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EQUIVALENCE OF /{"} NORMS AND SHIFT OPERATORS

ALES NEKVINDA

(communicated by L. Pick)

Abstract. Given bounded mappings p,q : Z — [1,00) (shortly p = {pn}, ¢ = {qn} ) we can
consider Banach function spaces 0P} and ¢19n} with variable exponents. The necessary and

sufficient condition to the p, g for the equivalence of norms in Banach spaces ¢ {pn} and elan}
is given. Moreover, considering shift operators S; given by (Spa), = a,_y, n € Z, we prove
that the norms [|S/l,¢p,} _, ;{pu} > k € Z are uniformly bounded with respect to & if and only

if the norm in ¢1Pn} is equivalent to a norm of a classical ¢" with some constant exponent r .

1. Introduction

The generalized Lebesgue space ¢{P7} | [7%¥) and the corresponding Sobolev space
W'») have attracted more and more interest in recent years. We refer to [5] for the
establishment of the fundamental properties of these spaces, to [1] for some properties
of the norm on 1™, to [3] and [8] for the density of smooth functions in W'»() and to
[4] for inequalities of Sobolev type. Further motivation for the study of these spaces is
provided in [6, 7] by means of mathematical models of electrorheological fluids which
involve nonlinear systems of partial differential equations with coefficients of variable
rate of growth.

A crucial difference between L) and the classical Lebesgue spaces is that 1)
is not, in general, invariant under translation (see [5], Ex. 2.9). Moreover, (see [5],
Theorem 2.10) there is a function f € IP® which is not p(x)—mean continuous
provided p is continuous and non-constant.

Consider a discrete analogue ¢7"} of /™). In [2] it is proved that under certain
assumptions on {p,} the norms of shift operators given by

Ska = {(Ska)n}> (Ska)n = dap—k,a = {an}7
are uniformly bounded on ¢1”} Recall that {p,} need not be constant. As an
immediate consequence it is shown that the norms of averaging operators given by

1
(Tka)n = %(an + a1+ ...+ an+k71)aa = {(1,,} € g{pn}’
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are uniformly bounded on ¢ P} | too.

In this paper we prove the following assertion: The norms of S; are uniformly
bounded on ¢{P} for a bounded {p,} if and only if there exists , 1 < r < oo, such
that the norms in ¢{?*} and the classical space ¢’ are equivalent.

2. Preliminaries

Let Z denote the set of all integers and let M denote the set of all mappings
a:7Z — R. We will also denote elements of M by a = {a,}. Let

E={peM;l1<p,foralln e Z}.
Denote by p* = sup{p,;n € Z} forany p € £ and
B={pe&p" <}

Let the symbol x* stand for the characteristic function of the set {n € Z;—k <
n < k). Let a*,a € M. Saythat a > 0 if @, > 0 foreach n € Z and &* / a if
(a* ) /" ay foreach nez.

We recall the definition of a Banach function space.

DEFINITION 2.1. A linear space X, X C M., is called a Banach function space if
there exists a functional ||.||x : M — [0, oo] with the norm property satisfying:

(i) a € X if and only if ||a||x < oo;

(ii) llallx = || lal ||x forall a € M;

(iii) if0 <d* / athen|a|x / |lalx;

(iv) llax*||x < oo forany k € N;

(v) for any k € N there is a positive constant ¢, such that

Z |an| < cillalx forall a € X.
|n|<k

DEFINITION 2.2. Let p € £. Denote for a € M the Luxemburg norm by

all ppy = inf{A > 0; Z <1

nez

an Pn

Define the space ("} by
¢ = {ai |lall g,y < o0}

Remark that we will use the usual symbols ¢ and ||||, in the case of constant mapping

r € £. Recall that ||al|, = (3 |a,|")"/" in this case.
ne
In [2], the following lemma was proved.

LEMMA 2.3. The space (17"} is a Banach function space.
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DEFINITION 2.4. Let p, g € £ and let T be a linear mapping on M . We will say that
T is bounded from ¢{Pn} into ¢{an}

T {py—qu = sup{l|Tall tg,3: llallpy < 1} < 00
It is not difficult to prove the next lemma.

LEMMA 2.5. Let p € B. Then

plen} — {a;z |an | < oo}

ne
Let us prove some lemmas on linear operators.

