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THE MEAN INEQUALITY OF RANDOM VARIABLES

MINGIIN WANG

(communicated by S. Puntanen)

Abstract. In this paper, we prove an inequality about random variables. The inequality extends
and compliments some existing results in the literature on Kantorovich type inequalities.

1. Introduction

The theory of means and their inequalities are very basic and important in many
fields including mathematics, statistics, physics, and economics. Motivated by different
concerns, there are numerous ways to introduce mean values. In probability and
statistics, the most commonly used mean is expectation. In this paper, we define
the other means of random variable, which are arithmetic mean and geometric mean of
random variable. We discuss the relationship among the three kinds of means of random
variable and prove a new mean inequality of random variables. As its application, we
point out several useful inequalities are special cases of the mean inequality of random
variables.

2. A new mean inequality of random variable

DEFINITION 1. We say that inf{x: P(§ <x) =1} and sup{x: P(& >x) =1}
are respectively the supremum and infimum of random variable &. We simply express
inf{x: P(§ <x)=1} and sup{x: P(§ >x) =1} as sup& and inf .

If £ is bounded random variable, the sup & and inf & are finite valued and sole.

DEFINITION 2. If & is bounded, we define the arithmetic mean A(&) of the random

variable & by £ int s
sup ¢ +1n
A(g) = WPE e

If inf & > 0 as well, we define the geometric mean G(&) of the random variable & by

G(&) = /sup& -inf&.
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DEFINITION 3. If both & and 7 are bounded random variable, we define the
independent arithmetic mean A(EN) of the product of two random variables & and 7
by

—_ sup ¢ - supn +inf ¢ - inf
A(En) = ps pn2 §-infn

It is easy to see thatif & and 1 are independent, the independent arithmetic mean
of the product of two random variables equals to the arithmetic mean of the product of
two random variables. Thatis A(£n) = A(En).

DEFINITION 4. If both & and 1 are bounded random variable; inf E>0,infn>
0, we define the independent geometric mean G(En) of the product of two random
variables £ and 7 by

G(En) = \/sup & - inf € - sup i - inf n.

It is easy to see that if £ and 7 are independent, the independent geometric mean
of the product of two random variables equals to the geometric mean of the product of
two random variables. Thatis G(&n) = G(&€n).

EXAMPLE 1. Suppose sup§ =5, inf& =3, n = ¢ then
1 P 1 1
sup— -supé +inf - -infé . —.
7 15 __ ¢ g _3 St3 322
3 2 2 15
1 supl +infl
(58) = =221 ,

(L L ing ] infe— /L. L 552
G(E§>—\/supg-mfg-sup&qnf&— 3°3 3-5=1,

G(é&) =G(1) = /supl-inf1 = 1.

EXAMPLE 2. Suppose the joint probability distribution of (£, 1) is
P{(&,n) =(1,3)} =
P{(¢,m) =(2,2)} =
P{(&,n) = (42)} =

P{(&,m) = (1,2)} =
P{(:m) = (2 1)} =
P{(&m) =4 1)}=

then

Nl= Q= Q-
B B

i supE-supn+inf&-infn 4-3+1-1 13
A(En) = 5 S

_sup(én) +inf(En)  8+2
A(&n) = 5 =— =5
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5(577): \/Supé-inf«g~supn-infn:\/4.1.3,1:\/ﬁ7
G(En) = \/sup(En) - inf(En) = V8- 2= V16 =4.

LEMMA 2.1. Let & be bounded random variable, M = sup&, m = inf &, f(x)
be strictly increasing function on [m,M]. Then the infimum and supremum of random
variable f (§) are respectively f (m) and f (M), if f (x) be strictly decreasing function
on [m,M]. Then the infimum and supremum of random variable f (£) are respectively

f (M) and f (m).

