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EQUIVALENCE OF �{pn} NORMS AND SHIFT OPERATORS

ALEŠ NEKVINDA

(communicated by L. Pick)

Abstract. Given bounded mappings p, q : Z → [1,∞) (shortly p = {pn} , q = {qn} ) we can

consider Banach function spaces �{pn} and �{qn} with variable exponents. The necessary and
sufficient condition to the p , q for the equivalence of norms in Banach spaces �{pn} and �{qn}
is given. Moreover, considering shift operators Sk given by (Ska)n = an−k, n ∈ Z , we prove
that the norms ‖Sk‖�{pn}→�{pn} , k ∈ Z are uniformly bounded with respect to k if and only

if the norm in �{pn} is equivalent to a norm of a classical �r with some constant exponent r .

1. Introduction

The generalized Lebesgue space �{pn} , Lp(x) and the correspondingSobolev space
W1,p(x) have attracted more and more interest in recent years. We refer to [5] for the
establishment of the fundamental properties of these spaces, to [1] for some properties
of the norm on Lp(x) , to [3] and [8] for the density of smooth functions in W1,p(x) and to
[4] for inequalities of Sobolev type. Further motivation for the study of these spaces is
provided in [6, 7] by means of mathematical models of electrorheological fluids which
involve nonlinear systems of partial differential equations with coefficients of variable
rate of growth.

A crucial difference between Lp(x) and the classical Lebesgue spaces is that Lp(x)

is not, in general, invariant under translation (see [5], Ex. 2.9). Moreover, (see [5],
Theorem 2.10) there is a function f ∈ Lp(x) which is not p(x)−mean continuous
provided p is continuous and non-constant.

Consider a discrete analogue �{pn} of Lp(x) . In [2] it is proved that under certain
assumptions on {pn} the norms of shift operators given by

Ska = {(Ska)n}, (Ska)n = an−k, a = {an},
are uniformly bounded on �{pn} . Recall that {pn} need not be constant. As an
immediate consequence it is shown that the norms of averaging operators given by

(Tka)n =
1
k
(an + an+1 + . . . + an+k−1), a = {an} ∈ �{pn},

Mathematics subject classification (2000): 46E30, 26D15.
Key words and phrases: Generalized Lebesque space, variable exponent, shift operator.
The author was supported by MSM210000010.

c© � � , Zagreb
Paper MIA-05-72

711
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are uniformly bounded on �{pn} , too.
In this paper we prove the following assertion: The norms of Sk are uniformly

bounded on �{pn} for a bounded {pn} if and only if there exists r , 1 � r < ∞ , such
that the norms in �{pn} and the classical space �r are equivalent.

2. Preliminaries

Let Z denote the set of all integers and let M denote the set of all mappings
a : Z → R . We will also denote elements of M by a = {an} . Let

E = {p ∈ M; 1 � pn for all n ∈ Z}.
Denote by p∗ = sup{pn; n ∈ Z} for any p ∈ E and

B = {p ∈ E ; p∗ < ∞}.
Let the symbol χk stand for the characteristic function of the set {n ∈ Z;−k �

n � k} . Let ak, a ∈ M . Say that a � 0 if an � 0 for each n ∈ Z and ak ↗ a if
(ak)n ↗ an for each n ∈ Z .

We recall the definition of a Banach function space.

DEFINITION 2.1. A linear space X , X ⊂ M , is called a Banach function space if
there exists a functional ‖.‖X : M → [0,∞] with the norm property satisfying:

a ∈ X if and only if ‖a‖X < ∞;(i)
‖a‖X = ‖ |a| ‖X for all a ∈ M;(ii)

if 0 � ak ↗ a then ‖ak‖X ↗ ‖a‖X;(iii)

‖aχk‖X < ∞ for any k ∈ N;(iv)
for any k ∈ N there is a positive constant ck such that(v) ∑
|n|�k

|an| � ck‖a‖X for all a ∈ X.