LEMMA 2.6. Let p, g € B andlet T be a linear mapping which maps M into
itself. Let ¢ be a positive constant such that

Y lanfm < 1= |(Ta),[” < ¢

nez nez

Then
||T||{Pn*>q;1} maX(l C)

Proof. Assume |a| (3 < 1. Then it is easy to verify that _ |a,[”” < 1 and
ne
according to the assumptions we have

Z |(Ta),|" < max(1,c).
nez
Then

qn

>

<3|t
max 1 c)
nez

1 c
S Ta),|" < ——— < L.
max(1,c) é‘( @)| max(1,c)

(T(m

This gives ||T{p,—q < max(1l,c) and the lemma follows.

LEMMA 2.7. Let p, g € B andlet T be a linear mapping which maps M into
itself. Let ¢ > 1 be a positive number such that ||T||(,,—q3 = c. Then there exists an

a € M such that
Z la,P" < 1 and Z [(Ta)n|™" = ¢
nez nez

Proof. Since ||T||{p,—qy = ¢ We have an a € M such that forany A < c itis

Z |a,|’" < 1 and Z

nez nez

(Ta),
A
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Considering only 1 < A < ¢, we can write

1<y

nez

(Ta), |*
A

from which it follows that

> _|(Ta)" >,

ne
and the proof is finished.

LEMMA 2.8. Let p, q € B andlet T be a linear mapping from M into itself.
Assume that there exists a number ¢ > 1 and a € M such that

> lanl < 1and > |(Ta),[” > ¢

nez nez
Then (T (p, gy = €'/

Proof. Clearly, |al|(,,} < 1. Further

| (Ta)
1Tl gy = 1Tl g,y = inf{A > 05
ne”z

Take A < ¢!/4" . Then

>

nez

[(Ta),|™ [(Ta),|™
Z can/q* Z c 21

nez

Consequently, [|T1|p, gy = /7" .

3. Key assertions

Given € € M we adopt the notation P(¢) = {n€ Z: g, > 0}.

DEFINITION 3.1. Let € € M. We say that € € P if there exists a real number

¢ > 0 such that
Z guc'/fn < 0. (1)
neP(e)

Set |
. - 1/en.
v(e)_mf{c(1+ Z nC ),c>0}.
neP(e)

REMARK 3.2. It is easy to see that € € P if and only if v(¢) < oo and |g| € P if
andonlyif ¢ € P and —e € P.

LEMMA 3.3. Let K > 0 and oo € M be such that 0 < o, < K for n € Z. Let
e € P. Then ae € P.
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Proof. Let c satisfy (1). Without loss of generality we can assume ¢ < 1. Set

d = X . Let us estimate
Z yEpd/ (@)
neP(ae)

Since 0 < o, < K, wehave d = cX < ¢% and using the simple fact that P(oce) = P(¢)

we obtain
o 1 &
E o€, dl/ nén) — E 06,18” /(Gnén)

neP(ae) neP(e
1/(omg
K E (X,; /(Onen) —K E gncl/en < o0,
neP(e neP(e)

which finishes the proof.

LEMMA 3.4. Let e € P, b € M satisfy € <1, 0< b. Then
Yoba<1=) b < L+eve),
nes ne”Z

Proof. Let c satisfy (1) and assume > b, < 1. Set
ne

7, ={n€Z;s <0},
Zy = {n € P(¢); b, > g,c'/®n},
Z3 = {n € P(¢); b, < &,c'/*}.
Since Z, ,7Z; ,7Z3 are pairwise disjoint and Z; U Z, U Z3 = 7., we can write
Sy =N b > by Y by =L+ L+ 1 (2)
neZ n€z n€s n€Zs

Note that, according to the assumptions, b, < 1 forall n € Z.
Let n € Z;. Then 1 — ¢, > 1 and b~ < b,. Thus

L<Y by<l (3)

neZy

Let n € Z,. Then b, > &,c'/% and, consequently, b, < (g,c'/ E")fgn. Since
1>g, >0, then & & < /¢ and b}~ < Le!/¢b, . Thus

