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AN INEQUALITY FOR A POSITIVE REAL FUNCTION

JEONG SHEOK UME

(communicated by N. Elezović)

Abstract. In this paper, using a suitable mapping, we show that the result of H. Alzer can be
extended and open problem is proposed.

In [1–6], two inequalities were proved using the mathematical induction and other
techniques, which can be expressed as
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where r > 0 and n ∈ N .
In this paper, using a suitable mapping, we show that the result of Alzer [1] can be

extended and open problem is proposed.

Throughout this paper we denote by N the set of all positive integers and by R

the set of all real numbers.

LEMMA 1. Let a , b , c and d be real numbers satisfying

1 < a, c, 0 < b, d < 1, 0 < ab � 1,

1 <
1
2
(c + d) and 1 � ac−1(ab)d.

Then
1 < (c − 1)ax + d(ab)x for all x ∈ [0,∞).

Proof. Define a function f : [0,∞) → R by

f (x) = (c − 1)ax + d(ab)x for all x ∈ [0,∞).

After some elementary computations, this leads to

f ′(x) > 0 for all x ∈ [0,∞).
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Hence we have

f (x) > f (0) = c − 1 + d � 1 for all x ∈ [0,∞),

which completes the proof of the Lemma 1.

From Lemma 1 we have the following lemma.

LEMMA 2. Let ϕ : (0,∞) → (0,∞) be a function such that

ϕ is strictly increasing on (0,∞), (1)

ϕ′(x) exists for x ∈ (0,∞), (2)

ϕ′ is strictly increasing on (0,∞), (3)
ϕ(x)

ϕ(x + 1)
� ϕ(x + 1)

ϕ(x + 2)
(4)

for all x ∈ (0,∞) ,

1 �
[
ϕ(u + 2)
ϕ(u + 1)

] ϕ(v+2)
ϕ(v+1) −1

·
[

ϕ(u)
ϕ(u + 1)

· ϕ(u + 2)
ϕ(u + 1)

] ϕ(v)
ϕ(v+1)

(5)

for all u , v ∈ (0,∞) .
Then

ϕ(v + 1) < [ϕ(v + 2) − ϕ(v + 1)]
{
ϕ(u + 2)
ϕ(u + 1)

}r

+ ϕ(v)
{

ϕ(u)
ϕ(u + 1)

· ϕ(u + 2)
ϕ(u + 1)

}r

for all u , v ∈ (0,∞) and r > 0 .

THEOREM 3. Let ϕ : (0,∞) → (0,∞) be a function satisfying (1), (2), (3), (4)
and

1 �
{
ϕ(n + m + k + 2)
ϕ(n + m + k + 1)

} ϕ(n+m+2)
ϕ(n+m+1) −1

·
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for all n ∈ N , m , k ∈ N ∪ {0} and 2 � 2ϕ(1) � ϕ(2) .
Then
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for all n , m ∈ N , k ∈ N ∪ {0} and r > 0 .

Proof. From Lemma 2 and hypotheses, we obtain

ϕ(n + m + 1) <[ϕ(n + m + 2) − ϕ(n + m + 1)]
{
ϕ(n + m + k + 2)
ϕ(n + m + k + 1)

}r

+ ϕ(n + m)
{

ϕ(n + m + k) · ϕ(n + m + k + 2)
ϕ(n + m + k + 1) · ϕ(n + m + k + 1)

}r

(7)
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for all n ∈ N , m , k ∈ N ∪ {0} and r > 0 . We shall deduce inequality (6) via
mathematical induction. Let us denote

B(k + 1, n + k) =
n+k∑

i=k+1

[ϕ(i)]r,

where n ∈ N, k ∈ N
⋃{0} and 0 < r . Then the inequality (6) is equivalent to

ϕ(n)[ϕ(n + k)]r

ϕ(n + m)[ϕ(n + m + k)]r
<

B(k + 1, n + k)
B(k + 1, n + m + k)

, (8)

where n, m ∈ N and r > 0 . For m = 1 , (8) is equivalent to

ϕ(n)[ϕ(n + k)]r

ϕ(n + 1)[ϕ(n + k + 1)]r
<

B(k + 1, n + k)
B(k + 1, n + k + 1)

(9)

which is true for n = 1 by hypotheses. We assume that (9) is valid for n . To prove
that (9) is valid for n + 1 , it is sufficient to show that

ϕ(n + 1) <[ϕ(n + 2) − ϕ(n + 1)]
{
ϕ(n + k + 2)
ϕ(n + k + 1)

}r

+ ϕ(n)
{

ϕ(n + k) · ϕ(n + k + 2)
ϕ(n + k + 1) · ϕ(n + k + 1)

}r

. (10)

From (7), inequality (10) is valid. Thus (9) holds for all n ∈ N . Next we assume that

ϕ(n)[ϕ(n + k)]r

ϕ(n + m)[ϕ(n + m + k)]r
<

B(k + 1, n + k)
B(k + 1, n + m + k)

(11)

for fixed m ∈ N . To prove inequality substituted m + 1 for m in inequality (11), it is
sufficient to prove the following inequality:

ϕ(n + m + 1) <[ϕ(n + m + 2) − ϕ(n + m + 1)]
{
ϕ(n + m + k + 2)
ϕ(n + m + k + 1)

}r

+ ϕ(n + m)
[

ϕ(n + m + k)
ϕ(n + m + k + 1)

]r [ϕ(n + m + k + 2)
ϕ(n + m + k + 1)

]r

,

which is true from (7). Therefore inequality (6) is proved by inductive method.

From Theorem 3, we have the following corollary

COROLLARY 4. If n , m ∈ N , k ∈ N ∪ {0} , r > 0 and a � 2 , then
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Proof. Let ϕ : (0,∞) → (0,∞) be a function such that

ϕ(x) = ax

for all x ∈ (0,∞) . Then, ϕ is satisfied all conditions of Theorem 3. Thus Corollary 4
follows from Theorem 3.

The following corollary is a generalization of H. Alzer’s inequality [1].



696 JEONG SHEOK UME

COROLLARY 5. If p = 1 or p � 2 , then

(
n + k

n + m + k

)p

<

{
1
np

n+k∑
i=k+1

ipr

/
1

(n + m)p

n+m+k∑
i=k+1

ipr

} 1
r

,

where n , m ∈ N , k ∈ N ∪ {0} and r > 0 .

Proof. Let ϕ : (0,∞) → (0,∞) be a function such that

ϕ(x) = xp, p = 1 or p � 2

for all x ∈ (0,∞) . Then, ϕ is satisfied all conditions of Theorem 3. Thus Corollary 5
follows from Theorem 3.

Open Problem. Does the inequality of Corollary 5 hold for 1 < p < 2 ?
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