DEFINITION 2.2. Let p ∈ E . Denote for a ∈ M the Luxemburg norm by

‖a‖{pn} = inf{λ > 0;
∑
n∈Z

∣∣∣an

λ

∣∣∣pn
� 1}.

Define the space �{pn} by

�{pn} = {a; ‖a‖{pn} < ∞}.
Remark that we will use the usual symbols �r and ‖a‖r in the case of constant mapping
r ∈ E . Recall that ‖a‖r = (

∑
n∈Z

|an|r)1/r in this case.

In [2], the following lemma was proved.

LEMMA 2.3. The space �{pn} is a Banach function space.
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DEFINITION 2.4. Let p , q ∈ E and let T be a linear mapping on M . We will say that
T is bounded from �{pn} into �{qn} if

‖T‖{pn→qn} := sup{‖Ta‖{qn}; ‖a‖{pn} � 1} < ∞.

It is not difficult to prove the next lemma.

LEMMA 2.5. Let p ∈ B . Then

�{pn} = {a;
∑
n∈Z

|an|pn < ∞}.

Let us prove some lemmas on linear operators.

LEMMA 2.6. Let p , q ∈ B and let T be a linear mapping which maps M into
itself. Let c be a positive constant such that∑

n∈Z

|an|pn � 1 =⇒
∑
n∈Z

|(Ta)n|qn � c.

Then
‖T‖{pn→qn} � max(1, c).

Proof. Assume ‖a‖{pn} � 1 . Then it is easy to verify that
∑
n∈Z

|an|pn � 1 and

according to the assumptions we have∑
n∈Z

|(Ta)n|qn � max(1, c).

Then

∑
n∈Z

∣∣∣∣(T
( a

max(1, c)

))
n

∣∣∣∣
qn

�
∑
n∈Z

∣∣∣∣ (Ta)n

max(1, c)

∣∣∣∣
qn

� 1
max(1, c)

∑
n∈Z

|(Ta)n|qn � c
max(1, c)

� 1.

This gives ‖T‖{pn→qn} � max(1, c) and the lemma follows.

LEMMA 2.7. Let p , q ∈ B and let T be a linear mapping which maps M into
itself. Let c > 1 be a positive number such that ‖T‖{pn→qn} � c . Then there exists an
a ∈ M such that ∑

n∈Z

|an|pn � 1 and
∑
n∈Z

|(Ta)n|qn � c.

Proof. Since ‖T‖{pn→qn} � c we have an a ∈ M such that for any λ < c it is

∑
n∈Z

|an|pn � 1 and
∑
n∈Z

∣∣∣∣(Ta)n

λ

∣∣∣∣
qn

> 1.
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Considering only 1 � λ < c , we can write

1 <
∑
n∈Z

∣∣∣∣(Ta)n

λ

∣∣∣∣
qn

� 1
λ

∑
n∈Z

|(Ta)n|qn ,

from which it follows that ∑
n∈Z

|(Ta)n|qn � c,

and the proof is finished.

LEMMA 2.8. Let p , q ∈ B and let T be a linear mapping from M into itself.
Assume that there exists a number c > 1 and a ∈ M such that∑

n∈Z

|an|pn � 1 and
∑
n∈Z

|(Ta)n|qn � c.

Then ‖T‖{pn→qn} � c1/q∗ .

Proof. Clearly, ‖a‖{pn} � 1 . Further

‖T‖{pn→qn} � ‖Ta‖{qn} = inf{λ > 0;
∑
n∈Z

∣∣∣∣(Ta)n

λ

∣∣∣∣
qn

� 1}.

Take λ < c1/q∗ . Then∑
n∈Z

∣∣∣∣(Ta)n

λ

∣∣∣∣
qn

>
∑
n∈Z

|(Ta)n|qn

cqn/q∗ �
∑
n∈Z

|(Ta)n|qn

c
� 1.

