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OPERATOR MONOTONE FUNCTIONS OF SEVERAL VARIABLES

FRANK HANSEN

(communicated by T. Ando)

Abstract. We propose a notion of operator monotonicity for functions of several variables, which
extends the well known notion of operator monotonicity for functions of only one variable. The
notion is chosen such that a fundamental relationship between operator convexity and operator
monotonicity for functions of one variable is extended also to functions of several variables.

1. Introduction and main result

The notion of operator convexity for functions of several variables has been ex-
tensively studied in the literature. The first step is to define the functional calculus for
functions of several variables. This can be done in the following way:

Let I1, . . . , Ik be real intervals and let f : I1×· · ·× Ik → R be a Borel measurable
and essentially bounded function. Let x = (x1, . . . , xk) be a k -tuple of bounded self-
adjoint operators on Hilbert spaces H1, . . . , Hk such that the spectrum of xi is contained
in Ii for i = 1, . . . , k. We say that such a k -tuple is in the domain of f . If

xi =
∫

Ii

λi Ei(dλi) i = 1, . . . , k

is the spectral decomposition of xi, we define

f (x) =
∫

I1×···×Ik

f (λ1, . . . , λk) E1(dλ1) ⊗ · · · ⊗ Ek(dλk) (1)

as a bounded self-adjoint operator on H1 ⊗ · · · ⊗ Hk, cf. [4, 1, 9]. If the Hilbert
spaces are of finite dimension, then the above integrals become finite sums, and we may
consider the functional calculus for arbitrary real functions. This construction extends
the definition of Korányi [9] for functions of two variables and have the property that

f (x1, . . . , xk) = f 1(x1) ⊗ · · · ⊗ f k(xk),

whenever f can be separated as a product f (t1, . . . , tk) = f 1(t1) · · · f k(tk) of k functions
each depending on only one variable.
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REMARK 1.1. One might consider the functional calculus only for commuting
operators x1, . . . , xk on a single Hilbert space H and define

f com(x1, . . . , xk) =
∫

f (λ1, . . . , λk) dE(λ1, . . . , λk)

as an operator on H, where E is the product measure of the commuting spectral
measures associated with each of the operators. This approach was suggested by Pe-
dersen and Lieb in [12, 10]. Our definition in equation (1) can then be written as

f (x1, . . . , xk) = f com(x1 ⊗ 1 ⊗ · · · ⊗ 1, . . . , 1 ⊗ · · · ⊗ 1 ⊗ xk)

for arbitrary non-commuting operators x1, . . . , xk on H. If however the operators
x1, . . . , xk do commute, then there is a self-adjoint projection P on H ⊗ · · · ⊗ H
with range isomorphic to H such that f com(x1, . . . , xk) = Pf (x1, . . . , xk)P. The two
approaches are thus essentially equivalent.

Once the functional calculus is defined, we say that a function f : I1×· · ·×Ik → R
is operator convex, if f is continuous and the operator inequality

f (λx + (1 − λ )y) � λ f (x) + (1 − λ )f (y) ∀λ ∈ [0, 1]

holds for all k -tuples of self-adjoint operators x = (x1, . . . , xk) and y = (y1, . . . , yk) in
the domain of f acting on any Hilbert spaces H1, . . . , Hk. The definition is meaningful
since also the k -tuple λx + (1 − λ )y is in the domain of f . We say that f is matrix
convex of order (n1, . . . , nk), if the operator inequality holds for operators on Hilbert
spaces of finite dimensions (n1, . . . , nk).

The aim of this paper is to define the notion of an operator monotone function also
for functions of several variables. The definition should, when restricted to functions of
only one variable, be a simple reformulationof the ordinary condition for such functions.
We also want the following theorem to be valid.