1 1

Ig—l/eE b, < —e'/°. 4

et €L e @
n€Zy

Let n € Zs. Then 0 < b, < &,¢'/, which gives b}~ < g,c!/o (g,e!/on) ™™ <

%el/esncl/g" and
1
< el E gucl/on,
c

n€Zs



716 ALES NEKVINDA
This yields with (2), (3) and (4)
1
bnlfen gl - 1/e 1 2 1/en .
E +ce (1+ E g,c/)

nez neZs

Consequently,

> b < 1+ eev(e),
nez

LEMMA 3.5. Let € € P, € < 1. Then there exists b € M, 0 < b, such that

an <1 and Zb,ll_g” = 00.

ne”z nez

Proof. Assume first
0<eg <1 forall neZ. (5)
Set Nop = —1. We will construct sequences {Ni}ren, Ny € N, and {ci}ren, cx €
(0, 00), satisfying for any k € N
1
0<c < 5 and Z g,/ = 1. (6)
N <[n|<Ng

According to the assumption on {&,}, we have

> e =00 forallc > 0. (7)
nez

Thus, we can find Ny € N such that 8,,(%)1/ & > 1. Then there exists a number
[n|<N

0 < ¢; < 3 such that

Z Encll/gn = Z Encll/gn =1.

\n|<N1 No<‘n|<N1
Assume that we have constructed positive integers Ny < N, < --- < Ni and real
numbers ¢y, ¢a, ..., ¢y such that

1
0<c¢ < =— and Z g0/t = 1.

2}’
Ny—1<[n|<Ny
for r=1,2,...,k. According to (7), we can find N, such that
1 1/en
> a(zm) =1
Ni<|n]| <Ny
Then we can take ¢, such that

1 1
0< Ck+1 < W and Z 8”(Ck+1) /en =1
Ne<In| SNt
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which proves (6).
Define b € M by

b, = (Enckl/gn)l/(l_8"> if Ny < \n| <N

Using (6) we have

Zblsn_z Z Eckl/en_zl_

nez k=1 Np_,<|n|<N;

717

Let us estimate 3 b,. Clearly, by (5) itis 0 < g,c;'/é < 1 for n € Z and k € N.

n€Z
Since 1 — €2 < 1 we obtain

bﬂ = (’gnckl/gn)l/(lign) < (gnckl/gn)lJrg"

which implies with (6)

k=1 N <[n|<Ng k=1

Assume that (5) is not satisfied. Since € ¢ P, the set P(¢) must be infinite.
Then there exists a one-to-one mapping 7 : P(e) — Z. Set 8, = &;-1(,), n € Z.

Then 0 ¢ P and satisfies (5). Thus, there exists a € M, a > 0, such that

Define

Now, it is easy to see that

Zb—Zaﬂ Zak<1

nez neP(e kEZ
and s
_ l 1-§
g b=t = E ” E a, * =oo0.
n€z neP(e) kEZ

Thus, b satisfies the desired properties, which completes the proof.
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4. Equivalence of ¢{”*} norms

Let us denote by Id the identity operator on M and by ¢{n} — plan} the
imbedding of ¢{7*} into ¢{9} . Recall that 17} — ¢lan} if |[1d|(,,— gy < 0.

THEOREM 4.1. Let p, g€ B, p—q € P. Then

K{Pn} (SN K{Qn} .

Proof. Let 3 |a,["" < 1. Foreach n € Z set by = |ay|, & = P-4 Then
nez
> b, < 1 and, according to Lemma 3.3, {g,} € P. By Lemma 3.4, we have

nez
Do lanl =D b < L emVev(e)

ne nez
and consequently, using Lemma 2.6
-1
1 ptany < T+ V(e) < 00

which proves the lemma.

THEOREM 4.2. Let p, q € B and let

oot plan}
Thenp—q < P.

Proof. Assume p—q ¢ P. Set g, = ‘% for n € Z. According to Lemma

3.3, {&,} ¢ P. Moreover, ¢, < 1 for n € Z. Lemma 3.5 gives the existence of
be M, 0< b, suchthat

> by<1land Y b =c0.

ne neZ

Set a, = b\/"" . n € 7. Then

dodr=> b<1

nez nez

E q 75 1—e,
ann_ bn " =00

ne ne”z
which yields with Lemma 2.5 ¢{P} <& ¢{a:} "and the proof is complete.

and

As an easy consequence of Remark 3.2 we have the following theorem.

