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THE MEAN INEQUALITY OF RANDOM VARIABLES

MINGJIN WANG

(communicated by S. Puntanen)

Abstract. In this paper, we prove an inequality about random variables. The inequality extends
and compliments some existing results in the literature on Kantorovich type inequalities.

1. Introduction

The theory of means and their inequalities are very basic and important in many
fields including mathematics, statistics, physics, and economics. Motivated by different
concerns, there are numerous ways to introduce mean values. In probability and
statistics, the most commonly used mean is expectation. In this paper, we define
the other means of random variable, which are arithmetic mean and geometric mean of
randomvariable. We discuss the relationship among the three kinds of means of random
variable and prove a new mean inequality of random variables. As its application, we
point out several useful inequalities are special cases of the mean inequality of random
variables.

2. A new mean inequality of random variable

DEFINITION 1. We say that inf
x
{x : P(ξ � x) = 1} and sup

x
{x : P(ξ � x) = 1}

are respectively the supremum and infimum of random variable ξ . We simply express
inf
x
{x : P(ξ � x) = 1} and sup

x
{x : P(ξ � x) = 1} as sup ξ and inf ξ .

If ξ is bounded random variable, the sup ξ and inf ξ are finite valued and sole.

DEFINITION 2. If ξ is bounded,we define the arithmetic mean A(ξ) of the random
variable ξ by

A(ξ) =
sup ξ + inf ξ

2
.

If inf ξ � 0 as well, we define the geometric mean G(ξ) of the random variable ξ by

G(ξ) =
√

sup ξ · inf ξ .
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DEFINITION 3. If both ξ and η are bounded random variable, we define the
independent arithmetic mean A(ξη) of the product of two random variables ξ and η
by

A(ξη) =
sup ξ · supη + inf ξ · inf η

2
.

It is easy to see that if ξ and η are independent, the independent arithmetic mean
of the product of two random variables equals to the arithmetic mean of the product of
two random variables. That is A(ξη) = A(ξη) .

DEFINITION 4. If both ξ and η are bounded random variable; inf ξ � 0 , inf η �
0 , we define the independent geometric mean G(ξη) of the product of two random
variables ξ and η by

G(ξη) =
√

sup ξ · inf ξ · supη · inf η.

It is easy to see that if ξ and η are independent, the independent geometric mean
of the product of two random variables equals to the geometric mean of the product of
two random variables. That is G(ξη) = G(ξη) .

EXAMPLE 1. Suppose sup ξ = 5 , inf ξ = 3 , η = 1
ξ then

A

(
1
ξ
ξ
)

=
sup

1
ξ
· sup ξ + inf

1
ξ
· inf ξ

2
=

1
3
· 5 +

1
5
· 3

2
=

17
15

,

A

(
1
ξ
ξ
)

= A(1) =
sup 1 + inf 1

2
= 1,

G

(
1
ξ
ξ
)

=

√
sup

1
ξ
· inf

1
ξ
· sup ξ · inf ξ =

√
1
3
· 1
5
· 3 · 5 = 1,

G

(
1
ξ
ξ
)

= G(1) =
√

sup 1 · inf 1 = 1.

EXAMPLE 2. Suppose the joint probability distribution of (ξ ,η) is

P{(ξ ,η) = (1, 2)} =
1
7
, P{(ξ ,η) = (1, 3)} =

1
7
,

P{(ξ ,η) = (2, 1)} =
1
7
, P{(ξ ,η) = (2, 2)} =

1
7
, P{(ξ ,η) = (2, 3)} =

1
7
,

P{(ξ ,η) = (4, 1)} =
1
7
, P{(ξ ,η) = (4, 2)} =

1
7
,

then

A(ξη) =
sup ξ · supη + inf ξ · inf η

2
=

4 · 3 + 1 · 1
2

=
13
2

,

A(ξη) =
sup(ξη) + inf(ξη)

2
=

8 + 2
2

= 5,
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G(ξη) =
√

sup ξ · inf ξ · supη · inf η =
√

4 · 1 · 3 · 1 =
√

12,

G(ξη) =
√

sup(ξη) · inf(ξη) =
√

8 · 2 =
√

16 = 4.