THEOREM 1.2. Let f : [0,α1[× · · · × [0,αk[→ R be a continuous real function.
The following statements are equivalent:

(i) f is operator convex, and f (r1, . . . , rk) � 0 if ri = 0 for some i = 1, . . . , k.
(ii) The function g : ]0,α1[× · · ·×]0,αk[→ R defined by setting

g(r1, . . . , rk) = r−1
1 · · · r−1

k f (r1, . . . , rk)

is operator monotone.

The theorem above is known to be valid for functions of one variable [7, 2.4
Theorem], and the extension to functions of several variables seems to be very natural.
Our notion of operator monotonicity for functions of several variables is ultimately
given in Definition 2.14, but it depends on intermediary notions and results given in
Definition 2.1, Definition 2.2, Definition 2.3, and Corollary 2.13.

Before proceedingwith this programme,we shall briefly discuss other possible def-
initions of operator monotonicity for functions of several variables, which we ultimately
have rejected.
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PROPOSITION 1.3. Let f be a non-negative continuous function of k variables
defined in the first quadrant [0,∞[× · · · × [0,∞[. If f is matrix concave of order
(n1, . . . , nk), then

0 � xi � yi i = 1, . . . , k ⇒ f (x) � f (y)

for arbitrary k -tuples of positive semi-definite matrices x = (x1, . . . , xk) and y =
(y1, . . . , yk) of order (n1, . . . , nk).

Proof. Let the appropriate k -tuples of matrices be chosen and take λ ∈ [0, 1[. We
set zi = λ (1 − λ )−1(yi − xi) and notice that

λyi = λxi + (1 − λ )zi and zi � 0

for i = 1, . . . , k. Since f is matrix concave and non-negative we obtain

f (λy) � λ f (x) + (1 − λ )f (z) � λ f (x)

where z = (z1, . . . , zk). The result now follows by letting λ tend to one. �
The converse is not true. The function of two variables f (r1, r2) = r1r2 is indeed

matrix increasing of any order in the sense that

f (x1, x2) = x1 ⊗ x2 � y1 ⊗ y2 = f (y1, y2)

for 0 � x1 � y1 and 0 � x2 � y2, but it is not even concave as a real function.
However, the situation is quite different for functions of only one variable. Mathias [11]
showed that a function, defined on the positive real half-line and matrix monotone of
order n, is matrix concave of order [n/2]. It follows from [3, 7], although not stated
explicitely, that a function, defined on the real positive half-line and matrix monotone of
order 4n , is matrix concave of order n . We may reproduce Mathias’ result by proving
that a function f : [0,∞[→ R , matrix monotone of order 2n , is matrix concave of
order n , and the following very simple argument will do. Let x1, x2 be positive definite
matrices of order n and notice [3] that to a given ε > 0 the inequality

V∗
(

x1 0
0 x2

)
V =

1
2

(
x1 + x2 x2 − x1

x2 − x1 x1 + x2

)
�
(

2−1(x1 + x2) + ε 0
0 λ

)

is valid for a sufficiently large λ > 0, where

V =
√

2
2

(
1 −1
1 1

)

is a unitary block matrix of order 2n × 2n. We then obtain

1
2

(
f (x1) + f (x2) f (x2) − f (x1)
f (x2) − f (x1) f (x1) + f (x2)

)
= V∗

(
f (x1) 0

0 f (x2)

)
V

= f

(
V∗
(

x1 0
0 x2

)
V

)
�
(

f (2−1(x1 + x2) + ε) 0
0 f (λ )

)
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and consequently
f (x1) + f (x2)

2
� f

(
x1 + x2

2
+ ε
)

from which the statement follows by letting ε tend to zero, since matrix monotone
functions of order greater or equal to two are continuous (even continuously differen-
tiable).