Consequently, ‖T‖{pn→qn} � c1/q∗ .

3. Key assertions

Given ε ∈ M we adopt the notation P(ε) = {n ∈ Z : εn > 0} .

DEFINITION 3.1. Let ε ∈ M . We say that ε ∈ P if there exists a real number
c > 0 such that ∑

n∈P(ε)

εnc
1/εn < ∞. (1)

Set

ν(ε) = inf
{1

c

(
1 +

∑
n∈P(ε)

εnc
1/εn

)
; c > 0

}
.

REMARK 3.2. It is easy to see that ε ∈ P if and only if ν(ε) < ∞ and |ε| ∈ P if
and only if ε ∈ P and −ε ∈ P .

LEMMA 3.3. Let K > 0 and α ∈ M be such that 0 < αn � K for n ∈ Z . Let
ε ∈ P . Then αε ∈ P .
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Proof. Let c satisfy (1). Without loss of generality we can assume c � 1 . Set
d = cK . Let us estimate ∑

n∈P(αε)

αnεnd
1/(αnεn).

Since 0 < αn � K , we have d = cK � cαn and using the simple fact that P(αε) = P(ε)
we obtain ∑

n∈P(αε)

αnεnd
1/(αnεn) =

∑
n∈P(ε)

αnεn(cK)
1/(αnεn)

� K
∑

n∈P(ε)

εn(cαn)1/(αnεn) = K
∑

n∈P(ε)

εnc
1/εn < ∞,

which finishes the proof.

LEMMA 3.4. Let ε ∈ P , b ∈ M satisfy ε < 1 , 0 � b . Then∑
n∈Z

bn � 1 ⇒
∑
n∈Z

b1−εn
n � 1 + e1/eν(ε).

Proof. Let c satisfy (1) and assume
∑
n∈Z

bn � 1 . Set

Z1 = {n ∈ Z; εn � 0},
Z2 = {n ∈ P(ε); bn > εnc

1/εn},
Z3 = {n ∈ P(ε); bn � εnc

1/εn}.
Since Z1 ,Z2 ,Z3 are pairwise disjoint and Z1 ∪ Z2 ∪ Z3 = Z , we can write∑

n∈Z

b1−εn
n =

∑
n∈Z1

b1−εn
n +

∑
n∈Z2

b1−εn
n +

∑
n∈Z3

b1−εn
n = I1 + I2 + I3. (2)

Note that, according to the assumptions, bn � 1 for all n ∈ Z .
Let n ∈ Z1 . Then 1 − εn � 1 and b1−εn

n � bn . Thus

I1 �
∑
n∈Z1

bn � 1. (3)

Let n ∈ Z2 . Then bn > εnc1/εn and, consequently, bn
−εn < (εnc1/εn)

−εn . Since
1 > εn > 0 , then ε−εn

n � e1/e and b1−εn
n � 1

c e
1/ebn . Thus

I2 � 1
c
e1/e

∑
n∈Z2

bn � 1
c
e1/e. (4)

Let n ∈ Z3 . Then 0 � bn � εnc1/εn , which gives b1−εn
n � εnc1/εn

(
εnc1/εn

)−εn �
1
c e

1/eεnc1/εn and

I3 � 1
c
e1/e

∑
n∈Z3

εnc
1/εn .
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This yields with (2), (3) and (4)∑
n∈Z

bn
1−εn � 1 +

1
c
e1/e(1 +

∑
n∈Z3

εnc
1/εn).

Consequently, ∑
n∈Z

bn
1−εn � 1 + e1/eν(ε).

LEMMA 3.5. Let ε 
∈ P , ε < 1 . Then there exists b ∈ M , 0 � b , such that∑
n∈Z

bn � 1 and
∑
n∈Z

b1−εn
n = ∞.

