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ON THE FEKETE–SZEGÖ AND ARGUMENT INEQUALITIES

FOR STRONGLY CLOSE–TO–STAR FUNCTIONS

NAK EUN CHO AND SHIGEYOSHI OWA

(communicated by H. M. Srivastava)

Abstract. Let CS(β) be the class of normalized strongly close-to-star functions of order β in
the open unit disk. We obtain sharp Fekete-Szegö inequalities for functions belonging to the
class CS(β) . Some sufficient conditions for close-to-star functions also are investigated in a
sector. Furthermore, we consider the integral preserving properties for functions in CS(β) .

1. Introduction

Let A denote the class of functions f (z) of the form

f (z) = z +
∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1} and let S be
the subclass of A consisting of all univalent functions. We also denote by S∗ , K and
C the subclasses of A consisting of functions which are, respectively, starlike, convex
and close-to-convex in U (see, e.g., Srivastava and Owa [18]).

For analytic functions g(z) and h(z) with g(0) = h(0) , g(z) is said to be
subordinate to h(z) if there exists an analytic function w(z) such that w(0) = 0 ,
|w(z)| < 1 (z ∈ U) , and g(z) = h(w(z)) . We denote this subordination by g(z) ≺
h(z) .

Let

S∗[A, B] =
{

f ∈ A :
zf ′(z)
f (z)

≺ 1 + Az
1 + Bz

(z ∈ U ; −1 � B < A � 1)
}

and

K[A, B] =
{

f ∈ A : 1 +
zf ′′(z)
f ′(z)

≺ 1 + Az
1 + Bz

(z ∈ U ; −1 � B < A � 1)
}

.
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The class S∗[A, B] and related classes were studied by Janowski [5] and Silverman
and Silvia [17]. Applying the Briot-Bouquet differential subordination [10, p. 81],
we can easily see that K[A, B] ⊂ S∗[A, B] . We also note that S∗[1,−1] = S∗ and
K[1,−1] = K . Furthermore, Silverman and Silvia [17] proved that a function f (z) is
in S∗[A, B] if and only if∣∣∣∣ zf ′(z)

f (z)
− 1 − AB

1 − B2

∣∣∣∣ <
A − B
1 − B2 (z ∈ U ; B �= −1) (1.2)

and

Re

{
zf ′(z)
f (z)

}
>

1 − A
2

(z ∈ U ; B = −1). (1.3)

A classical result of Fekete and Szegö [4] determines the maximum value of
|a3 − μa2

2| , as a function of the real parameter μ , for functions belonging to S . There
are now several results of this type in the literature, each of them dealing with |a3−μa2

2|
for various classes of functions (see, e.g., [2,6–8,14]). More recently, Srivastava, Mishra
and Das [19] have given the solution of the Fekete-Szegö problem for a certain subclass
of close-to-convex functions.

Denote by CS(β) the class of strongly close-to-star functions of order β (β � 0) .
Thus f (z) ∈ CS(β) if and only if there exists g(z) ∈ S∗ such that for z ∈ U ,∣∣∣∣arg

{
f (z)
g(z)

}∣∣∣∣ � π
2
β .

For the case β = 1 , CS(β) is the class of close-to-star functions introduced by Reade
[16]. The close-to-star and similar other functions have been extensively studied by
Ahuja and Mogra [1], Padmanabhan and Parvatham [12], Paravatham and Srinivasan
[13], Sudharsan et. al. [20], and others.

In the present paper, we prove sharp Fekete-Szegö inequalities for functions be-
longing to the class CS(β) . Argument properties also are investigated, which give
conditions for close-to-star functions. Furthermore, we consider the integral preserving
properties for functions in the class CS(β) .

2. Main Results

To prove our main results, we need the following lemmas.