LEMMA 2.1. Let ξ be bounded random variable, M = sup ξ , m = inf ξ , f (x)
be strictly increasing function on [m, M] . Then the infimum and supremum of random
variable f (ξ) are respectively f (m) and f (M) , if f (x) be strictly decreasing function
on [m, M] . Then the infimum and supremum of random variable f (ξ) are respectively
f (M) and f (m) .

Proof. We prove f (M) is the supremum of randomvariable f (ξ) only while f (x)
is strictly increasing function on [m, M] . Others are similar. Because M = inf

x
{x :

P(ξ � x) = 1} and P(ξ � x) is a right-continuous function for all x ∈ R , we have
M ∈ {x : P(ξ � x) = 1} . According to the definition of M , we conclude that

P(ξ � M) = 1, P(ξ � M′) < 1 for all M′ < M.

Thus,

P(f (ξ) � f (M)) = 1, P(f (ξ) � f (M′)) < 1 for all M′ < M.

That is sup f (ξ) = f (M) .

COROLLARY. Let ξ be bounded random variable, M = sup ξ , m = inf ξ , f (x)

be strictly monotone function on [m, M] . Then A(f (ξ)) =
f (M) + f (m)

2
.

Under the condition f (x) � 0 , x ∈ [m, M] , we have G(f (ξ)) =
√

f (M)f (m) .

Now we give the main result of this paper.

THEOREM 2.1. Let ξ and η be bounded random variable. If inf ξ > 0 and
inf η > 0 , then

Eξ 2 · Eη2

E2(ξη)
� A

2(ξη)

G
2
(ξη)

. (1)

Equality holds if and only if

P

{(
ξ
η

=
a
B

)
∪
(
ξ
η

=
A
b

)}
= 1 and G(η2)Eξ 2 = G(ξ 2)Eη2, (2)

where A = sup ξ , B = supη , a = inf ξ , b = inf η .

Proof. Obviously, under the condition of the theorem, a , A , b , B are all finite

numbers. Because of P
{(

ξ
η − a

B

)(
η
ξ − b

A

)
� 0
}

= 1 , so P{(Bξ − aη)(Aη− bξ) �
0} = 1 , therefor E(Bξ − aη)(Aη− bξ) � 0 . Expansion, we obtain

(BA + ab)E(ξη) � BbEξ 2 + AaEη2 � 2(BbAaEξ 2Eη2)
1
2 .
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That is
Eξ 2 · Eη2

E2(ξη)
� A

2(ξη)

G
2
(ξη)

.

Now we prove the equality holds ⇐⇒ P
{(

ξ
η = a

B

)
∪
(
ξ
η = A

b

)}
= 1 , and

G(η2)Eξ 2 = G(ξ 2)Eη2 .

(⇐) Suppose P
{(

ξ
η = a

B

)
∪
(
ξ
η = A

b

)}
= 1 and G(η2)Eξ 2 = G(ξ 2)Eη2 .

Since P
{(

ξ
η = a

B

)
∪
(
ξ
η = A

b

)}
= 1 , it follows that,

E(Bξ − aη)(Aη− bξ) = 0. (3)

From G(η2)Eξ 2 = G(ξ 2)Eη2 , we obtain

G(η2)Eξ 2 + G(ξ 2)Eη2 = 2
[
G(η2)Eξ 2G(ξ 2)Eη2

] 1
2 .

That is
BbEξ 2 + AaEη2 = 2(BbAaEξ 2Eη2)

1
2 . (4)

(3) and (4) follow that

Eξ 2 · Eη2

E2(ξη)
=

A
2(ξη)

G
2
(ξη)

.

(⇒) Next we suppose

Eξ 2 · Eη2

E2(ξη)
=

A
2(ξη)

G
2
(ξη)

.

First we notice that P{(Bξ − aη)(Aη − bξ) � 0} = 1 . According to the proof of the
inequality, we have

BbEξ 2 + AaEη2 = 2(BbAaEξ 2Eη2)
1
2 and E(Bξ − aη)(Aη− bξ) = 0.

That is

G(η2)Eξ 2 = G(ξ 2)Eη2 and P{(Bξ − aη)(Aη− bξ) = 0} = 1.

So

P

{(
ξ
η

=
a
B

)
∪
(
ξ
η

=
A
b

)}
= 1 and G(η2)Eξ 2 = G(ξ 2)Eη2.

