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MULTILINEAR DIRECT AND REVERSE STOLARSKY INEQUALITIES

IOSIF PINELIS

(communicated by J. Pečarić)

Abstract. For any nonnegative measurable function f : [0, 1] → R and any a > 0 , let Q (f , a)
denote the Stolarsky transform of f , equal to

∫ 1
0 f
(
x1/a

)
dx . Let Sn stand for the set of all

permutations of the set {1, . . . , n} . It is shown that the function

(0,∞)n � a = (a1, . . . , an) �−→ Q (a) :=
∑
σ∈Sn

n∏
i=1

Q
(
fσ(i), ai

)
is Schur-convex if the functions f 1, . . . , f n are nonnegative and nondecreasing and Schur-concave
if f 1, . . . , f n are nonnegative and nonincreasing. Necessary and sufficient conditions for the strict
Schur convexity and concavity are given.

Similar results are obtained for certain “direct” and “reverse” extensions of the Stolarsky
transform to measures.

1. Introduction, statement of results, and discussion

Let f be any nonnegative measurable function defined on [0, 1] and let a and b
be any positive real numbers. Let

Q (f , a) :=
∫ 1

0
f
(
x1/a
)

dx =

∫ 1
0 f (u) ua−1 du∫ 1

0 ua−1 du
=
∫ 1

0
f (u) a ua−1 du (1.1)

denote the Stolarsky transform (or mean, or quotient) of f . The Stolarsky inequality
[5] says that, if the function f is nonnegative, nonincreasing, and bounded from above
by 1 , then

Q(f , a + b) � Q (f , a) Q(f , b).

Pec̆arić [4] gave an equivalent formulation: if f is nonnegative and nonincreasing (and
not necessarily bounded from above by 1 ), then

f (0) Q(f , a + b) � Q (f , a) Q(f , b). (1.2)

Another equivalent formulation may be obtained if one replaces f (0) in (1.2) by
f (0+) := lim

t↓0
f (t) ; indeed, one may replace any monotonic function f in (1.2) by its

right-continuous regularization, f+: u �→ f (u+) , without loss of generality (w.l.o.g.),
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because f+ differs from f only on a countable set, at the most, so that f+ = f almost
everywhere, and so, Q(f+, a) = Q(f , a) for any a > 0 . It is not difficult to see that

lim
a↓0

Q (f , a) = f (0+)

if f is (say) monotonic on [0, 1] ; see Lemma 2.1 in the next section. Therefore, it
makes sense to set

Q (f , 0) := f (0+) . (1.3)

Hence, one has yet another equivalent formulation of the Stolarsky inequality: if f is
nonnegative and nonincreasing, then

Q(f , 0) Q(f , a + b) � Q (f , a) Q(f , b). (1.4)

Pečarić [4] showed that, if f is nonnegative and nondecreasing (rather than nonin-
creasing), then an inequality reverse to (1.2) takes place; in view of the above discussion,
it can be written as

Q(f , 0) Q(f , a + b) � Q (f , a) Q(f , b). (1.5)

Formulations (1.4) and (1.5) suggest that both the direct and reverse Stolarsky inequal-
ities may be generalized in two directions, as in Theorems 1.1 and 1.4 below, where
one has two functions, f and g , and three numbers, a , b , and c . Moreover, as in the
original paper [5] by Stolarsky and the subsequent letter [1] by Luecking, we also treat
the question of when the inequalities are strict.

Consider the following two classes of functions f : [0, 1]→ R :

F↓ := {f : f is nonincreasing, nonnegative, and left-continuous on (0, 1];
and right-continuous at 0}

— in contexts of direct Stolarsky-type inequalities, and

F↑ := {f : f is nondecreasing, nonnegative, and right-continuous on [0, 1);
and left-continuous at 1}

— in contexts of reverse Stolarsky-type inequalities.
The continuity conditions in the definitions of F↓ and F↑ are not quite indispens-

able. Yet, in order to avoid cumbersome formulations, we assume these conditions as
well; in the view of above discussion, this does not diminish generality.

THEOREM 1.1. For any f and g in F↓ and any a , b , and c in [0,∞)

Q(f , c) Q(g, a + b + c) + Q(g, c) Q(f , a + b + c)
> Q (f , a + c) Q(g, b + c) + Q (g, a + c) Q(f , b + c) (1.6 )

unless at least one of the following three exceptional cases takes place, when (1.6) turns
into the equality:

1. a = 0 or b = 0 ;
2. f = 0 on [0, 1] or g = 0 on [0, 1] ;
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3. f = k1·I[0,t] and g = k2·I[0,t], for some t ∈ (0, 1] , k1 ∈ (0,∞) , and k2 ∈ (0,∞) .

As usual, IA stands for the indicator function of a set A , whose values are 1 on
the set A and 0 on its complement.

The proof of Theorem 1.1, as well as the other comparatively long proofs, will be
given in the next section.

The Stolarsky inequality (1.4) follows from Theorem 1.1 by setting g = f and
c = 0 . More generally, taking g = f but an arbitrary c � 0 , one has the following.

COROLLARY 1.2. For any f ∈ F↓ , the function [0,∞) � a �→ Q(f , a) is strictly
log-convex unless f = k · I[0,t] for some t ∈ (0, 1] and k ∈ [0,∞) , in which case
lnQ(f , a) is linear in a (cf. Corollary 1.9 below).

Taking g ≡ 1 in (1.6), one has the following additive version of the Stolarsky
inequality (1.4).

COROLLARY 1.3. For any f ∈ F↓ and any a , b , and c in [0,∞)

Q(f , c) + Q(f , a + b + c) > Q (f , a + c) + Q(f , b + c) (1.7)

unless at least one of the following cases takes place, when (1.7) turns into the equality:
1. a = 0 or b = 0 ;
2. f = k · I[0,t] , for some t ∈ (0, 1] and k ∈ [0,∞) .

Thus, Corollary 1.3 states that, for any f ∈ F↓ , Q(f , a) is strictly convex in a ,
unless f = k · I[0,t] for some t ∈ (0, 1] and k ∈ [0,∞) .

The reverse Stolarsky inequality (1.5), too, may be extended in the same two
directions, so that one has the following analogue of Theorem 1.1.

THEOREM 1.4. For any f and g in F↑ and any a , b , and c in [0,∞)

Q(f , c) Q(g, a + b + c) + Q(g, c) Q(f , a + b + c)
< Q (f , a + c) Q(g, b + c) + Q (g, a + c) Q(f , b + c) (1.8 )

unless at least one of the following three cases takes place, when (1.8) turns into the
equality:

1. a = 0 or b = 0 ;
2. f = 0 on [0, 1] or g = 0 on [0, 1] ;
3. both f and g are (possibly different) nonzero constants on [0, 1] (cf. the

exceptional case 3 in Theorem 1.1).

The following is similar to Corollary 1.2 and immediate from Theorem 1.4.