LEMMA 2.1 [3,15]. Let p(z) be analytic in U and satisfy Re {p(z)} > 0 for
z ∈ U , with p(z) = 1 + p1z + p2z2 + · · · . Then

|pn| � 2 (n � 1)

and ∣∣∣∣p2 − p2
1

2

∣∣∣∣ � 2 − |p1|2
2

.
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LEMMA 2.2 [11]. Let p(z) be analytic in U with p(0) = 1 and p(z) �= 0 in U .
Suppose that there exists a point z0 ∈ U such that∣∣∣ arg {p(z)}

∣∣∣ < π
2
η for |z| < |z0| (2.1)

and ∣∣∣ arg {p(z0)}
∣∣∣ =

π
2
η (0 < η � 1). (2.2)

Then
z0p ′(z0)

p(z0)
= ikη, (2.3)

where

k � 1
2

(
a +

1
a

)
when arg {p(z0)} =

π
2
η, (2.4)

k � −1
2

(
a +

1
a

)
when arg {p(z0)} = −π

2
η, (2.5)

and
{p(z0)}

1
η = ±ia (a > 0). (2.6)

LEMMA 2.3 [9]. Let h(z) be convex(univalent) function in U and ω(z) be an
analytic function in U with Re {ω(z)} � 0 . If p(z) is analytic in U and p(0) = h(0) ,
then

p(z) + ω(z)zp′(z) ≺ h(z) (z ∈ U)

implies
p(z) ≺ h(z) (z ∈ U).

With the help of Lemma 2.1, we now derive

THEOREM 2.1. Let f (z) ∈ CS(β) and be given by (1.1). Then for β � 0 , we
have

|a3 − μa2
2| �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + 2(1 + β)2(1 − 2μ) if μ � β
2(1+β) ,

1 + 2β + 2(1−2μ)
1−β(1−2μ) if β

2(1+β) � μ � 1
2 ,

1 + 2β if 1
2 � μ � 2+β

2(1+β) ,

−1 + 2(1 + β)2(2μ − 1) if μ � 2+β
2(1+β) .

For each μ , there is a function in CS(β) such that equality holds in all cases.

Proof. For f (z) ∈ CS(β) , we may write

f (z) = g(z)pβ(z),

where g(z) is starlike and p(z) has positive real part. Let g(z) = z+b2z2 +b3z3 + · · · ,
and let p(z) be given as in Lemma 2.1. Then by equating coefficients, we obtain

a2 = b2 + βp1 and a3 = b3 + βp1b2 +
β(β − 1)

2
p2

1 + βp2,
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So, with x = 1 − 2μ , we have

(a3 − μa2
2) = b3 +

1
2
(x − 1)b2

2 + β
(

p2 +
1
2
(βx − 1)p2

1

)
+ βxp1b2. (2.7)

Since rotations of f (z) also belong to CS(β) , we may assume, without loss of gener-
ality, that a3 − μa2

2 is positive. Thus we now estimate Re (a3 − μa2
2) .

For some functions h(z) = 1 + k1z + k2z2 + · · · (z ∈ U) with positive real part,
we have zg′(z) = g(z)h(z) . Hence, by equating coefficients, b2 = k1 and b3 =
(k2 +k2

1)/2 . So, by using Lemma 2.1 and letting k1 = 2ρeiφ (0 � ρ � 1, 0 � φ � 2π)
and p1 = 2reiθ (0 � r � 1, 0 � θ � 2π) in (2.7), we obtain

Re (a3 − μa2
2) �1 − ρ2 + (1 + 2x)ρ2 cos 2φ + 2β((1 − r2)

+ βxr2 cos 2θ + 2xrρ cos(θ + φ)),
(2.8)

and we now proceed to maximize the right-hand side of (2.8). This function will be
denoted by ψ(x) whenever all parameters except x are held constant.

Assume that β/(2(1 + β)) � μ � 1/2 , so that 0 � x � 1/(1 + β) . Since the
expression −t2 + t2βx cos 2θ+2xt is the largest when t = x/(1−βx cos 2θ) , we have

ψ(x) � 1 + 2x + 2β
(

1 +
x2

1 − βx

)
= 1 + 2β +

2(1 − 2μ)
1 − β(1 − 2μ)

and with (2.8) this estiablishes the second inequality in the theorem. Equality occurs
only if

p1 =
2(1 − 2μ)

1 − β(1 − 2μ)
, p2 = b2 = 2, b3 = 3,

and the corresponding function f (z) is defined by

f (z) =
z

(1 − z)2

(
λ

1 + z
1 − z

+ (1 − λ )
1 − z
1 + z

)β

,

where

λ =
1 + (1 − 2β)(1 − 2μ)

2(1 − β(1 − 2μ)).
We now prove the first inequlity. Let μ � β/(2(1 + β)) , so that x � 1/(1 + β) .