THEOREM4.3. Let p, q € BB. Then the norms in spaces ¢P" and (9" are equivalent
ifand only if |p—q| € P.
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5. Shift operators

In this section we show that the uniform boundedness of shift operators is equivalent
to the existence of a real > 1 such that the norms in the spaces ¢{”*} and ¢ are
equivalent.

Let p € B be fixed in this section.

DEFINITION 5.1. For each k € Z define a shift operator S; from M into itself by
(Ska)n = an—i, a € M, n € Z.

Set
D = Sup{”SkH{Pn*)Pn};k e Z}'

LEMMA 5.2. Let r € [1,00) be such that the norms in the spaces {12} and ¢
are equivalent. Then D < 0.

Proof. Let ¢ satisfy ¢~ !|al (1 < llall, < c[lal|g,,y forall a € M. Let k € Z
be arbitrary. Since ||Si||{,—,} = 1, we immediately obtain

1S/l gpu—p < 1l gp,—ry [1Sellgr—ry 1] gy < €

Thus, D < ¢?, which finishes the proof.
Next, we will prove the converse implication.
LEMMA 5.3. Assume that
nli>nol<> ‘anrl _pn‘ 7é 0.
Then either S| or S_; is unbounded on o}

Proof. According to the assumptions, there exists o« > 0 such that |p,1—p,| = o
for infinitely many positive integers n; < ny < ... . Set

P={neN;p,—puy1 =0} and Z_ ={n € N;p, —ppy1 < —a}.

Then either IP or Z_ is infinite.
Assume first that P is infinite. Choose ¥ € R such that

o
r(-—) <1<y (8)
p
Let 7 : P — N be one-to-one mapping and let a € M be given by

@y, aep,
"o, ngPp.

By (8) we have

Sy =Y () =3k < oo
k=1

nez nelP
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and

Z((Sla)n)pn = Z(Gn—l)pn = Z(an)p”“ = Z(n(n))_ypn+l/pn

ne”Z ne”Z nez nelP
22((()) ¥(pn— a/Pn>Z y(1—a/p™) >Zk v(l—a/p®) — .
nelP nelP

Thus, S; is unbounded.
If Z_ is infinite then analogously S_; is unbounded, which proves the lemma.

As an easy consequence we obtain the following lemma.

LEMMA 5.4. Let D < co. Then
lim [ppi1 —pal = lim_|ppy1 —pal = 0.
n—oo n——0o0

LEMMA 5.5. Let hm |Pni1 — pul = 0. Denote p= hm mfpn, p = limsupp,.

n—oo

Let p <p. Then for any c > 1 there exists m € Z such that 1Sl tpu—puy =

Proof. Let ¢ > 1. Assume p <p. Let 6 = %(1_771_7) and {b,},en, by > 0, be
a sequence satisfying

> (b)) < 1 and Z o — 9)

n=1 n=1

Then there exists N € N such that

N
PRCHSRET (10)
n=1
According to the assumption lim |Pnt1 —pn| = 0, there are ny,ny € N, np > ny +N,
such that for any 1 < N 1t 1s Pm+s) >P—0 and p(u,1) <p+96. Let a € M
be given by
bu_n, if ne{n+s1<s<N}
ap, = .
0 if né{n +s1<s< N}
Set m = ny — ny . By (9), we have b, < 1 and consequently,
N N B
Z(an)pn _ Z(bs)mnm) < Z(bs)P*S <1
nez s=1 s=1

Using (10), we obtain

Z((Sma)n)pn = Z(an,m)p’l = Z(an)Pwm _

ne”z nez nez
N N

Z(bs)l’(nuwm) — Z p()12+5 > Z p+§

s=1 s=1

4
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By Lemma 2.8 we have ||S,,|{,—p, = ¢, Which proves the lemma.
As an easy consequence we obtain the following lemma.