Proof. Assume first

0 < εn < 1 for all n ∈ Z. (5)

Set N0 = −1 . We will construct sequences {Nk}k∈N , Nk ∈ N , and {ck}k∈N , ck ∈
(0,∞) , satisfying for any k ∈ N

0 < ck � 1
2k

and
∑

Nk−1�|n|�Nk

εnck
1/εn = 1. (6)

According to the assumption on {εn} , we have∑
n∈Z

εnc
1/εn = ∞ for all c > 0. (7)

Thus, we can find N1 ∈ N such that
∑

|n|�N1

εn( 1
2 )

1/εn � 1 . Then there exists a number

0 < c1 � 1
2 such that ∑

|n|�N1

εnc1
1/εn =

∑
N0<|n|�N1

εnc1
1/εn = 1.

Assume that we have constructed positive integers N1 < N2 < · · · < Nk and real
numbers c1, c2, . . . , ck such that

0 < cr � 1
2r

and
∑

Nr−1<|n|�Nr

εncr
1/εn = 1.

for r = 1, 2, . . . , k . According to (7), we can find Nk+1 such that∑
Nk<|n|�Nk+1

εn

( 1
2k+1

)1/εn
� 1.

Then we can take ck+1 such that

0 < ck+1 � 1
2k+1

and
∑

Nk<|n|�Nk+1

εn(ck+1)1/εn = 1
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which proves (6).
Define b ∈ M by

bn = (εnck
1/εn)1/(1−εn) if Nk−1 < |n| � Nk.

Using (6) we have

∑
n∈Z

bn
1−εn =

∞∑
k=1

∑
Nk−1<|n|�Nk

εnck
1/εn =

∞∑
k=1

1 = ∞.

Let us estimate
∑
n∈Z

bn . Clearly, by (5) it is 0 < εnck
1/εn � 1 for n ∈ Z and k ∈ N .

Since 1 − ε2
n < 1 we obtain

bn =
(
εnck

1/εn
)1/(1−εn) �

(
εnck

1/εn
)1+εn

which implies with (6)

∑
n∈Z

bn �
∞∑
k=1

∑
Nk−1<|n|�Nk

(
εnck

1/εn
)1+εn

�
∞∑
k=1

1
2k

∑
Nk−1<|n|�Nk

(
εnck

1/εn
)
εn

εnck

�
∞∑
k=1

1
2k

∑
Nk−1<|n|�Nk

εnck
1/εn =

∞∑
k=1

1
2k

= 1.

Assume that (5) is not satisfied. Since ε /∈ P , the set P(ε) must be infinite.
Then there exists a one-to-one mapping π : P(ε) → Z . Set δn = επ−1(n) , n ∈ Z .
Then δ /∈ P and satisfies (5). Thus, there exists a ∈ M , a > 0 , such that∑

n∈Z

an � 1 and
∑
n∈Z

(an)1−δn = ∞.

Define

bn =
{

aπ(n) if n ∈ P(ε),
0 if n /∈ P(ε).

Now, it is easy to see that ∑
n∈Z

bn =
∑

n∈P(ε)

aπ(n) =
∑
k∈Z

ak � 1

and ∑
n∈Z

b1−εn
n =

∑
n∈P(ε)

a
1−δπ(n)

π(n) =
∑
k∈Z

a1−δk
k = ∞.

Thus, b satisfies the desired properties, which completes the proof.
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4. Equivalence of �{pn} norms

Let us denote by Id the identity operator on M and by �{pn} ↪→ �{qn} the
imbedding of �{pn} into �{qn} . Recall that �{pn} ↪→ �{qn} if ‖Id‖{pn→qn} < ∞ .

THEOREM 4.1. Let p , q ∈ B , p − q ∈ P . Then

�{pn} ↪→ �{qn}.