With x0 = 1/(1 + β) , we see that

ψ(x) � ψ(x0) + 2(x − x0)(1 + β)2 � 1 + 2(1 + β)2(1 − 2μ).

Equality occurs only if p1 = p2 = b2 = 2, b3 = 3 , and the corresponding function
f (z) is defined by

f (z) =
z

(1 − z)2

(
1 + z
1 − z

)β

.

Let x1 = −1/(1 + β). We note that ψ(x1) � 1 + 2β . Then ψ(x) satiesfies

ψ(x) � ψ(x1) + 2|x − x1|(1 + β)2 � −1 + 2(1 + β)2(2μ − 1),
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for x � x1 , i.e., μ � (2 + β)/(2(1 + β)) . Equality occurs only if p1 = 2i, p2 =
−2, b2 = 2i, b3 = −3 , and the corresponding function f (z) is defined by

f (z) =
z

(1 − iz)2

(
1 + iz
1 − iz

)β

.

Finally, since
ψ(λx1) = λψ(x1) + (1 − λ )ψ(0) � 1 + 2β ,

for 0 � λ � 1 , we obtain ψ(x) � 1 + 2β for x1 � x � 0 , i.e., 1/2 � μ �
(2 + β)/2(1 + β) . Equality occurs only if p1 = b2 = 0, p2 = 2, b3 = 1 , and the
corresponding function f (z) is defined by

f (z) =
z(1 + z2)β

(1 − z2)1+β .

Therefore we complete the proof of Theorem 2.1.

Our next result is contained in

THEOREM 2.2. Let f (z) ∈ A . If∣∣∣∣∣arg
{(

f ′(z)
g′(z)

)α ( f (z)
g(z)

)β
}∣∣∣∣∣ <

π
2
δ (α > 0; β ∈ R; 0 < δ � 1)

for some g(z) ∈ K[A, B] , then ∣∣∣∣arg
(

f (z)
g(z)

)∣∣∣∣ <
π
2
η,

where η (0 < η � 1) is the solution of the equation:

δ =

⎧⎨
⎩ (α + β)η + 2

π α tan−1

(
η sin[ π2 {1−t(A,B)}]

1+A
1+B +η cos[ π2 {1−t(A,B)}]

)
(B �= −1)

(α + β)η (B = −1)
(2.9)

and

t(A, B) =
2
π

sin−1

(
A − B
1 − AB

)
. (2.10)

Proof. Let

p(z) =
f (z)
g(z)

and q(z) =
zg′(z)
g(z)

.

Then, by a simple calculation, we have(
f ′(z)
g′(z)

)α ( f (z)
g(z)

)β

= (p(z))α+β
(

1 +
1

q(z)
zp′(z)
p(z)

)α

.

Since g(z) ∈ K[A, B] , g(z) ∈ S∗[A, B] . If we let

q(z) = ρei π2 φ (z ∈ U),
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then it follows from (1.2) and (1.3) that{ 1−A
1−B < ρ < 1+A

1+B

−t(A, B) < φ < t(A, B) (B �= −1)

and { 1−A
2 < ρ < ∞

−1 < φ < 1 (B = −1),
where t(A, B) is defined by (2.10).

If there exists a point z0 ∈ U such that the conditions (2.1) and (2.2) are satisfied,
then (by Lemma 2.2) we obtain (2.3) under the restrictions (2.4–6).

At first, we suppose that

{p(z0)}
1
η = ia (a > 0).

For the case B �= −1 , we then obtain

arg

{(
f ′(z0)
g′(z0)

)α ( f (z0)
g(z0)

)β
}

� (α + β)
π
2
η + α tan−1

(
η sin[ π2 {1 − t(A, B)}]

1+A
1+B + η cos[ π2 {1 − t(A, B)}]

)

=
π
2
δ,

where δ and t(A, B) are given by (2.9) and (2.10), respectively. Similarly, for the case
B = −1 , we have

arg

{(
f ′(z0)
g′(z0)

)α ( f (z0)
g(z0)

)β
}

� (α + β)
π
2
η =

π
2
δ.

These evidently contradict the assumption of the theorem.