COROLLARY 1. Let ξ be bounded random variable. If inf ξ > 0 , then

Eξ 2

E2(ξ)
� A2(ξ)

G2(ξ)
. (5)

Equality holds if and only if P{(ξ = a) ∪ (ξ = A)} = 1 and Eξ 2 = G(ξ 2) , where
A = sup ξ , a = inf ξ .

Proof. Obviously, under the condition of the corollary, a , A are all finite numbers.
Let η = 1 in (1) and (2), we have the result.
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COROLLARY 2. Let ξ be bounded random variable and inf ξ > 0 . Then we have

var ξ
E2(ξ)

� A2(ξ) − G2(ξ)
G2(ξ)

.

Equality holds if and only if P{(ξ = a) ∪ (ξ = A)} = 1 and Eξ 2 = G(ξ 2) .

Proof. Both sides of the inequality (5) minus 1 and notice var ξ = Eξ 2 − E2ξ ,
so we can have the results.

COROLLARY 3. Under the condition of the theorem 2.1, if ξ and η are indepen-
dent, we have inequality

Eξ 2 · Eη2

E2(ξη)
� A2(ξη)

G2(ξη)
.

Equality holds if and only if P
{(

ξ
η = a

B

)
∪
(
ξ
η = A

b

)}
= 1 and G(η2)Eξ 2 =

G(ξ 2)Eη2 .

Proof. If ξ and η are independent, we have A(ξη) = A(ξη) and G(ξη) =
G(ξη) . The result is obvious.

3. Some applications of the new inequality

Now we use the mean inequality of random variable to prove some inequalities.
First we give a lemma.

LEMMA 3.1. If inf ξ > 0 , let M′ < +∞ and m′ > 0 be respectively the
upper bound and lower bound of random variable ξ . That is P(ξ � M′) = 1 and
P(ξ � m′) = 1 . Then

A(ξ)
G(ξ)

�
m′ + M′

2√
m′M′ .

Proof. Because of

f (m′, M′) =

m′ + M′

2√
m′M′ =

1
2

(√
m′

M′ +

√
M′

m′

)
,

let t =
√

m′
M′ , then 0 < t � 1 and f (m′, M′) = g(t) = 1

2

(
t + 1

t

)
; g′(t) = 1

2

(
1 − 1

t2

)
.

So g(t) is strictly decreasing function on (0, 1] . For the maximum value of t is√
inf ξ
sup ξ

, we have g

(√
inf ξ
sup ξ

)
� g(t) . That is

A(ξ)
G(ξ)

�
m′+M′

2√
m′M′ .
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THEOREM 3.1. (Kantorovich inequalities [1]). Let A be a positive Hermitian
matrix, λ1 and λn are respectively the maximum eigenvalue and minimum eigenvalue
of A . Then, for all vector x �= 0

x∗Axx∗A−1x
(x∗x)2

� (λ1 + λn)2

4λ1λn
. (6)

If λ1 = λ2 = · · · = λk �= λk−1 , λn = λn−1 = · · · = λs �= λs−1 , equality holds if and
only if

x = c1ϕ1 + c2ϕ2 + · · · + ckϕk + dnφn + dn−1φn−1 + · · · + dsφs,

where ϕ1, · · · ,ϕk are unit orthonormal eigenvectors corresponding to eigenvalue
λ1 and φn, · · · , φs are orthonormal eigenvectors corresponding to eigenvalue λn .

c1, · · · , ck and dn, · · · , ds are any real numbers which satisfy
k∑

i=1
c2
i = 1

2 ,
n∑

i=s
d2

i = 1
2 .

Proof. Let λ1 � · · · � λn be eigenvalues of A . Λ = diag(λ1, · · · , λn) . There

is a Hermitian matrix U that satisfies A = U∗ΛU . Let y = Ux , pi =
|yi|2

n∑
i=1

|yi|2
,

i = 1, · · · , n . Then

x∗Axx∗A−1x
(x∗x)2

=
x∗U∗ΛUxx∗U∗Λ−1Ux

(x∗U∗Ux)2
=

y∗Λyy∗Λ−1y
(y∗y)2

=

(
n∑

i=1

λipi

)(
n∑

i=1

λ−1
i pi

)
.