COROLLARY 1.5. For any f ∈ F↑ , the function [0,∞) � a �→ Q(f , a) is strictly
log-concave unless f is constant on [0, 1] , in which case ln Q(f , a) is constant in a .

Similarly to Corollary 1.3 and immediately from Theorem 1.4, one has the follow-
ing additive version of the reverse Stolarsky inequality.

COROLLARY 1.6. For any f in F↑ and any a , b , and c in [0,∞)

Q(f , c) + Q(f , a + b + c) < Q (f , a + c) + Q(f , b + c) (1.9)

unless at least one of the following cases takes place, when (1.9) turns into the equality:
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1. a = 0 or b = 0 ;
2. f is constant on [0, 1] .

Thus, Corollary 1.6 states that, for any f ∈ F↑ , Q(f , a) is strictly concave in a ,
unless f is constant on [0, 1] .

Note that both sides of the inequalities (1.6) and (1.8) are bilinear in f and g .
This suggests the multilinear generalizations given by Theorems 1.7 and 1.10 below; to
state them, we need the following definitions.

Let Sn stand for the set of all permutations

σ: {1, . . . , n} −→ {1, . . . , n} .
For any given n -tuple f = (f 1, . . . , f n) of nonnegative measurable functions, defined
on [0, 1], introduce the function

[0,∞)n � a = (a1, . . . , an) �−→ Qn (f, a) :=
∑
σ∈Sn

n∏
i=1

Q
(
fσ(i), ai

)
, (1.10)

which is obviously multilinear in f 1, . . . , f n .
Let E ⊆ R

n . Recall that a function Q: E → R is referred to as Schur-convex
if it preserves the Schur majorization: for any a and b in E such that a 	 b , one
has Q (a) � Q (b) ; similarly, Q: E → R is referred to as Schur-concave if it reverses
the Schur majorization: for any a and b in E such that a 	 b , one has Q (a) �
Q (b) . Recall also the definition of the Schur majorizarion: for a := (a1, . . . , an)
and b := (b1, . . . , bn) in R

n , a 	 b means that a1 + · · · + an = b1 + · · · + bn and
a[1] + · · · + a[j] � b[1] + · · · + b[j] for all j ∈ {1, . . . , n} , where a[1] � · · · � a[n]
are the ordered numbers a1, . . . , an , from the largest to the smallest. As usual, let
a↓ :=

(
a[1], . . . , a[n]

)
. If a 	 b and a↓ 
= b↓ , let us write a � b .

Let n be any natural number, and let

Fn
↓ := F↓ × · · · ×F↓︸ ︷︷ ︸

n

and Fn
↑ := F↑ × · · · ×F↑.︸ ︷︷ ︸

n

THEOREM 1.7. For any f = (f 1, . . . , f n) ∈ Fn
↓ , the function Qn defined by (1.10)

is Schur-convex in a on [0,∞)n ; moreover, for any a and b in [0,∞)n , the relation
a 	 b implies

Qn (f, a) > Qn (f, b) (1.11)
unless at least one of the following cases takes place, when (1.11) turns into the equality:

1. a↓ = b↓ ;
2. f i = 0 on [0, 1] for some i ∈ {1, . . . , n} ;
3. there exist some t ∈ (0, 1] and some n -tuple (k1, . . . , kn) ∈ (0,∞)n such that

f i = ki · I[0,t] for all i ∈ {1, . . . , n} .
COROLLARY 1.8. For any f ∈ F↓ such that f (0) = 1 , any a ∈ [0,∞) , and any

natural n

Q
(
f ,

a
n

)n
> Q

(
f ,

a
n + 1

)n+1

(1.12)

unless at least one of the following cases takes place, when (1.12) turns into the equality:
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1. a = 0 ;
2. f = I[0,t] , for some t ∈ (0, 1] .

Letting here n→∞ , it is not very difficult to obtain the following exponential (in
a ) lower bound on Q (f , a) .

COROLLARY 1.9. For any f ∈ F↓ such that f (0) = 1 and any a ∈ [0,∞)

Q (f , a) > exp

(
−a

∫ 1

0

1− f (u)
u

du

)
(1.13)

unless at least one of the following cases takes place, when (1.13) turns into the equality:

1. a = 0 ;
2. f = I[0,t] , for some t ∈ (0, 1] .

The integral
∫ 1

0

1− f (u)
u

du may be equal to ∞ ; in such a case, the right-hand

side of (1.13) is understood as 0 if a > 0 and as 1 if a = 0 .
Let us now proceed to the reverse analogues of Theorem 1.7 and its corollaries.

THEOREM 1.10. For any f = (f 1, . . . , f n) ∈ Fn
↑ , the function Qn defined by

(1.10) is Schur-concave in a on [0,∞)n ; moreover, for any a and b in [0,∞)n , the
relation a 	 b implies

Qn (f, a) < Qn (f, b) (1.14)

unless at least one of the following cases takes place, when (1.14) turns into the equality:

1. a↓ = b↓ ;
2. f i = 0 on [0, 1] for some i ∈ {1, . . . , n} ;
3. all of the functions f 1, . . . , f n are (possibly different) nonzero constants on [0, 1] ;
4. nf(0) + nb > n , where

nf(0) := # {i: f i(0) = 0} and nb := # {i: bi = 0} .

Note that for n = 2 the exceptional case 4 of Theorem 1.10 implies the exceptional
case 1 of it (because then nb � 1 ), so that Theorem 1.10 is indeed a generalization of
Theorem 1.4.

COROLLARY 1.11. For any f ∈ F↑ such that f (0) = 1 , any a ∈ [0,∞) , and
any natural n

Q
(
f ,

a
n

)n
< Q

(
f ,

a
n + 1

)n+1

(1.15)

unless at least one of the following cases takes place, when (1.15) turns into the equality:

1. a = 0 ;
2. f = 1 on [0, 1] .
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COROLLARY 1.12. For any f ∈ F↑ such that f (0) = 1 and any a ∈ [0,∞)

Q (f , a) < exp

(
a
∫ 1

0

f (u)− 1
u

du

)
(1.16)

unless at least one of the following cases takes place, when (1.16) turns into the equality:

1. a = 0 ;
2. f = 1 on [0, 1] .

The integral
∫ 1

0

f (u)− 1
u

du may be equal to ∞ ; in such a case, the right-hand

side of (1.16) is understood as ∞ if a > 0 and as 1 if a = 0 .

The above results can be generalized further, as we extend below the Stolarsky
transform of functions to certain transforms of measures.

For any Borel subset S of R , let MS stand for the set of all (not necessarily
finite) nonnegative σ -additive Borel measures on S .