Proof. Let
∑
n∈Z

|an|pn � 1 . For each n ∈ Z set bn = |an|pn , εn = pn−qn
pn

. Then∑
n∈Z

bn � 1 and, according to Lemma 3.3, {εn} ∈ P . By Lemma 3.4, we have

∑
n∈Z

|an|qn =
∑
n∈Z

b1−εn
n � 1 + e−1/eν(ε)

and consequently, using Lemma 2.6

‖Id‖�{pn}↪→�{qn} � 1 + e−1/eν(ε) < ∞
which proves the lemma.

THEOREM 4.2. Let p , q ∈ B and let

�{pn} ↪→ �{qn}.

Then p − q ∈ P .

Proof. Assume p − q /∈ P . Set εn = pn−qn
pn

for n ∈ Z . According to Lemma
3.3, {εn} /∈ P . Moreover, εn < 1 for n ∈ Z . Lemma 3.5 gives the existence of
b ∈ M , 0 � b , such that ∑

n∈Z

bn � 1 and
∑
n∈Z

b1−εn
n = ∞.

Set an = b1/pn
n , n ∈ Z . Then ∑

n∈Z

apn
n =

∑
n∈Z

bn � 1

and ∑
n∈Z

aqn
n =

∑
n∈Z

b1−εn
n = ∞

which yields with Lemma 2.5 �{pn} 
↪→ �{qn} , and the proof is complete.

As an easy consequence of Remark 3.2 we have the following theorem.

THEOREM 4.3. Let p , q ∈ B . Then the norms in spaces �pn and �qn are equivalent
if and only if |p − q| ∈ P .
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5. Shift operators

In this sectionwe show that the uniformboundedness of shift operators is equivalent
to the existence of a real r � 1 such that the norms in the spaces �{pn} and �r are
equivalent.

Let p ∈ B be fixed in this section.

DEFINITION 5.1. For each k ∈ Z define a shift operator Sk from M into itself by

(Ska)n = an−k, a ∈ M, n ∈ Z.

Set
D = sup{‖Sk‖{pn→pn}; k ∈ Z}.

LEMMA 5.2. Let r ∈ [1,∞) be such that the norms in the spaces �{pn} and �r

are equivalent. Then D < ∞ .

Proof. Let c satisfy c−1‖a‖{pn} � ‖a‖r � c‖a‖{pn} for all a ∈ M . Let k ∈ Z

be arbitrary. Since ‖Sk‖{r→r} = 1 , we immediately obtain

‖Sk‖{pn→pn} � ‖Id‖{pn→r} ‖Sk‖{r→r} ‖Id‖{r→pn} � c2.

Thus, D � c2 , which finishes the proof.

Next, we will prove the converse implication.

LEMMA 5.3. Assume that

lim
n→∞ |pn+1 − pn| 
= 0.

Then either S1 or S−1 is unbounded on �{pn} .

Proof. According to the assumptions, there exists α > 0 such that |pn+1−pn| � α
for infinitely many positive integers n1 < n2 < . . . . Set

P = {n ∈ N; pn − pn+1 � α} and Z− = {n ∈ N; pn − pn+1 � −α}.
Then either P or Z− is infinite.

Assume first that P is infinite. Choose γ ∈ R such that

γ (1 − α
p∗

) � 1 < γ . (8)

Let π : P → N be one-to-one mapping and let a ∈ M be given by

an =

{
(π(n))−

γ
pn , n ∈ P,

0, n /∈ P.

By (8) we have ∑
n∈Z

(an)pn =
∑
n∈P

(π(n))−γ =
∞∑
k=1

k−γ < ∞
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and ∑
n∈Z

((S1a)n)pn =
∑
n∈Z

(an−1)pn =
∑
n∈Z

(an)pn+1 =
∑
n∈P

(π(n))−γ pn+1/pn

�
∑
n∈P

((π(n))−γ (pn−α)/pn) �
∑
n∈P

(π(n))−γ (1−α/p∗) �
∞∑
k=1

k−γ (1−α/p∗) = ∞.