The problem transfers to proof(
n∑

i=1

λipi

)(
n∑

i=1

λ−1
i pi

)
� (λ1 + λn)2

4λ1λn
, (7)

for all pi � 0 ,
n∑

i=1
pi = 1 .

Let l = max{i : pi > 0} , m = min{i : pi > 0} .
We define random variable ζ , p(ζ = λi) = pi , i = 1, · · · , n . Suppose ξ =

ζ 1
2 , η = ζ− 1

2 . Notice that λ1 and λn are the upper bound and lower bound of

random variable ζ and A(ξη) =
λ

1
2

l λ
− 1

2
m + λ

1
2

mλ
− 1

2
l

2
, G(ξη) =

√
λ

1
2

l λ
1
2

mλ
− 1

2
m λ− 1

2
l =

1 . According to the lemma, we have

A
2(ξη)

G
2
(ξη)

=

(
λ

1
2

l λ
− 1

2
m + λ

1
2

mλ
− 1

2
l

2

)2

=
(λl + λm)2

4λlλm
� (λ1 + λn)2

4λ1λn
.

Then the inequality (6) can be expressed by

Eξ 2 · Eη2

E2(ξη)
� (λ1 + λn)2

4λ1λn
.
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This is the result of the theorem 2.1. Now we prove the equality holds ⇐⇒ x
||x|| =

c1ϕ1 + c2ϕ2 + · · · + ckϕk + dnφn + dn−1φn−1 + · · · + dsφs , where ϕ1, · · · ,ϕk are
unit orthonormal eigenvectors corresponding to eigenvalue λ1 and φn, · · · , φs are unit
orthonormal eigenvectors corresponding to eigenvalue λn . c1, · · · , ck and dn, · · · , ds

are any real numbers which satisfy
k∑

i=1
c2
i = 1

2 ,
n∑

i=s
d2

i = 1
2 .

(⇐) Suppose
x

||x|| = c1ϕ1 + c2ϕ2 + · · ·+ ckϕk + dnφn + dn−1φn−1 + · · ·+ dsφs .

Under the conditions, the distribution of random variable ζ is p(ζ = λ1) = 1
2 ,

p(ζ = λn) = 1
2 . Let ξ = ζ 1

2 , η = ζ− 1
2 , we have

x∗Axx∗A−1x
(x∗x)2

=
Eξ 2 · Eη2

E2(ξη)
=

(λ1 + λn)2

4λ1λn
.

(⇒) Next, we suppose
x∗Axx∗A−1x

(x∗x)2
=

(λ1 + λn)2

4λ1λn
.

According to the proof of the theorem 2.1, we have

E
(
λ− 1

2
n ζ

1
2 − λ

1
2

n ζ− 1
2

)(
λ

1
2

1 ζ
− 1

2 − λ− 1
2

1 ζ
1
2

)
= 0, λ− 1

2
n λ− 1

2
1 Eζ = λ

1
2

n λ
1
2

1 Eζ−1.

Notice P
{(

λ− 1
2

n ζ 1
2 − λ

1
2

n ζ− 1
2

)(
λ

1
2

1 ζ− 1
2 − λ− 1

2
1 ζ 1

2

)
� 0
}

= 1 . So pi = 0 , ( i =

k+1, · · · , s−1 ). That is
x

||x|| = c1ϕ1+c2ϕ2+· · ·+ckϕk+dnφn+dn−1φn−1+· · ·+dsφs ,

where ϕ1, · · · ,ϕk are unit orthonormal eigenvectors corresponding to eigenvalue λ1

and φn, · · · , φs are unit orthonormal eigenvectors corresponding to eigenvalue λn .

Suppose
k∑

i=1
c2
i = w2 ,

n∑
i=s

d2
i = 1 − w2 .

According to λ− 1
2

n λ− 1
2

1 Eζ = λ
1
2

n λ
1
2

1 Eζ−1 . We obtain w2 = 1
2 .

In particular, if x = ϕ1+ϕ2√
2

, the equalities hold, where ϕ1 and ϕ2 are unit or-
thonormal eigenvalues corresponding to eigenvalue λ1 and λn . This is corresponding
to c1 = 1√

2
, ci = 0 , ( i = 2, · · · , k ) and dn = 1√

2
, dj = 0 , ( j = n − 1, · · · , s ).