PROPOSITION 1.13. For any f ∈ F↓ , one has the representation

f (u) =
∫

[0,1]
I[0,t](u)μf (dt) ∀u ∈ [0, 1] ,

where the measure μf ∈M[0,1] is defined by the condition that

μf ([u, 1]) := f (u) ∀u ∈ [0, 1] . (1.17)

Proposition 1.13 is obvious, since I[0,t](u) = I[u,1](t) for all u and t in [0, 1] .
Similar to Proposition 1.13 is

PROPOSITION 1.14. For any f ∈ F↑ , one has the representation

f (u) =
∫

[0,1]
I[t,1](u) νf (dt) ∀u ∈ [0, 1] ,

where the measure νf ∈ M[0,1] is defined by the condition that

νf ([0, u]) := f (u) ∀u ∈ [0, 1] . (1.18)

PROPOSITION 1.15. For all f ∈ F↓ and all a ∈ [0,∞) , one has the representation

Q(f , a) =
∫

[0,1]
Q(I[0,t], a)μf (dt) ,

where μf is the measure defined by (1.17).

PROPOSITION 1.16. For all f ∈ F↑ and all a ∈ [0,∞) , one has the representation

Q(f , a) =
∫

[0,1]
Q(I[t,1], a) νf (dt) ,

where νf is the measure defined by (1.18).
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Also, it is not difficult to see that

μf ({0}) = 0 ∀f ∈ F↓ and νf ({1}) = 0 ∀f ∈ F↑. (1.19)

In view of these facts and the obvious identities (with 00 := 0 )

Q(I[0,t], a) = ta and Q(I[t,1], a) = 1− ta,

it is natural to extend the notion of the Stolarsky transform to arbitrary measures
μ ∈M(0,1] and ν ∈M[0,1) as follows:

Qdir(μ, a) :=
∫

(0,1]
ta μ(dt) and Qrev(ν, a) :=

∫
[0,1)

(1− ta) ν(dt),

for all a ∈ [0,∞) . Then, according to Propositions 1.15 and 1.16, for all a ∈ [0,∞)

Q(f , a) = Qdir(μf , a) ∀f ∈ F↓ and Q(f , a) = Qrev(νf , a) ∀f ∈ F↑.

Thus, one naturally has two different extensions of the Stolarsky transform to measures;
the “direct” one takes the origin in the Stolarsky transform for nonincreasing functions,
while the “reverse” one generalizes the Stolarsky transform for nondecreasing functions,
defined on [0, 1] .

In fact, as we shall see later, there is no compelling reason to confine the measure μ
in the generalized direct Stolarsky transform Qdir(μ, a) to the interval (0, 1] ; instead,
one can deal with arbitrary measures on the entire interval (0,∞) . Also, it is not
necessary to consider only nonnegative values of a for Qdir(μ, a) . Thus, one comes to
the following definition.

DEFINITION 1.17. For any μ ∈ M(0,∞) and any a ∈ R , define the direct
generalized Stolarsky transform by the formula

Qdir(μ, a) :=
∫

(0,∞)
ta μ(dt) ∈ [0,∞] .

For any ν ∈ M[0,1) and any a ∈ [0,∞) , define the reverse generalized Stolarsky
transform by the formula

Qrev(ν, a) :=
∫

[0,1)
(1− ta) ν(dt) ∈ [0,∞] ;

in the latter formula, it is assumed that 00 := 0 .

Note that Qrev(ν, a) is concave and non-decreasing in a . Hence,

∃a ∈ (0,∞) Qrev(ν, a) =∞ iff ∀a ∈ (0,∞) Qrev(ν, a) =∞. (1.20)

Some of the statements below involve products of direct or reverse generalized
Stolarsky transforms, for possibly different values of a and possibly different measures
μ and ν ; any such product will be assumed to be equal to 0 whenever at least one
of the factors is equal to 0 , whether some or all of the other factors in the product are
equal to ∞ or not; in other words, for such products, the rule 0 · ∞ := 0 is used.



678 IOSIF PINELIS

The direct generalized Stolarsky transform has an obvious relation with the Mellin
transform

M(g, s) :=
∫ ∞

0
ts−1 g(t) dt.

Namely, if a measure μ is absolutely continuous with a density function g relative to
the Lebesgue measure on (0,∞) , so that μ (dt) = g (t) dt , then

Qdir(μ, a) = M(g, a + 1).

Of course, the original Stolarsky transform Q(f , a) defined for functions f : [0, 1]→ R

is also related to the Mellin transform via the formula

Q(g|[0,1], a) = a M(g · I[0,1], a),

where g|[0,1] is the restriction of a function g: [0,∞)→ R to [0, 1] .
Since we have extended the direct transform Qdir(μ, a) from measures μ on (0, 1]

to those on (0,∞) and in view of (1.19), let us redefine the classes F↓ and F↑ in a
more natural manner, as follows:

F↓ := {f : f is nonincreasing, nonnegative, and left-continuous on (0,∞)}
and

F↑ := {g: g is nondecreasing, nonnegative, and right-continuous on [0, 1)} ,
so that now the classes F↓ and F↑ consist of (possibly unbounded) functions defined
on (0,∞) and [0, 1) , respectively; moreover, let us allow functions in these classes to
take on the value ∞ .

Then the relations

μ ([u,∞))�f (u) ∀u ∈ (0,∞) (1.21)

and
ν ([0, u])�g(u) ∀u ∈ [0, 1) (1.22)

define one-to-one correspondences

M(0,∞) � μ ←→ f ∈ F↓ and M[0,1) � ν ←→ g ∈ F↑.

For any such pair μ ↔ f in the first of these two correspondences, one has

• f (u) =
∫

(0,∞)
I(0,t] (u) μ (dt) ∀u ∈ (0,∞) (cf. Proposition 1.13 above);

• Qdir (μ, a) =
∫

(0,∞)
f (u) a ua−1 du ∀a ∈ (0,∞) (using the previous expression

for f and the Fubini theorem; cf. (1.1));
• μ = 0 iff f = 0;
• for every t ∈ (0,∞) , supp (μ) = {t} iff f = k · I(0,t] for some k ∈ (0,∞) ;
• μ ((0,∞)) = f (0+) ;

as usual, supp (μ) stands for the support of measure μ .
Similarly, for any pair ν ↔ g in the other kind of correspondence, one has
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• g (u) =
∫

[0,1)
I[t,1) (u) ν (dt) ∀u ∈ [0, 1) (cf. Proposition 1.14 above);

• Qrev (ν, a) =
∫

[0,1)
g (u) a ua−1 du ∀a ∈ (0,∞) (using the previous expression

for g and the Fubini theorem; cf. (1.1));
• ν = 0 iff g = 0 ;
• supp (ν) = {0} iff g is a nonzero constant;
• ν ({0}) = g(0) .
Note that both Qdir and Qrev are in agreement with the original definition (1.1) of

the Stolarsky transform — but only for a > 0 .
With these modifications and correspondences in mind and taking care of the

possibility that the direct and inverse generalized Stolarsky transforms may now take
on infinite values, one translates above results as follows.