Proof. We prove f (M) is the supremum of random variable f (¢) only while f (x)
is strictly increasing function on [m, M]. Others are similar. Because M = inf{x :
P(é& < x) =1} and P(& < x) is a right-continuous function for all x € R, we have
M € {x: P(& < x)=1}. According to the definition of M, we conclude that

PE<M)=1, PE<M)<1 forall M <M.
Thus,
P& <fM)=1, PF&) <fM))<1 forall M <M.

That is supf (&) =f(M).

COROLLARY. Let & be bounded random variable, M = sup&, m = inf &, f(x)

be strictly monotone function on [m,M]. Then A(f (§)) = w .

Under the condition f (x) > 0, x € [m,M], we have G(f (§)) = /f (M)f (m).
Now we give the main result of this paper.

THEOREM 2.1. Let & and 1 be bounded random variable. If inf& > 0 and
infn > 0, then
EE-En* _ A (En) (1)
E2en) G (e

Equality holds if and only if
§ a E A 2\ 2 2\ 2
P == |Ul|lZ=— =1 d G EE =G E 2
{(n 5)"\n=% ad GOP)EE = GEEY, ()
where A =sup&, B=supn, a=inf&, b =infn.
Proof. Obviously, under the condition of the theorem, a, A, b, B are all finite

numbers. Because of P { (% - %) (g — %) > 0} =1,s0 P{(BE —an)(An—5b&) >

0} = 1, therefor E(BE — an)(An — b&) > 0. Expansion, we obtain

(BA + ab)E(E7) > BbEE? + AaEn® > 2(BbAaEE’EN?)?.
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That is

oy
38

un

3

QI D>I
L3S}

\.‘\N

Now we prove the equality holds <= P{(% —) (% = %)} =1, and
G(m)EE* = G(E%)En’.
(<) Suppose P { (% = %) U ( = %)} =1 and G(n?)EE? = G(EY)EN*.

Since P{(g = %) U (% = %)} = 1, it follows that,
E(BE — an)(An —bg) = 0. 3)
From G(n?)EE? = G(E?)En?, we obtain

G()EE* + G(EXEN® = 2 [G(?)EE G(E)EN?]* |

=

That is
BbEE® + AaEN? = 2(BbAGEE*EN?)?. (4)
(3) and (4) follow that
EE En® _A'(én)
EXEn)  Gen)

(=) Next we suppose
EE*-En* A
E¢En) &
First we notice that P{(BE — an)(An — b&) >
inequality, we have

(&n)
(En)
0} = 1. According to the proof of the

BbEE? + AaEN? = 2(BbAaEE*EN?): and E(BE — an)(An — bE) = 0.
That is
G(n*)EE* = G(E)En®* and P{(BE —an)(An—b&) =0} = L.

p { (% _ %) U (% _ %)} =1 and G(P)EE® = G(EYEN.

COROLLARY 1. Let & be bounded random variable. If inf & > 0, then
552 2(5 )
< . 5
EE < ) )
Equality holds if and only if P{(& = a) U (& = A)} = 1 and EE?* = G(&?), where
A=supé&, a=infé&.

Proof. Obviously, under the condition of the corollary, a, A are all finite numbers.
Let n =1 in (1) and (2), we have the result.
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COROLLARY 2. Let & be bounded random variable and inf & > 0. Then we have

vare _ (&) - G(E)
2E ST @@

Equality holds if and only if P{(é = a) U (£ = A)} =1 and EE*> = G(&?).

Proof. Both sides of the inequality (5) minus 1 and notice var& = EE? — E%&,
so we can have the results.

COROLLARY 3. Under the condition of the theorem 2.1, if & and 1 are indepen-
dent, we have inequality

Equality holds if and only if P{(% %) U( = %)} = 1 and G(W*)EE?* =
G(E*)En*.

Proof. If & and n are independent, we have A(En) = A(én) and G(én) =
G(&n) . The result is obvious.

3. Some applications of the new inequality

Now we use the mean inequality of random variable to prove some inequalities.
First we give a lemma.