THEOREM 3.2. (Greub-Rheinboldt inequality). Suppose A and B are tow
positive Hermitian matrices, AB = BA . Let λ1 � · · · � λn and μ1 � · · · � μn denote
the eigenvalues of A and B , respectively. Then, for all vector x �= 0

x∗A2xx∗B2x
(x∗ABx)2

� (λ1μ1 + λnμn)2

4λ1λnμ1μn
.

Proof. Since AB = BA , there is a Hermitian matrix U that satisfies A = U∗ΛU
and B = U∗MU , where Λ = diag (λ1, · · · , λn) and M = diag (μ1, · · · ,μn) . Let

y = Ux , pi =
|yi|2

n∑
i=1

|yi|2
, i = 1, · · · , n . We define the tow random variables by the joint



762 MINGJIN WANG

probability distribution of (ξ ,η) as follows

p{(ξ ,η) = (λi,μj)} =
{

pi, when i = j

0, when i �= j
.

Then the probability distribution of ξ is P(ξ = λi) = pi , ( i = 1, · · · , n ), and the
probability distribution of η is P(η = μi) = pi , ( i = 1, · · · , n ).

Let l = max{i : pi > 0} , m = min{i : pi > 0} . Notice that λ1 and λn are the
upper bound and lower bound of random variable ξ ; μ1 and μn are the upper bound
and lower bound of random variable η . We have

Eξ 2 =
n∑

i=1

λ 2
i pi, Eη2 =

n∑
i=1

μ2
i pi, E(ξη) =

n∑
i=1

λiμipi;

A(ξη) =
λlμl + λmμm

2
, G(ξη) =

√
λlμlλmμm;

A
2(ξη)

G
2
(ξη)

=

(
λlμl+λmμm

2

)2

(√
λlμlλmμm

)2 =
(λlμl + λmμm)2

4λlλlμmμm
� (λ1μ1 + λnμn)

2

4λ1λnμ1μn
.

We have

x∗A2xx∗B2x
(x∗ABx)2 =

x∗U∗Λ2Uxx∗U∗M2Ux
(x∗U∗ΛUU∗MUx)2 =

(y∗Λ2y)(y∗M2y)
(y∗ΛMy)2 =

(
y∗Λ2y
y∗y

)(
y∗M2y
y∗y

)
(

y∗ΛMy
y∗y

)2

=

(
n∑

i=1
λ 2

i pi

)(
n∑

i=1
μ2

i pi

)
(

n∑
i=1

λiμipi

)2 =
Eξ 2 · Eη2

E2(ξη)
� A

2(ξη)

G
2
(ξη)

=
(λlμl + λmμm)2

4λlλmμlμm
� (λ1μ1 + λnμn)2

4λ1λnμ1μn
.

That is
x∗A2xx∗B2x
(x∗ABx)2

� (λ1μ1 + λnμn)2

4λ1λnμ1μn
.

THEOREM 3.3. (Pólya-Szegö inequality [1]). Let ak > 0 , bk > 0 , ( k = 1 ,
2, · · · , n ), a = min ak , A = max ak , b = min bk , B = max bk . Then

(
n∑

k=1

a2
k

)(
n∑

k=1

b2
k

)
� 1

4

(√
AB
ab

+

√
ab
AB

)2( n∑
k=1

akbk

)2

.
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Proof. In inequality (1), let ξ have the distribution P(ξ = ak) = 1
n , k =

1, 2, · · · , n ; f (ak) = bk , k = 1, 2, · · · , n ; η = f (ξ) . Then

Eξ 2 =
1
n

n∑
k=1

a2
k , Eη2 =

1
n

n∑
k=1

b2
k , E(ξη) =

1
n

n∑
k=1

akbk;

A(ξη) =
AB + ab

2
, G(ξη) =

√
AaBb.

The inequality (1) becomes

1
n

(
n∑

k=1
a2

k

)
·
(

1
n

n∑
k=1

b2
k

)
(

1
n

n∑
k=1

akbk

)2 �

(
AB + ab

2

)2

(√
AaBb

)2 .

That is (
n∑

k=1

a2
k

)(
n∑

k=1

b2
k

)
� 1

4

(√
AB
ab

+

√
ab
AB

)2( n∑
k=1

akbk

)2

.

We have the result.

The author thanks for the referees’ suggestions.
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