THEOREM 1.18. (Cf. Theorem 1.1.) For any measures μ1 and μ2 in M(0,∞) ,
any c ∈ R , and any a and b in [0,∞)

Qdir(μ1, c) Qdir(μ2, a + b + c) + Qdir(μ2, c) Qdir(μ1, a + b + c)
> Qdir (μ1, a + c) Qdir(μ2, b + c) + Qdir (μ2, a + c) Qdir(μ1, b + c)

(1.23)

unless at least one of the following four exceptional cases takes place, when (1.23) turns
into the equality:

1. the right-hand side of (1.23) equals to ∞ ;
2. a = 0 or b = 0 ;
3. μ1 = 0 or μ2 = 0;
4. supp (μ1) = supp (μ2) = {t} , for some t ∈ (0,∞) .

According to the rule 0 · ∞ := 0 , the exceptional case 1 of Theorem 1.18 occurs
if either one of the factors Qdir (μ1, a + c) and Qdir(μ2, b + c) is equal to ∞ while the
other one is nonzero or one of the factors Qdir (μ2, a + c) and Qdir(μ1, b + c) is equal
to ∞ while the other one is nonzero.

COROLLARY 1.19. (Cf. Corollary 1.2.) For any μ ∈ M(0,∞) , the function R �
a �→ Qdir(μ, a) is strictly log-convex on the interval

dom (Qdir(μ, ·)) := {a ∈ R: Qdir(μ, a) <∞}
unless supp (μ) ⊆ {t} for some t ∈ (0,∞) , in which case ln Qdir(μ, a) is linear in a
(cf. Corollary 1.24 below).

The reverse Stolarsky inequality (1.5), too, may be extended in the same manner,
so that one has the following analogue of Theorem 1.18.

THEOREM 1.20. (Cf. Theorem 1.4.) For any ν1 and ν2 in M[0,1) and any a , b ,
and c in [0,∞)

Qrev(ν1, c) Qrev(ν2, a + b + c) + Qrev(ν2, c) Qrev(ν1, a + b + c)
< Qrev(ν1, a + c) Qrev(ν2, b + c) + Qrev (ν2, a + c) Qrev(ν1, b + c)

(1.24)
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unless at least one of the following four exceptional cases takes place, when (1.24) turns
into the equality:

1. the left-hand side of (1.24) equals to ∞ ;
2. a = 0 or b = 0 ;
3. ν1 = 0 or ν2 = 0 ;
4. supp (ν1) = supp (ν2) = {0} .

The following is similar to Corollary 1.19 and immediate from Theorem 1.20 and
(1.20).

COROLLARY1.21. (Cf. Corollary 1.5.)Forany ν ∈M[0,1) , the function [0,∞) �
a �→ Qrev(ν, a) is strictly log-concave unless either (i) supp (ν) ⊆ {0} , in which case
lnQrev(ν, a) is constant in a , or (ii) Qrev(ν, a) =∞ for all a ∈ (0,∞) .

For any given n -tuple μ = (μ1, . . . ,μn) ∈ M(0,∞) × · · · ×M(0,∞)︸ ︷︷ ︸
n

, introduce

the function

R
n � a = (a1, . . . , an) �−→ Qn,dir (μ, a) :=

∑
σ∈Sn

n∏
i=1

Qdir

(
μσ(i), ai

)
(1.25)

∈ [0,∞] ,

using the rule 0 · ∞ := 0 .
Similarly, for any given n -tuple ν = (ν1, . . . , νn) ∈ M[0,1) × · · · ×M[0,1)︸ ︷︷ ︸

n

,

introduce the function

[0,∞)n � a =(a1, . . . , an) �−→ Qn,rev (ν, a) :=
∑
σ∈Sn

n∏
i=1

Qrev

(
νσ(i), ai

)
(1.26)

∈ [0,∞] ,

using the same rule 0 · ∞ := 0 .

THEOREM 1.22. (Cf. Theorem 1.7.) For any n -tuple μ = (μ1, . . . ,μn) ∈
M(0,∞) × · · · ×M(0,∞)︸ ︷︷ ︸

n

, the function Qn,dir defined by (1.25) is Schur-convex in

a ∈ R
n ; moreover, for any a and b in R

n , the relation a 	 b implies

Qn,dir (μ, a) > Qn,dir (μ, b) (1.27)

unless at least one of the following cases takes place, when (1.27) turns into the equality:

1. Qn,dir (μ, b) =∞ ;
2. a↓ = b↓ ;
3. μi = 0 for some i ∈ {1, . . . , n} ;
4. there exists some t ∈ (0,∞) such that supp (μi) = {t} for all i ∈ {1, . . . , n} .
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COROLLARY1.23. (Cf. Corollary 1.8.)Foranyprobabilitymeasure μ ∈M(0,∞) ,
any a ∈ R , and any natural n

Qdir

(
μ,

a
n

)n
> Qdir

(
μ,

a
n + 1

)n+1

(1.28)

unless at least one of the following cases takes place, when (1.28) turns into the equality:

1. Qdir

(
μ,

a
n + 1

)
=∞ ;

2. a = 0 ;
3. supp (μ) = {t} , for some t ∈ (0,∞) .

COROLLARY 1.24. (Cf. Corollary 1.9.) For any a ∈ R and any probability
measure μ ∈ M(0,∞) such that the value

∫
(0,∞) (ln u) μ (du) ∈ [−∞,∞] is defined,

one has

Qdir (μ, a) > exp

(
a
∫

(0,∞)
(ln u) μ (du)

)
(1.29)

unless at least one of the following cases takes place, when (1.29) turns into the equality:
1. a 
= 0 and a

∫
(0,∞)

(ln u) μ (du) =∞ ;

2. a = 0 (in which case the value of the right-hand side of (1.29) is assumed to be
1 );

3. supp (μ) = {t} , for some t ∈ (0,∞) .

Let us now proceed to reverse analogues of Theorem 1.22 and its corollaries.

THEOREM 1.25. (Cf. Theorem 1.10.) For any n -tuple ν = (ν1, . . . , νn) ∈
M[0,1) × · · · ×M[0,1)︸ ︷︷ ︸

n

, the function Qn,rev defined by (1.26) is Schur-concave in a ∈

[0,∞)n ; moreover, for any a and b in [0,∞)n , the relation a 	 b implies

Qn,rev (ν, a) < Qn,rev (ν, b) (1.30)

unless at least one of the following cases takes place, when (1.30) turns into the equality:
1. Qn,rev (ν, a) =∞ ;
2. a↓ = b↓ ;
3. νi = 0 for some i ∈ {1, . . . , n} ;
4. supp (νi) = {0} for all i ∈ {1, . . . , n} ;
5. nν({0}) + nb > n , where

nν({0}) := # {i: νi ({0}) = 0} and nb := # {i: bi = 0} .
COROLLARY 1.26. (Cf. Corollary 1.11.) For any ν ∈ M[0,1) such that ν ({0}) =

1 , any a ∈ [0,∞) , and any natural n

Qrev

(
ν,

a
n

)n
< Qrev

(
ν,

a
n + 1

)n+1

(1.31)

unless at least one of the following cases takes place, when (1.31) turns into the equality:
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1. Qrev

(
ν,

a
n

)
=∞ ;

2. a = 0 ;
3. supp (ν) = {0} .

