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CHARACTERIZATIONS OF CHAOTIC ORDER

ASSOCIATED WITH THE MOND–SHISHA DIFFERENCE

JUN ICHI FUJII AND YUKI SEO

Abstract. Recently, Yamazaki showed new order preserving operator inequalities on the usual
order and the chaotic order by estimating the lower bound of the difference. Mond and Shisha
gave an estimtate of the difference of the arithmetic one to the geometric one, as a converse of the
arithmetic-geometric mean inequality. In this paper, by means of the Mond-Shisha difference,
we shall put another interpretation on a characterization of the chaotic order associated with the
difference by Yamazaki: If A > 0 , MI � B � mI > 0 and h = M

m > 1 , then log A � log B
is equivalent to

Ap + D(mp,Mp)I � Bp for all p > 0 ,

where

D(mp,Mp) = θMp + (1 − θ)mp − Mpθmp(1−θ) and θ = log

(
hp − 1
p log h

)
1

p log h
.

Moreover, inspired by Yamazaki’s work, we shall make an attempt to clarify distinction
between the usual order and the chaotic order by using the Furuta inequality. Among others,
we show the following parametrized order preserving operator inequalities associated with the
difference: If A > 0 and MI � B � mI > 0 , then for each δ ∈ [0, 1]

Aδ � Bδ if and only if Ap+δ +
1
mr C(mr+δ , Mr+δ ,

p + r + δ
r + δ

)I � Bp+δ for p, r > 0

where the case δ = 0 means the chaotic order.
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