, u)| � h(x, y)|u|, (4.9)
|σp(x) + τp(y)| � c, (4.10)

where h : R2
+ → R+ is a continuous function and c � 0 is a real constan. From

(4.8)–(4.10) we observe that

|u(x, y)|p � c +
∫ x

0

∫ y

0
ph(s, t)|u(s, t)|dtds. (4.11)

Now a suitable application of Theorem 2 yields

|u(x, y)| �
[
G−1

[
G(c) +

∫ x

0

∫ y

0
ph(s, t)dtds

]]1/p
, (4.12)

for 0 � x � x1 , 0 � y � y1 , x , y , x1 , y1 ∈ R+ where G , G−1 are as in Theorem 2.
The right hand side of (4.12) gives the bound on the solution of (4.6)–(4.7) in terms of
the known functions.
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