COROLLARY 1.27. (Cf. Corollary 1.12.) For any ν ∈ M[0,1) such that ν ({0}) =
1 and any a ∈ [0,∞)

Qrev (ν, a) < exp

(
− a

∫
(0,1)

(ln u) ν (du)

)
(1.32)

unless at least one of the following cases takes place, when (1.32) turns into the equality:
1. Qrev (ν, a) =∞ ;
2. a = 0 (in which case the value of the right-hand side of (1.32) is assumed to be

1 );
3. supp (ν) = {0} .

2. Proofs

Let us begin with the following lemma to justify the definition (1.3).

LEMMA 2.1. If a function f is bounded on [0, 1] and the limit f (0+) exists and
is finite, then

lim
a↓0

Q (f , a) = f (0+) .

Proof. Let M := sup
[0,1]
|f | , so that M < ∞ . Take any ε > 0 . Then there exists

such a δ ∈ (0, 1) that |f (u)− f (0+)| � ε for all u ∈ [0, δ ] . Therefore,

|Q (f , a)− f (0+)| �
∫ 1

0
|f (u)− f (0+)| aua−1 du

� ε ·
∫ δ

0
aua−1du + 2M ·

∫ 1

δ
aua−1du

= ε · δ a + 2M · (1− δ a)→ ε

as a ↓ 0 . Hence, lim sup
a↓0

|Q (f , a)− f (0+)| � ε for any ε > 0 . The conclusion of

the lemma now follows.

Proof of Proposition 1.15 (page 676). For a > 0 , this proposition follows from
Proposition 1.13, definition (1.1), and the Fubini theorem. For a = 0 , this follows
from definitions (1.3) and (1.17); indeed,∫

[0,1]
Q(I[0,t], 0)μf (dt) =

∫
(0,1]

μf (dt)

= lim
δ↓0

∫
[δ,1]

μf (dt) = lim
δ↓0

f (δ) = f (0+) = Q(f , 0).
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Proof of Proposition 1.16. For a > 0 , this follows from Proposition 1.14, defini-
tion (1.1), and the Fubini theorem. For a = 0 , this follows from definitions (1.3) and
(1.18); indeed,∫

[0,1]
Q(I[t,1], 0) νf (dt) = νf ({0}) = f (0) = f (0+) = Q(f , 0).

LEMMA 2.2. Let μ and ν be nonzero (nonnegative σ -additive Borel) measures
on a Borel subset S of R such that

supp (μ ⊗ ν) ⊆ D := {(t, t) : t ∈ S} ,
where, as usual, supp denotes the support of the measure and μ⊗ ν denotes the direct
product of the measures μ and ν . Then

supp (μ ⊗ ν) = {(t, t)}
for some t ∈ S .

Proof. Note that supp (μ ⊗ ν) = (suppμ) × (supp ν) for any two measures μ
and ν . If supp (μ ⊗ ν) ⊆ D and supp (μ ⊗ ν) contains at least two distinct points,
say (t, t) and (s, s) , then supp (μ ⊗ ν) = (suppμ) × (suppν) must also contain the
point (t, s) /∈ D , so that one has a contradiction.

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Take any f and g in F↓ and any a , b , and c in [0,∞) .
Consider

Δ (f , g; a, b, c) := Q(f , c) Q(g, a + b + c) + Q(g, c) Q(f , a + b + c)
−Q (f , a + c) Q(g, b + c)− Q (g, a + c) Q(f , b + c), (2.1)

the difference between the left-hand side and the right-hand side of inequality (1.6). In
view of Proposition 1.15,

Δ (f , g; a, b, c) =
∫∫
[0,1]2

δa,b,c(s, t) (μf ⊗ μg) (ds× dt) , (2.2)

where
δa,b,c(s, t) := Δ

(
I[0,s], I[0,t]; a, b, c

)
.

Since Q
(
I[0,s], a

)
= sa for all s ∈ [0, 1] and a � 0 (with 00 := 0 ), it is not difficult

to check that
δa,b,c(s, t) = sc · tc · (ta − sa) · (tb − sb

)
. (2.3)

Now it is obvious that δa,b,c � 0 on [0, 1]2 . Hence, by (2.2), Δ (f , g; a, b, c) � 0 , so
that the non-strict version of inequality (1.6) follows.

Next, it is easy to check that in each of the three exceptional cases in Theorem 1.1,
Δ (f , g; a, b, c) = 0 .
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Finally, suppose that (1.6) turns into the equality, i.e., Δ (f , g; a, b, c) = 0 . It
remains to show that then at least one of the three exceptional cases takes place.
Since δa,b,c � 0 on [0, 1]2 , identity (2.2) implies that δa,b,c = 0 (μf ⊗ μg) -almost
everywhere on [0, 1]2 . W.l.o.g., neither of the exceptional cases 1 or 2 takes place
(otherwise, there is nothing to prove). Hence, a > 0 , b > 0 , and μf ⊗ μg 
= 0 (since
μf ⊗ μg = 0 would imply that the exceptional case 2 takes place). On the other hand,
in view of (2.3), one has δa,b,c(s, t) = 0 only if either s = 0 or t = 0 or t = s , since
a > 0 and b > 0 . Therefore, s = 0 or t = 0 or t = s for (μf ⊗ μg) -almost all pairs
(s, t) ∈ [0, 1]2 . On the other hand, according to the definition (1.17),

μf ({0}) = lim
u↓0

(μf ([0, 1])− μf ([u, 1])) = lim
u↓0

(f (0)− f (u)) = 0,

because f belongs to F↓ and hence is continuous at 0 . Similarly, μg ({0}) = 0 . It
follows that s 
= 0 and t 
= 0 for (μf ⊗ μg) -almost all pairs (s, t) ∈ [0, 1]2 . Thus,
t = s for (μf ⊗ μg) -almost all pairs (s, t) ∈ [0, 1]2 . In other words, supp (μf ⊗ μg) ⊆
{(t, t) : t ∈ [0, 1]} . Now, by Lemma 2.2, supp (μf ⊗ μg) = {(t∗, t∗)} for some t∗ ∈
[0, 1] or, equivalently, supp (μf ) = supp (μg) = {t∗} ; in fact, since μf ({0}) =
μg ({0}) = 0 , onemust have t∗ 
= 0 . By Proposition 1.13, this implies that f = k1·I[0,t∗ ]
and g = k2 · I[0,t∗] , where k1 := μf ([0, 1]) and k2 := μg ([0, 1]) .