LEMMA 3.1. If infé > 0, let M’ < +o0o and m' > 0 be respectively the
upper bound and lower bound of random variable &. Thatis P(E < M') = 1 and
P& >m')=1. Then

m + M
AG) . 2
G(&) = Vm'M
Proof. Because of
m +M’

f(m' M) =

l\)l'—‘

s (fie )

lett:./M,,then0<t Land f(m' M) =g(t) =3 (t+1): () =3(1—%).
So g(#) is strictly decreasing function on (0,1]. For the maximum value of ¢ is
. f . f A m/+Ml
inf& , we have g inf & < g(t). Thatis (£) < —==—.
sup & sup ¢ G(©&) ~ VmM
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THEOREM 3.1. (Kantorovich inequalities [1]). Let A be a positive Hermitian
matrix, Ay and A, are respectively the maximum eigenvalue and minimum eigenvalue
of A. Then, for all vector x # 0

x*Axx* A x o (A + An)?

. 6

(x*x)2 T 4MA, (6)
IfAM=A==MhxF M1, Iy = A1 = = Ay # As_1, equality holds if and
only if

x=ci1@1+ @+ + kP + dpp + dp—1Op—1 + - - - + ds§s,
where @1,--- , @ are unit orthonormal eigenvectors corresponding to eigenvalue
A oand @, --- , @ are orthonormal eigenvectors corresponding to eigenvalue A, .
k n

c1, ¢k and dy,- - ,dy are any real numbers which satisfy "¢} =1, S d? = 1.

i=1
Proof. Let Ay > --- > A, be eigenvalues of A. A = diag(A,---,A,). There
Iyll2

Z Iy,-\z
=1

is a Hermitian matrix U that satisfies A = U*AU. Let y = Ux, p; =
i=1,---,n. Then
XAxx*A"x o x U*AUxx*U*AflUx *Ayy —ly ‘
= - Afl i A"_l i .
(X*X)Z (x*U*Ux)Z ( Z Di ; i P
The problem transfers to proof

n - n . (7L1+7tn)2
(S20) (S < S5 "

forall p; >0, sz—l

Let [ = max{z pi >0}, m=min{i: p; > 0}.
We define random variable §, p({ = A4;) = p;, i = 1,--- ,n. Suppose & =
{3, m = (7. Notice that A; and A, are the upper bound and lower bound of

Aln FEh Gem) = \ataian Tt =

random variable { and A(&n) =

1. According to the lemma, we have

Lol L1\ 2
A(En) _ (A,WM,M ) _ Oat ) (it
62 (é —n) 2 4Allm 411 An

Then the inequality (6) can be expressed by

EE? - EW? < (A1 + An)?
Ez(én) = 4Alln




THE MEAN INEQUALITY OF RANDOM VARIABLES 761

This is the result of the theorem 2.1. Now we prove the equality holds <= Hx—H =
X
@+ @+ -+ P + dydy + dyo1@p—1 + -+ + d@s, Where @y, -, @ are
unit orthonormal eigenvectors corresponding to eigenvalue A; and ¢, - - - , ¢ are unit
orthonormal eigenvectors corresponding to eigenvalue A,. ¢y, ,cx and dy,, - -+ , ds
k n
are any real numbers which satisfy Y c¢? =1, Y d? = 1.
i=1 i=s
T =@t @+t @+ dp O+ dp1Gpr + -+ s

[ 1xl]
Under the conditions, the distribution of random variable § is p(§ = A4;) =

p(C:/l,,):%.Leté:C%, n={_"%, wehave

XAxx A x B EE? EW? (A + An)?
(ex)2 0  EXEm) 4k
X*Axx* A" x N (4 +A")2
(=) Next, we suppose (x*x)2  4AA,