Thus, S1 is unbounded.
If Z− is infinite then analogously S−1 is unbounded, which proves the lemma.

As an easy consequence we obtain the following lemma.

LEMMA 5.4. Let D < ∞ . Then

lim
n→∞ |pn+1 − pn| = lim

n→−∞ |pn+1 − pn| = 0.

LEMMA 5.5. Let lim
n→∞ |pn+1 − pn| = 0 . Denote p = lim inf

n→∞ pn , p = lim sup
n→∞

pn .

Let p < p . Then for any c > 1 there exists m ∈ Z such that ‖Sm‖{pn→pn} � c .

Proof. Let c > 1 . Assume p < p . Let δ = 1
3 (p − p) and {bn}n∈N , bn > 0 , be

a sequence satisfying

∞∑
n=1

(bn)p−δ � 1 and
∞∑
n=1

(bn)p+δ = ∞. (9)

Then there exists N ∈ N such that

N∑
n=1

(bn)p+δ � cp∗ . (10)

According to the assumption lim
n→∞ |pn+1−pn| = 0 , there are n1, n2 ∈ N , n2 > n1 +N ,

such that for any 1 � s � N it is p(n1+s) > p − δ and p(n2+s) < p + δ . Let a ∈ M
be given by

an =
{

bn−n1 if n ∈ {n1 + s; 1 � s � N},
0 if n /∈ {n1 + s; 1 � s � N}.

Set m = n2 − n1 . By (9), we have bn � 1 and consequently,

∑
n∈Z

(an)pn =
N∑

s=1

(bs)p(n1+s) �
N∑

s=1

(bs)p−δ � 1.

Using (10), we obtain∑
n∈Z

((Sma)n)pn =
∑
n∈Z

(an−m)pn =
∑
n∈Z

(an)pn+m =

N∑
s=1

(bs)p(n1+s+m) =
N∑

s=1

(bs)p(n2+s) �
N∑

s=1

(bs)p+δ � cp∗ .
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By Lemma 2.8 we have ‖Sm‖{pn→pn} � c , which proves the lemma.

As an easy consequence we obtain the following lemma.

LEMMA 5.6. Let D < ∞ . Then there exist limits lim
n→∞ pn and lim

n→−∞ pn.

LEMMA 5.7. Let D < ∞ . Then lim
n→∞ pn = lim

n→−∞ pn.

Proof. Set
pl = lim

n→−∞ pn, pr = lim
n→∞ pn. (11)

Let pl 
= pr . Without loss of the generality we can assume pl > pr . Let c > 1 be an
arbitrary real number. Set δ = 1

3 (pl − pr) . Let 0 < bk satisfy

∞∑
n=1

(bn)pl−δ � 1 and
∞∑
n=1

(bn)pr+δ = ∞.

According to (11) and pl > pr there is N1 ∈ N such that pn � pl − δ for n � −N1

and pn � pr + δ for n � N1 . Take N2 ∈ N such that N2 > N1 and

N2∑
n=N1

(bn)pr+δ � cp∗ .

Let a ∈ M be given by

an =
{

b−n if − N2 � n � −N1,

0 otherwise.

Set m = N1 + N2 . Since 0 � an � 1 for n ∈ Z we obtain

∑
n∈Z

(an)pn =
−N1∑

n=−N2

(b−n)pn =
N2∑

n=N1

(bn)p−n �
N2∑

n=N1

(bn)pl−δ � 1

and ∑
n∈Z

((Sma)n)pn =
∑
n∈Z

(an−m)pn =
∑
n∈Z

(an)pn+m =

−N1∑
n=−N2

(b−n)pn+m =
N2∑

n=N1

(bn)pm−n �
N2∑

n=N1

(bn)pr+δ � cp∗ .

Thus, by Lemma 2.8, ‖Sm‖{pn→pn} � c .

In what follows we use the following convention. Given a real number r we keep
the same symbol for the constant mapping r : Z → R given by rk = r for all k ∈ Z .