We shall finally mention that Korányi and others have considered a notion of
operator monotonicity for functions of two variables defined on I2 where I =]− 1, 1[.
The notion is closely connected to the theory of analytic functions of several variables,
and in particular to a generalization of the Riesz-Herglotz formula [9, 13]. According
to this theory the function

g(r1, r2) =
r1r2

(1 + r1)(1 + r2)
r1, r2 ∈]0, 1[

would be called operator monotone, but this is not consistent with Theorem 1.2 as the
continuous function

f (r1, r2) =
r2
1 r2

2

(1 + r1)(1 + r2)
r1, r2 ∈ [0, 1[

is not operator convex. Korányi’s notion of operator monotononicity leads to no sig-
nificant distinction between functions of one and two variables as does the theory of
operator convex functions.

2. Decompositions and monotonicity

DEFINITION 2.1. Let x be a positive invertible operator acting on a Hilbert
space H. We say that an l -tuple (y1, . . . , yl) of positive invertible operators on H is a
decomposition of x (of length l) if

y1 + · · · + yl = x. (2)

The l -tuple a = (a1, . . . , al) defined by setting ai = x−1/2y1/2
i for i = 1, . . . , l is

called the associated unitary row.

We recall [1] that an l -tuple a = (a1, . . . , al) of operators on a Hilbert space H is
said to be a unitary row, if there exists a unitary operator U on the direct sum of l copies
of H such that (a1, . . . , al) is the first row in the l × l block matrix representation of
U. The equation

a1a
∗
1 + · · · + ala

∗
l = 1 (the identity on H) (3)

is a necessary, but in general not sufficient condition for a = (a1, . . . , al) to be a unitary
row.

The row a = (a1, . . . , al) associated with the decomposition of x in the definition
above satisfy condition (3) since

a1a
∗
1 + · · · + ala

∗
l = x−1/2y1x

−1/2 + · · · + x−1/2ylx
−1/2 = 1.
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Araki and the author proved that an l -tuple a = (a1, . . . , al) satisfying condition (3) is
a unitary row, if dim ker ai = dimker a∗i for at least one i = 1, . . . , l. The condition is
trivially satisfied in this case since the operators a1, . . . , al are invertible. The l -tuple
a = (a1, . . . , al) in Definition 2.1 is therefore indeed a unitary row. We notice that
yi = a∗i xai for i = 1, . . . , l.

DEFINITION 2.2. An index is a pair (l, j) of integers, where l � 2 and 0 � j �
l − 1.

DEFINITION 2.3. Let f : ]0,α1[× · · ·×]0,αk[→ R be a real function. The
constants α1, . . . ,αk may be plus infinity.

(i) We say that f is operator monotone of index (l, j), if f is continuous and

diag
(
f (yt11, . . . , ytkk)

)
|t|=j (mod l)

� f (x1, . . . , xk)Llk−1 (∗)

for every k -tuple x = (x1, . . . , xk) in the domain of f acting on any Hilbert
spaces H1, . . . , Hk and all decompositions

y1i + · · · + yli = xi i = 1, . . . , k

where Llk−1 is the lk−1 × lk−1 block matrix with the unit operator on the tensor
product H1⊗· · ·⊗Hk in each entry. The index t is a multi-index of the form t =
(t1, . . . , tk), where ti = 1, . . . , l for i = 1, . . . , k and weight |t| = t1 + · · ·+ tk.

(ii) We say that f is matrix monotone of index (l, j) and order (n1, . . . , nk), if the
same inequalities (∗) are satisfied for operators acting only on Hilbert spaces
H1, . . . , Hk of finite dimensions (n1, . . . , nk).

It is not difficult to establish that a continuous function is operator monotone of
index (l, j), if and only if it ismatrixmonotone of index (l, j) and all orders (n1, . . . , nk).
The proof follows a suggestion by Löwner as reported by Bendat and Sherman [2,
Lemma 2.2] and can easily be adapted to the present situation. Furthermore, consider
k -tuples (m1, . . . , mk) and (n1, . . . , nk) such that mi � ni for i = 1, . . . , k. If a
function is matrix convex of order (n1, . . . , nk) then it is also matrix convex of order
(m1, . . . , mk). Likewise, if a function is matrix monotone of index (l, j) and order
(n1, . . . , nk), then it is also matrix monotone of index (l, j) and order (m1, . . . , mk).