According to the proof of the theorem 2.1, we have

(<) Suppose

1
2

E(AC et (et anie) =00 A ta e = adatEc

Notice P{(xﬁgé ijg*%) (Aﬁg*% 7/1;%@%) >o} — 1. Sop =0, (i =

X

k+17 T >S_1 ) Thatis w =101 +02§02+' : '+ck(pk+dn¢n+dn—l¢n—l+' . +db¢s s
where @y, --- , @ are unit orthonormal eigenvectors corresponding to eigenvalue A;
and ¢,,---,¢s are unit orthonormal eigenvectors corresponding to eigenvalue A, .

k n
Suppose >_cZ =w?, Y d? =1—w?.
i=1 i=s
11 11
According to A, A, *E{ = A2 AFE{™!'. We obtain w? = 1.

2
In particular, if x = (plffw , the equalities hold, where ¢; and ¢, are unit or-

thonormal eigenvalues corresponding to eigenvalue A; and A, . This is corresponding
to ¢ :%, ¢i=0,(i=2,---,k)and dn:%, d=0,(j=n—1,---,s).

THEOREM 3.2. (Greub-Rheinboldt inequality). Suppose A and B are tow
positive Hermitian matrices, AB=BA. Let Ay > --- > A, and Uy > --- > W, denote
the eigenvalues of A and B, respectively. Then, for all vector x # 0

x*A2xx*B%x o (A + Apltn)?
(x*ABx)2 " 4l Agpy

Proof. Since AB = BA, there is a Hermitian matrix U that satisfies A = U*AU
and B = U*MU, where A = diag (A, ,A,) and M = diag (uy,--- ,U,). Let
|Yi\2

y=Ux, pj=———,i=1,--- ,n. We define the tow random variables by the joint

> il
i=1
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probability distribution of (&, 1) as follows

pi, when i=j

plEn = G ={ 07 W

Then the probability distribution of & is P(é = A;) = p;i, (i = 1,--- ,n), and the
probability distribution of n is P(n = w;)) =p;i, (i=1,--- ,n).

Let / = max{i : p; > 0}, m = min{i : p; > 0}. Notice that A; and A, are the
upper bound and lower bound of random variable £; u; and u, are the upper bound
and lower bound of random variable 1. We have

EE =Y Api, EW =) uipi, E(En) =) kup;
i=1 i=1 i=1

e A +Am m =

A(gn) = %a G(én) =V A’l“lxm“m;

2
_ A 1 +Amﬂlm
Aem _ (#5) Gt dm _ G s

2 2 X
G (én) ( Al.ullm.um) 21 o AA Ay Wy

We have

y*AZy y*MZy
XA B x*UCANUxx*UMPUx  (y*A%y)(y*M?%y) | y*y y*y

(x*ABx)?  (x*U*AUU*MUx)>  (y*AMy)? Y AMy\?
o )
_ (;A’z ’) <i§31“i2pi) _EE-En’ _ A (En)
(Samw)  TE0cen

(A'l.ul + Afm.um)z < (1’1“1 + An.un)z
4Allm My, D 4Afl A'n.ul Uy '

That is
x*A2xx*B%x o (A + Anlty)?
(x*ABx)2 = 4AAufh iy

THEOREM 3.3. (Polya-Szego inequality [1]). Let ay > 0, by > 0, (k = 1,
2,---,n), a=minayg, A = maxa;, b =minb;, B = maxby. Then

() (B) <5 (V5 R) (Sen)
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Proof. In inequality (1), let & have the distribution P(§ = @) = 1, k =
1,2, ,n; fax) =bx, k=1,2,--- ;n; n=f(&). Then

1 Iy Iy
EE =-% a, En’=-3"0, EEm =3 ab
k=1 k=1 k=1

_ AB + ab

The inequality (1) becomes

n n AB +ab\?
HEa) (2a) (221)
k=1 k=1 < )

(o) )

2
n n 1 AB ab n
2 2
Pl <=2+ = b

We have the result.

G(én) = VAaBb.

That is
2
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