Next, in the case p(z0)
1
η = −ia (a > 0) , applying the same method as the above,

we also can prove the theorem easily. Therefore we complete the proof of Theorem 2.2.

By setting α = 1, β = 0, δ = 1, A = 1 and B = −1 in Theorem 2.2, we have

COROLLARY 2.1. Every close-to-convex function is close-to-star in U .

If we put g(z) = z in Theorem 2.2, then, by letting B → A (A < 1) , we obtain

COROLLARY 2.2.. If f (z) ∈ A and∣∣∣∣∣arg
{(

f ′(z)
)α ( f (z)

z

)β
}∣∣∣∣∣ < π

2
δ (α > 0; β ∈ R; 0 < δ � 1),

then
|arg {f ′(z)}| <

π
2
η,
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where η (0 < η � 1) is the solution of the equation:

δ = (α + β)η +
2
π
α tan−1(η).

For a function f (z) belonging to the class A , we define the integral operator Fc

as follows:

Fc(f ) := Fc(f )(z) =
c + 1

zc

∫ z

0
tc−1g(t)dt (c � 0 ; z ∈ U). (2.11)

For various interesting developments involving the operator (2.11), the reader may be
referred (for example) to the recent works of Miller and Mocanu [10] and Srivastava
and Owa [18].

Finally, we prove

THEOREM 2.3. Let f (z) ∈ A . If∣∣∣∣arg
(

f (z)
g(z)

− γ
)∣∣∣∣ <

π
2
δ (0 < γ � 1; 0 < δ � 1)

for some g(z) ∈ S∗[A, B] , then∣∣∣∣arg
(

Fc(f ))
Fc(g)

− γ
)∣∣∣∣ < π

2
η,

where Fc is given by (2.11) and η (0 < η � 1) is the solution of the equation:

δ =

{
η + 2

π tan−1
(

3 sin π
2 (1−t(A,B,c))

( 1+A
1+B +c)+η cos π

2 (1−t(A,B,c))

)
for B �= −1,

η for B = −1,

when

t(A, B, c) =
2
π

sin−1

(
A − B

1 − AB + c(1 − B2)

)
.

Proof. Let

p(z) =
1

1 − γ

(
Fc(f )
Fc(g)

− γ
)

and q(z) =
zF′

c(g)
Fc(g)

.

From the assumption for g(z) and an application of Briot-Bouquet differential equation
[10, p. 81], we see that Fc(g) ∈ S∗[A, B] . Using the equation

zF′
c(f )(z) + cFc(f )(z) = (1 + c)f (z)

and simplying, we obtain

1
1 − γ

(
f (z)
g(z)

− γ
)

= p(z) +
zp′(z)

q(z) + c
.

Here, we note that p(z) is analytic in U with p(0) = 1 and Re p(z) > 0 in U by
applying the assumption and Lemma 2.3 with ω(z) = 1/(q(z) + c) . Hence p(z) �= 0
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in U . The remaining part of the proof of Theorem 2.3 is similar to that of Theorem 2.2,
and so we omit it.

REMARK. From Theorem 2.3, we see easily that every function in CS(δ) (0 <
δ � 1) preserves the angles under the integral operator defined by (2.11).

By letting A = 1 − 2β (0 � β � 1), B = −1, δ = 1 in Theorem 2.3, we obtain

Corollary 2.3. If f (z) ∈ A and

Re

{
f (z)
g(z)

}
> γ (0 � γ < 1; z ∈ U),

for some g(z) such that

Re

{
zg′(z)
g(z)

}
> β (0 � β < 1; z ∈ U),

then

Re

{
Fc(f )
Fc(g)

}
> γ (0 � γ < 1; z ∈ U),

where Fc is given by (2.11).

If we take g(z) = z in Theorem 2.3, then, by letting B → A (A < 1) , we have

COROLLARY 2.4. If f (z) ∈ A and∣∣∣∣arg
(

f ′(z)
z

− γ
)∣∣∣∣ <

π
2
δ (0 � γ < 1; 0 < δ � 1),

then ∣∣∣∣arg
(

Fc(f )
z

− γ
)∣∣∣∣ <

π
2
η,

where Fc is given by (2.11) and η (0 < η � 1) is the solution of the equation:

δ = η +
2
π

tan−1

(
η

1 + c

)
.
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