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ON A PROBLEM BY K. NIKODEM

ATTILA GILÁNYI

(communicated by Zs. Páles)

Abstract. Concerning a problem raised by K. Nikodem, we prove the following statement. If G
is an Abelian group divisible by 2 , H is a Hilbert space and ε is a nonnegative real number
and a function f : G → H satisfies

‖f (x − y) − 2f (x) − 2f (y)‖ � ‖f (x + y)‖ + ε (x, y ∈ G),

then there exists a function g : G → H fulfilling

g(x + y) + g(x − y) − 2g(x) − 2g(y) = 0 (x, y ∈ G)

and

‖f (x) − g(x)‖ � 5
2
ε (x ∈ G).

Introduction

During the 38th International Symposiumon Functional Equations (Noszvaj, Hun-
gary, 2000), K. Nikodem [10] formulated the following stability problem. Suppose that
a function f : R → R satisfies the inequality

|f (x) + f (y)| � |f (x + y)| + ε (x, y ∈ R) (1)

with a fixed ε � 0 . Then does there exist a constant c and an additive function
a : R → R such that

|f (x) − a(x)| � cε (x, y ∈ R)?

Jacek Tabor and Józef Tabor [13] answered this question in the affirmative, showing that
if G is an abelian group, ε is a nonnegative real number and a function f : G → R

satisfies condition (1) for every x, y ∈ G , then there exists a uniquely determined
additive function a : G → R such that

|f (x) − a(x)| � 5ε (x ∈ G).

In their proof they used Gy. Maksa and P. Volkmann’s [9] result that the solutions of
inequality (1) with ε = 0 are the additive functions (cf. also [14], [8] and [7]).
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In the present note we consider the so-called square-norm equation

g(x + y) + g(x − y) − 2g(x) − 2g(y) = 0. (2)

Properties of this functional equation were studied by several authors. Classical results
about it can be found e.g. in [5], [6], [1] and [2, Chapter 11], some alternative equations
derived from it were examined in [11] and [12]. Here we investigate Nikodem’s problem
above for this equation and we prove, that if a function f : G → H defined on an abelian
group G divisible by 2 , mapping into a Hilbert space H satisfies the inequality

‖f (x − y) − 2f (x) − 2f (y)‖ � ‖f (x + y)‖ + ε (x, y ∈ G) (3)

for a nonnegative real number ε , then there exists a uniquely determined function
g : G → H fulfilling (2) for x, y ∈ G and

‖f (x) − g(x)‖ � 5
2
ε (x ∈ G).

We note that for the other thirteen inequalities derived from the square-norm equation
similarly to (3) the analogous statement, even with ε = 0 , is not valid (for some
counterexamples see [3, Bemerkung 2]).

Stability theorem

THEOREM. Let G be an Abelian group divisible by 2 , H be a Hilbert space and
ε be a nonnegative real number. If a function f : G → H satisfies

‖f (x − y) − 2f (x) − 2f (y)‖ � ‖f (x + y)‖ + ε (x, y ∈ G), (4)

then there exists a uniquely determined function g : G → H for which

g(x + y) + g(x − y) − 2g(x) − 2g(y) = 0 (x, y ∈ G) (5)

and

‖f (x) − g(x)‖ � 5
2
ε (x ∈ G). (6)

Proof. Writing x = y = 0 in (4), we obtain

‖f (0)‖ � ε
2

Replacing y by −x in (4), we get

‖f (2x) − 2f (x) − 2f (−x)‖ � ‖f (0)‖ + ε � 3
2
ε (x ∈ G). (7)

This inequality gives, with −x instead of x ,

‖f (−2x) − 2f (−x) − 2f (x)‖ � 3
2
ε (x ∈ G). (8)
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The addition of both sides of (7) and (8) implies

‖f (2x) − f (−2x)‖ � 3ε (x ∈ G),

therefore, by the divisibility of G by 2 ,

‖f (x) − f (−x)‖ � 3ε (x ∈ G).

This property, together with (7), yields

‖f (2x) − 4f (x)‖ � 15
2
ε (x ∈ G).

Using this property and the triangle inequality, we obtain∥∥∥∥f (x) − 1
4n

f (2nx)
∥∥∥∥ �

∥∥∥∥f (x) − 1
4
f (2x)

∥∥∥∥ +
∥∥∥∥1

4
f (2x) − 1

42
f (22x)

∥∥∥∥
+ · · ·+

∥∥∥∥ 1
4n−1

f (2n−1x) − 1
4n

f (2nx)
∥∥∥∥

�
(

1
4

+
1
42

+ · · · + 1
4n

)
15
2
ε

�
∞∑
k=1

1
4k

15
2
ε =

5
2
ε (9)

for each x ∈ G and for any positive integer n . Now, we start a so-called Hyers process
(cf. [4]). We define, for positive integers, the functions gn : G → H by

gn(x) =
1
4n

f (2nx) (x ∈ G).

Inequality (9) implies

‖gn(x) − gk(x)‖ � 1
4n

5
2
ε

for x ∈ G and for positive integers n, k such that n � k . Therefore, gn(x) is a Cauchy
sequence for each fixed x ∈ G . Thus, by the completeness of H , we can define the
function g : G → H by

g(x) = lim
n→∞ gn(x) (x ∈ G).

Inequality (9) yields that this function satisfies (6). Writing 2nx instead of x and 2ny
instead of y in (4), we get

‖f (2n(x − y)) − 2f (2nx) − 2f (2ny)‖ � ‖f (2n(x + y))‖ + ε (x, y ∈ G)

for any positive integer n . Dividing this inequality by 4n and letting n approach
infinity, we obtain

‖g(x − y) − 2g(x) − 2g(y)‖ � ‖g(x + y)‖ (x, y ∈ G).

It was proved in [3] that this inequality is equivalent to

g(x + y) + g(x − y) − 2g(x) − 2g(y) = 0 (x, y ∈ G),

which implies the existence part of our statement. The uniqueness of g is a well-known
and simple consequence of properties (5) and (6).
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