Proof of Theorem 1.4. This proof is similar to that of Theorem 1.1. In this case,
one has to deal with νf and νg in place of μf and μg , with Proposition 1.16 in place
of Proposition 1.15, and with

δ̄a,b,c(s, t) := Δ
(
I[s,1], I[t,1]; a, b, c

)
in place of δa,b,c(s, t) . Since Q

(
I[s,1], a

)
= 1− sa for all s ∈ [0, 1] and a � 0 (again

with 00 := 0 ), it is not difficult to check that for all (s, t) ∈ [0, 1]2

δ̄a,b,c(s, t) = sc · tc · (ta − sa) · (tb − sb
)

(2.4)

− sc · (1− sa) · (1− sb
)

− tc · (1− ta) · (1− tb
)
,

whence

δ̄a,b,c(s, t) � sc · tc· [(ta − sa) · (tb − sb
)

− (1− sa) · (1− sb
)− (1− ta) · (1− tb

)]
= − sc · tc · [(1− sa) · (1− tb

)
+
(
1− sb

) · (1− ta)
]

� 0.
(2.5 )

Therefore, Δ (f , g; a, b, c) � 0 , so that the non-strict version of inequality (1.8) follows.
The less trivial part of what remains to prove is that, if δ̄a,b,c = 0 (νf ⊗ νg) -almost

everywhere on [0, 1]2 and a , b , f , and g are nonzero, then both f and g are nonzero
constants on [0, 1] . For any (s, t) ∈ [0, 1]2 , the equality δ̄a,b,c(s, t) = 0 implies that the
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nonstrict inequalities in (2.5) turn into the equalities, which in turn implies that either
s or t belongs to the set {0, 1} , given that a and b are nonzero. But, if s = 0 , then
δ̄a,b,c(s, t) = 0 implies (in view of (2.4)) that t ∈ {0, 1} ; similarly, if t = 0 , then
δ̄a,b,c(s, t) = 0 implies that s ∈ {0, 1} . Therefore, s = 1 or t = 1 or s = t = 0
for (νf ⊗ νg) -almost all pairs (s, t) ∈ [0, 1]2 . On the other hand, according to the
definition (1.18),

νf ({1}) = lim
u↑1

(νf ([0, 1])− νf ([0, u])) = lim
u↑1

(f (1)− f (u)) = 0,

because f belongs to F↑ and hence is continuous at 1 . Similarly, νg ({1}) = 0 .
Thus, s = t = 0 for (νf ⊗ νg) -almost all pairs (s, t) ∈ [0, 1]2 . In other words,
supp (νf ) = supp (νg) = {0} . By Proposition 1.14, this implies that f = k1 on [0, 1]
and g = k2 on [0, 1] , where k1 := νf ([0, 1]) and k2 := νg ([0, 1]) .

Proof of Theorem 1.7. For n = 1 , a 	 b means that a = b , so that the statement
of the theorem is then trivial. The case n = 2 of Theorem 1.7 is Theorem 1.1. Assume
then that n � 3 .

For any vectors a and b in R
n such that a � b , let us say that vectors

a(0), a(1), . . . , a(m) in R
n form an elementary majorization chain down from a to b

of length m + 1 if a = a(0) � a(1) � · · · � a(m) = b and for each j ∈ {1, . . . , m}
the vectors a(j−1)=

(
a(j−1)

1 , . . . , a(j−1)
n

)
and a(j)=

(
a(j)

1 , . . . , a(j)
n

)
differ exactly in two

coordinates, say p(j) th and q(j) th, so that a(j−1)
i 
= a(j)

i iff i ∈ {p(j), q(j)
}

.
A well-known result by Muirhead [3] (see, e.g., [2, Remark B.1.a of Chapter 2])

states that, for any vectors a and b in R
n such that a � b , there exists a finite (actually

of length � n ) elementary majorization chain down from a to b .
Therefore, we shall assume, w.l.o.g., that a � b and the vectors a = (a1, . . . , an)

and b = (b1, . . . , bn) differ exactly in two coordinates; in other words, we shall assume
that there exist two different numbers p and q in the set {1, . . . , n} such that

bi = ai ∀i ∈ {1, . . . , n} \ {p, q} , (2.6 )
ap > aq, bp = ap − ε, and bq = aq + ε (2.7 )

for some

ε ∈ (0, ap − aq) . (2.8)

Then

Qn (f, a)−Qn (f, b) =

∑
σ∈Sn

⎛
⎝ ∏

i∈{1,...,n}\{p,q}
Q
(
fσ(i), bi

)⎞⎠× (2.9 )

× [Q (fσ(p), ap
)
Q
(
fσ(q), aq

)− Q
(
fσ(p), ap − ε

)
Q
(
fσ(q), aq + ε

)]
.
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For the given pair of p and q , consider the one-to-one correspondence Sn � σ ↔ σ̃ ∈
Sn given by

σ̃(i) := σ(i) ∀i ∈ {1, . . . , n} \ {p, q} ,
σ̃(p) := σ(q), and σ̃(q) := σ(p).

In view of this one-to-one correspondence, σ (p) and σ (q) in (2.9) may be mutually
interchanged, so that

Qn (f, a)−Qn (f, b) =

∑
σ∈Sn

⎛
⎝ ∏

i∈{1,...,n}\{p,q}
Q
(
fσ(i), bi

)⎞⎠× (2.10 )

× [Q (fσ(q), ap
)
Q
(
fσ(p), aq

)− Q
(
fσ(q), ap − ε

)
Q
(
fσ(p), aq + ε

)]
.

Adding now (2.9) and (2.10), one has

2Qn (f, a) = 2Qn (f, b)

+
∑
σ∈Sn

⎛
⎝ ∏

i∈{1,...,n}\{p,q}
Q
(
fσ(i), bi

)⎞⎠ · Δ (fσ(p), fσ(q); a, b, c
)
,

(2.11 )

where Δ (f , g; a, b, c) is defined by (2.1),

a := ap − aq − ε, b := ε, and c := aq,

so that a + b + c = ap , a + c = ap − ε , and b + c = aq + ε . By (2.8),

a > 0 and b > 0. (2.12)

Now it follows from Theorem 1.1 (or, a little more directly, from its proof) that every
summand on the right-hand side of (2.11) is nonnegative, and so, Qn (f, a) � Qn (f, b) .

Next, it is easy to check that in each of the three exceptional cases in Theorem 1.7,
Qn (f, a) = Qn (f, b) .

It remains to show that the equality Qn (f, a) = Qn (f, b) implies at least one
of the three exceptional cases in Theorem 1.7. W.l.o.g., neither of the exceptional
cases 1 or 2 takes place (otherwise, there is nothing to prove). Hence, none of the
functions f 1, . . . , f n is zero, and so, all of the numbers Q (f 1,α) , . . . , Q (f n,α) are
nonzero, for all α ∈ [0,∞) . On the other hand, the equality Qn (f, a) = Qn (f, b)
implies that every summand in (2.11) is zero, whence Δ

(
fσ(p), fσ(q); a, b, c

)
= 0 for

all permutations σ ∈ Sn . By virtue of Theorem 1.1, it now follows that the exceptional
case 3 of Theorem 1.7 does take place.