LEMMA 5.6. Let D < 0o. Then there exist limits lim p, and lim p,.
n— o0 n——0o0

LEMMA 5.7. Let D < co. Then lim p, = lim p,.

n—oo n——o0

Proof. Set
pr= lim p, p,= lim p,. (11)
n——0oo n—oo

Let p; # p,. Without loss of the generality we can assume p; > p,. Let ¢ > 1 be an
arbitrary real number. Set § = %(pl —pr). Let 0 < by satisfy

o0

Z(b P=% < 1and Z ypred —

n=1

According to (11) and p; > p, there is N; € N such that p, > p; — 6 for n < —N;
and p, < p, + 6 for n > N;. Take N, € N such that N, > N; and

N>

Z (bn)pr+5 >
n:N1
Let a € M be given by
—n if—N2<n<_Nl>
otherwise.

Set m = Ny + N, . Since 0 < a, < 1 for n € Z we obtain

—N; N, Na
Y@y =3 b =Yy <Y )<
nez n=—N, n=N, =N,

and

S (Sua)n)r =D (an-m)" = (an)mm =

nez nez nez
—N; N> Ny
*
Z (b_y)Prom = Z(bn)men > Z(bn)Pr+5 >
n=—N, n=N; n=N;

Thus, by Lemma 2.8, (S| {p,—pa = €

In what follows we use the following convention. Given a real number r we keep
the same symbol for the constant mapping r : Z — R given by ry = r forall k € Z.
LEMMA 5.8. Let r = lim p, = hm n pn and let {p, —r} ¢ P. Then for any

n——oo

¢ > 1 thereis m € Z such that ||Sm\|{pnﬂpn}
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Proof. Since {p, —r} ¢ P we have by Lemma 3.3 that {1 — =} ¢ P. Set
O,=1— 2L, neZ. By Lemma3.5 thereisa b € M, 0 < b,, such that

[7_11 5
D by<land > by =oo. (12)
kEZ nez

Given N € N denote
Z(N) ={n € Z;—N < n < N}. (13)

Let ¢ > 1 be an arbitrary real number. Fix N € N such that
> by 20"
n€Z(N)

By (12) we have 0 < b, < 1 and due to the fact that the set Z(N) is finite we can
choose € > 0 with

Z br1175,1+£/pn — Z b’(1r+£)/l7n > Cp*. (14)
n€Z(N) n€Z(N)

Taking this € we can find n; € Z suchthat p, < r+¢€ foralln > n;. Set m =n;+N.
Then p,m < r+ € forall n € Z(N) and, by (14),

i 5 ST e 5 " (15)
neZ(N) n€Z(N)
Let a € M be given by
(by) /P if n € Z(N)
"n:{o ifn ¢ Z(N).

Then by (12) and (15) we obtain
Z(aﬂ)pn = Z bn < 1
n€Z n€Z(N)

and

Z((Sma)n)Pn — Z(anim)Pn — Z(an)Per — Z (bn)P(ner)/Pn 2 Cp*_

nez nez nez n€Z(N)

Thus, due to Lemma 2.8, we have [|S, || 5,—p = ¢, Which proves the lemma.

LEMMAS5.9. Let r = lim p, = lim p, and {r—p,} ¢ P. Thenforany ¢ > 1

n——0o0

there is m € Z such that ||S||{p,—ps = €.

Proof. The proof is analogous to that of Lemma 5.8 and therefore we will proceed
faster. Given ¢ > 1 set 3, = 1 — 2. Since {5,} ¢ P, thereis b, € M and N € N
such that

Y by<land Y by >20” (16)

nez n€Z(N)
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where Z(N) is given by (13). Take € > 0 such that
Z bl On)r/(r—e) _ Z bﬁ,,/(r—s) > cp*. (17)
n€Z(N) n€Z(N

Find n; € Z satistying p, > r — € if n > n;. Set m = n; + N . Define a € M
by
{ (b)) /P ifn—m e Z(N)
ap = .
0 ifn—m¢ Z(N).
Then by (16) and (17) we obtain

D (@) <Y by <1

nez nez
and
S (Son@) = Sl = 3 (i > o
ne ne n€Z(N)

Thus, due to Lemma 2.8, we have [[S_,||{»,—p} = ¢, which proves the lemma.

LEMMA 5.10. Let D < oco. Then there exists r € [1,00) such that the norms in
0} and in 07 are equivalent.

This lemma with Lemma 5.2 immediately give the following theorem.
THEOREM 5.11. The following statements are equivalent:
(i) D<o

(i)  thereis r € [1,00) such that the norms in £} and in ¢ are equivalent.
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