LEMMA 5.8. Let r = lim
n→−∞ pn = lim

n→∞ pn and let {pn − r} /∈ P . Then for any

c > 1 there is m ∈ Z such that ‖Sm‖{pn→pn} � c .
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Proof. Since {pn − r} /∈ P we have by Lemma 3.3 that {1 − r
pn
} /∈ P . Set

δn = 1 − r
pn

, n ∈ Z . By Lemma 3.5 there is a b ∈ M , 0 � bn , such that∑
k∈Z

bn � 1 and
∑
n∈Z

b1−δn
n = ∞. (12)

Given N ∈ N denote
Z(N) = {n ∈ Z;−N � n � N}. (13)

Let c > 1 be an arbitrary real number. Fix N ∈ N such that∑
n∈Z(N)

b1−δn
n � 2cp∗ .

By (12) we have 0 � bn � 1 and due to the fact that the set Z(N) is finite we can
choose ε > 0 with ∑

n∈Z(N)

b1−δn+ε/pn
n =

∑
n∈Z(N)

b(r+ε)/pn
n � cp∗ . (14)

Taking this ε we can find n1 ∈ Z such that pn < r+ε for all n � n1 . Set m = n1+N .
Then pn+m < r + ε for all n ∈ Z(N) and, by (14),∑

n∈Z(N)

b
p(n+m)/pn
n �

∑
n∈Z(N)

b(r+ε)/pn
n � cp∗ . (15)

Let a ∈ M be given by

an =
{

(bn)1/pn if n ∈ Z(N)
0 if n /∈ Z(N).

Then by (12) and (15) we obtain∑
n∈Z

(an)pn =
∑

n∈Z(N)

bn � 1

and ∑
n∈Z

((Sma)n)pn =
∑
n∈Z

(an−m)pn =
∑
n∈Z

(an)pn+m =
∑

n∈Z(N)

(bn)p(n+m)/pn � cp∗ .

Thus, due to Lemma 2.8, we have ‖Sm‖{pn→pn} � c , which proves the lemma.

LEMMA 5.9. Let r = lim
n→−∞ pn = lim

n→∞ pn and {r−pn} /∈ P . Then for any c > 1

there is m ∈ Z such that ‖Sm‖{pn→pn} � c .

Proof. The proof is analogous to that of Lemma 5.8 and therefore we will proceed
faster. Given c > 1 set δn = 1 − pn

r . Since {δn} /∈ P , there is bn ∈ M and N ∈ N

such that ∑
n∈Z

bn � 1 and
∑

n∈Z(N)

b1−δn
n � 2cp∗ (16)
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where Z(N) is given by (13). Take ε > 0 such that∑
n∈Z(N)

b(1−δn)r/(r−ε)
n =

∑
n∈Z(N)

bpn/(r−ε)
n � cp∗ . (17)

Find n1 ∈ Z satisfying pn � r − ε if n � n1 . Set m = n1 + N . Define a ∈ M
by

an =
{

(bn−m)1/pn if n − m ∈ Z(N)
0 if n − m /∈ Z(N).

Then by (16) and (17) we obtain∑
n∈Z

(an)pn �
∑
n∈Z

bn � 1

and ∑
n∈Z

((S−ma)n)pn =
∑
n∈Z

(an+m)pn =
∑

n∈Z(N)

(bn)pn/p(n+m) � cp∗ .

Thus, due to Lemma 2.8, we have ‖S−m‖{pn→pn} � c , which proves the lemma.

LEMMA 5.10. Let D < ∞ . Then there exists r ∈ [1,∞) such that the norms in
�{pn} and in �r are equivalent.

This lemma with Lemma 5.2 immediately give the following theorem.

THEOREM 5.11. The following statements are equivalent:

D < ∞;(i)

there is r ∈ [1,∞) such that the norms in �{pn} and in �r are equivalent.(ii)
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