Proof of Corollary 1.8. It is easy to see that(
a
n
, . . . ,

a
n︸ ︷︷ ︸

n

, 0

)
�
(

a
n + 1

, . . . ,
a

n + 1︸ ︷︷ ︸
n+1

)
,
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for all a > 0 and all natural n . Also, it follows from (1.3) and the conditions f ∈ F↓
and f (0) = 1 that Q(f , 0) = 1 . Now the corollary is immediate from Theorem 1.7.

Proof of Corollary 1.9. Note that the conditions f ∈ F↓ and f (0) = 1 imply

that 0 � f � 1 on [0, 1] . In the case
∫ 1

0

1− f (u)
u

du = ∞ , the statement is trivial.

Assume therefore that
∫ 1

0

1− f (u)
u

du <∞ . Then, for every a ∈ [0,∞) ,

Q
(
f ,

a
n

)
= 1− a

n

∫ 1

0

1− f (u)
u

ua/n du,

and ∫ 1

0

1− f (u)
u

ua/n du −→
∫ 1

0

1− f (u)
u

du

as n→∞ , by the Lebesgue theorem; hence,

Q
(
f ,

a
n

)n
−→ exp

(
−a
∫ 1

0

1− f (u)
u

du

)

as n→∞ . Now Corollary 1.9 follows from Corollary 1.8.

Proof of Theorem 1.10. As in the proof of Theorem 1.7, assume w.l.o.g. that
n � 3 . Also similarly to the corresponding part of the proof of Theorem 1.7, the
Schur concavity follows from (2.11), using in the present case Theorem 1.4 rather than
Theorem 1.1.

Note next that, for any a and b in [0,∞)n , majorization a 	 b implies na � nb

(nb is defined in the formulation of the exceptional case 4 in Theorem 1.10). Hence,
for any elementary majorization chain a = a(0) � a(1) � · · · � a(m) = b , one has
nf(0) + nb > n iff ∀j ∈ {1, . . . , m} nf(0) + na(j) > n . Taking this into account,
here too we shall assume, w.l.o.g., that a � b and the vectors a = (a1, . . . , an) and
b =(b1, . . . , bn) differ exactly in two coordinates, p th and q th, so that once again one
has (2.6), (2.7), (2.8), and (2.11).

Next, it is not hard to check that in each of the four exceptional cases in Theorem
1.10, Qn (f, a) = Qn (f, b) . In particular, in the exceptional case 4, Qn (f, a) =
Qn (f, b) once again follows by (2.11), because then for every permutation σ ∈ Sn at
least one of the n− 2 numbers Q

(
fσ(i), bi

)
, i ∈ {1, . . . , n} \ {p, q} , is zero. Indeed,

since the sum of the cardinalities nf(0) and nb of the sets

Cf(0) := {i: f i(0) = 0} and Cb := {i: bi = 0} (2.13)

exceeds n , their intersection is non-empty; therefore, at least one of the n numbers
Q
(
fσ(i), bi

)
, i ∈ {1, . . . , n} , is zero, in view of (1.3) and the definition of F↑ , which

implies
Q(f , 0) = 0⇐⇒ f (0) = 0, (2.14)
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for all f ∈ F↑ . On the other hand, let us assume, w.l.o.g., that the exceptional case
2 does not take place. Then it is seen from (2.7) and (2.8) that bp and bq are both
strictly positive, whence Q

(
fσ(p), bp

)
and Q

(
fσ(q), bq

)
are so, and one verifies that at

least one of the n− 2 numbers Q
(
fσ(i), bi

)
, i ∈ {1, . . . , n} \ {p, q} , is zero.

Thus, indeed one has Qn (f, a) = Qn (f, b) in each of the four exceptional cases
in Theorem 1.10.

The fact that bp and bq are both strictly positive can be expressed as

Cb ∩ {p, q} = ∅ (2.15)

and will be used again below.
It remains to show that Qn (f, a) < Qn (f, b) if none of the four exceptional cases

in Theorem 1.10 takes place. Assume this and introduce one more subset of the set
{1, . . . , n} :

Cf := {i: f i = const 
= 0 on [0, 1]} . (2.16)

At least one of the following three cases must take place:

Cf(0) = ∅ or Cf = ∅ or
(
Cf(0) 
= ∅ & Cf 
= ∅

)
.

Consider first the case Cf(0) = ∅ . Then, in view of (2.14), one has Q(f i, a) > 0
for all i ∈ {1, . . . , n} and all a � 0 . Since the exceptional case 3 does not take place,
one has Cf 
= ∅ ; here and in the sequel, A := {1, . . . , n} \ A . Hence, there exists
a permutation σ ∈ Sn such that σ (p) ∈ Cf . According to Theorem 1.4 and (2.12),
it follows now that Δ

(
fσ(p), fσ(q); a, b, c

)
< 0 , as the exceptional case 2 of Theorem

1.10 does not take place either. Therefore, for such a permutation σ , the summand

Δ
(
fσ(p), fσ(q); a, b, c

)·
( ∏

i∈{1,...,n}\{p,q}
Q
(
fσ(i), bi

))
in (2.11) is strictly negative, which

implies Qn (f, a) < Qn (f, b) .
Consider next the case Cf = ∅ . According to Theorem 1.4 and (2.12), it follows

now that Δ (f i, f j; a, b, c) < 0 for all i and j in {1, . . . , n} , as the exceptional case 2
of Theorem 1.10 does not take place. Since the exceptional case 4 of Theorem 1.10
does not take place either, one has nb � n − nf(0) ; hence, there exists a permutation
σ ∈ Sn such that σ (Cb) ⊆ Cf(0) . Then (2.14) implies that Q(fσ(i), bi) > 0 for all i ∈
{1, . . . , n} . Therefore, for such a permutation σ , the summand Δ

(
fσ(p), fσ(q); a, b, c

) ·( ∏
i∈{1,...,n}\{p,q}

Q
(
fσ(i), bi

))
in (2.11) is strictly negative, which implies Qn (f, a) <

Qn (f, b) .
Consider finally the case Cf(0) 
= ∅ & Cf 
= ∅ . According to (2.15), {p} ∩

Cb = ∅ . Therefore and because nb � n − nf(0) , there exists a permutation σ ∈ Sn

such that σ (p) ∈ Cf(0) and σ (Cb) ⊆ Cf(0) . But Cf(0) ⊆ Cf , according to the
definitions (2.13) and (2.16). Hence, σ (p) ∈ Cf , so that Δ

(
fσ(p), fσ(q); a, b, c

)
< 0 ,

just as in the case Cf(0) = ∅ . On the other hand, σ (Cb) ⊆ Cf(0) implies that
Q
(
fσ(i), bi

)
> 0 for all i ∈ {1, . . . , n} , just as in the case Cf = ∅ . Thus, the summand
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Δ
(
fσ(p), fσ(q); a, b, c

)·
( ∏

i∈{1,...,n}\{p,q}
Q
(
fσ(i), bi

))
in (2.11) is strictly negative, which

implies Qn (f, a) < Qn (f, b) .
Thus, one has Qn (f, a) < Qn (f, b) if none of the four exceptional cases takes

place. Theorem 1.10 is completely proved.

The proofs of Corollaries 1.11 and 1.12 are quite similar to those of Corollaries
1.8 and 1.9, respectively, and therefore omitted.

Since we have redefined the classes F↓ and F↑ (before (1.21) and (1.22)) and
also allowed negative values of a in Qdir (μ, a) , we present here some of the proofs of
the extensions of the Stolarsky type inequalities to transforms Qdir(μ, a) and Qrev(ν, a)
of measures, starting with Theorem 1.18, to underscore the changes to be made.

Proof of Theorem 1.18. Take any μ1 and μ2 in M(0,∞) , any c ∈ R , and any a
and b in [0,∞) . Consider

Δdir (μ1,μ2; a, b, c) :=
∫∫

(0,∞)2

δa,b,c d (μ1 ⊗ μ2) , (2.17)

where δa,b,c is given by (2.3), now for all (s, t) ∈ (0,∞)2 . It is not difficult to see (cf.
(2.1) and (2.2)) that

Qdir(μ1, c) Qdir(μ2, a + b + c) + Qdir(μ2, c) Qdir(μ1, a + b + c)
= Qdir (μ1, a + c) Qdir(μ2, b + c) + Qdir (μ2, a + c) Qdir(μ1, b + c)

(2.18)
+ Δdir (μ1,μ2; a, b, c) ;

note that Δdir (μ1,μ2; a, b, c) is the difference between the left-hand side and the right-
hand side of inequality (1.23) provided that the right-hand side of (1.23) is finite. It is
obvious that δa,b,c � 0 on (0,∞)2 . Hence, by (2.17), Δdir (μ1,μ2; a, b, c) � 0 , so that
the non-strict version of inequality (1.23) follows.

Next, it is easy to check that in each of the four exceptional cases in Theorem 1.18,
inequality (1.23) turns into the equality.

Finally, suppose that (1.23) turns into the equality. It remains to show that then
at least one of the four exceptional cases takes place. Suppose that the contrary is
true: none of the four exceptional cases holds. Since the exceptional case 1 does not
takes place, (2.18) implies that Δdir (μ1,μ2; a, b, c) = 0 . Since δa,b,c � 0 on (0,∞)2 ,
identity (2.17) implies that δa,b,c = 0 (μ1 ⊗ μ2) -almost everywhere on (0,∞)2 .
Since neither of the exceptional cases 2 or 3 takes place, one has a > 0 , b > 0 , and
μ1⊗μ2 
= 0 . For any given pair (s, t) ∈ (0,∞)2 , one has δa,b,c(s, t) = 0 only if t = s ,
in view of (2.3) and since a > 0 and b > 0 . Therefore, t = s for (μ1 ⊗ μ2) -almost

all pairs (s, t) ∈ (0,∞)2 . In other words, supp (μ1 ⊗ μ2) ⊆
{

(t, t) : t ∈ (0,∞)2
}

.
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Now, by Lemma 2.2, supp (μ1 ⊗ μ2) = {(t, t)} for some t ∈ (0,∞) or, equivalently,
supp (μ1) = supp (μ2) = {t} , so that the exceptional case 4 must take place.

Proof of Theorem 1.20. This proof is similar to that of Theorem 1.18; cf. also the
proof of Theorem 1.4. In the present case, one has to deal with δ̄a,b,c given by (2.4), in
place of δa,b,c . Using (2.5), one has the non-strict version of inequality (1.24).

Also, (2.5) implies that, for any given (s, t) ∈ [0, 1)2 and any positive a and
b , one has δ̄a,b,c(s, t) = 0 only if s = t = 0 . Hence, if δ̄a,b,c = 0 (ν1 ⊗ ν2) -
almost everywhere on [0, 1)2 and a , b , ν1 , and ν2 are nonzero, then supp (ν1) =
supp (ν2) = {0} . Thus, if inequality (1.24) turns into the equality and none of the first
three exceptional cases of Theorem 1.20 takes place, then the exceptional case 4 does.

Finally, it is obvious that in any one of four exceptional cases inequality (1.24)
turns into the equality.

Proof of Theorem 1.22. This proof repeats almost word for word the proof of The-
orem 1.7, with f i , Q(f i, ·) , and Qn (f, ·) replaced by μi , Qdir(μi, ·) , and Qn,dir (μ, ·) ,
respectively.

That here Qdir(μi, ·) may be infinite does not cause serious difficulties. If the
exceptional case 3 of Theorem 1.22 does not take place, then Qdir(μi, ·) is strictly
positive on (0,∞) for every i ; hence, if the exceptional case 1 of Theorem 1.22
does not take place either while Qn,dir (μ, a) = Qn,dir (μ, b) , then Qdir(μσ(i), ai) and
Qdir(μσ(i), bi) are finite for all permutations σ and all i .

The only place in the context of the direct Stolarsky inequalities for Q(f , a) where
it was essentially used that the function f (and hence the measure μf ) was defined only
to the left of 1 was in Corollary 1.9, corresponding to Corollary 1.24 for Qdir(μ, a) .
Here we reason as follows. Note that

h (a) :=

{ ua − 1
a

if a 
= 0,

ln u if a = 0

is increasing in a ∈ R , for each u ∈ (0,∞) . Indeed, for each u ∈ (0,∞) ,(
a2 h′ (a)

)′
= (ua (a ln u− 1) + 1)′ = a ua ln2 u≶0 if a≶0,

and a2 h′ (a) → 0 as a → 0 ; hence, h′ (a) > 0 for all a 
= 0 (in fact, for a = 0 as
well), which implies that h is increasing on R . Thus, by the Fatou lemma, for any
probability measure μ ∈M(0,∞) ,

Qdir(μ, a)− 1
a

=
∫

(0,∞)

ua − 1
a

μ (du) −→
∫

(0,∞)
(ln u) μ (du)

as a→ 0 . Therefore,

lim
a→0

Qdir

(
μ,

a
n

)n
= exp

(
a
∫

(0,∞)
(ln u) μ (du)

)
.
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This and Corollary 1.23 imply Corollary 1.24.
Corollary 1.27 may be proved similarly. Indeed, there one has

lim
a↓0

Qrev(ν, a)− 1
a

= lim
a↓0

∫
[0,1)

1− ua − I{0} (u)
a

ν (du)

= lim
a↓0

∫
(0,1)

1− ua

a
ν (du) = −

∫
(0,1)

(ln u) ν (du) .

Alternatively, one may use Corollary 1.12 and the Fubini theorem (i.e., integration by
parts) to see that for all g ∈ F↑ with g(0) = 1 and the corresponding (via (1.22))
measure ν , one has∫ 1

0

g(u)− 1
u

du =
∫

(0,1)

ν ((0, u])
u

du

=
∫

(0,1)

du
u

∫
(0,u]

ν (ds) =
∫

(0,1)
ν (ds)

∫
[s,1)

du
u

= −
∫

(0,1)
(ln s) ν (ds) .
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