PROPOSITION 2.4. A continuous real function f : ]0,α[→ R is operator monotone
of any given index (l, j), if and only if it is operator monotone. Likewise is f matrix
monotone of any given index (l, j) and order n, if and only if it is matrix monotone of
order n.

Proof. If we set k = 1, the inequality (∗) reads

f (yl1) � f (x1) for j = 0

f (yj1) � f (x1) for j = 1, . . . , l − 1

where y11 + · · · + yl1 = x1 is a decomposition of x1. These inequalities are trivially
satisfied if f is operator monotone. If on the other hand one of the above inequalities
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are satisfied for a given index (l, j) and all decompositions of any x1 in the domain
of f , then f is operator monotone. The same reasoning applies to matrix monotone
functions. �

PROPOSITION 2.5. Let f : ]0,α1[× · · · ×]0,αk[→ R be a continuous function and
consider for i = 1, . . . , k the function of one variable

gi(ri) = f (r1, . . . , rk)

obtained from f by keeping all variables fixed except the ith variable. If f is operator
monotone of some index (l, j), then gi is operator monotone. Likewise, if f is matrix
monotone of some index (l, j) and order (n1, . . . , nk), then gi is matrix monotone of
order ni.

Proof. Let f be operator monotone (or matrix monotone) of some index (l, j) and
assume i = 1. We choose operators y � x in the domain of g1. For some sufficiently
small ε > 0 we set

ym1 =
{

y m = j + 1

ε + (x − y)/(l − 1) m 
= j + 1
and ym2 =

{
r2 m = l − 1

ε m 
= l − 1,

and for p = 3, . . . , k

ymp =
{

rp m = l

ε m 
= l.

We thus have the decompositions y11 + · · · + yl1 = x + (l − 1)ε and

y1p + · · · + ylp = rp + (l − 1)ε p = 2, . . . , l.

By only considering the index t = (j + 1, l − 1, l, . . . , l) with length |t| = j (mod l) in
(∗), we obtain the inequality

f (y, r2, . . . , rp) � f (x + (l − 1)ε, r2 + (l − 1)ε, . . . , rl + (l − 1)ε)

from which the inequality g1(y) � g1(x) is derived by letting ε tend to zero. �
To further investigate the content of Definition 2.3 we set k = 2 and l = 2. The

inequality (∗) then reads(
f (y11, y12) 0

0 f (y21, y22)

)
�
(

f (x1, x2) f (x1, x2)
f (x1, x2) f (x1, x2)

)
j = 0

and (
f (y11, y22) 0

0 f (y21, y12)

)
�
(

f (x1, x2) f (x1, x2)
f (x1, x2) f (x1, x2)

)
j = 1

for decompositions y11 + y21 = x1 and y12 + y22 = x2. This is so because the solutions
to the equation |t| = t1 + t2 = j (mod2) are the multi-indices (1, 1), (2, 2) for j = 0
and (1, 2), (2, 1) for j = 1. If we set k = 2 and l = 3 the inequality (∗) reads⎛

⎝ f (y11, y22) 0 0
0 f (y21, y12) 0
0 0 f (y31, y32)

⎞
⎠ � f (x1, x2)

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠ j = 0
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for decompositions y11 + y21 + y31 = x1 and y12 + y22 + y32 = x2. This is so
because the solutions to the equation |t| = t1 + t2 = 0 (mod3) are the multi-indices
(1, 2), (2, 1), (3, 3). Finally, if we set k = 3 and l = 2 the inequality (∗) reads⎛

⎜⎜⎝
f (y11, y12, y23) 0 0 0

0 f (y11, y22, y13) 0 0
0 0 f (y21, y12, y13) 0
0 0 0 f (y21, y22, y23)

⎞
⎟⎟⎠

� f (x1, x2, x3)L4 j = 0

for decompositions y11 + y21 = x1, y12 + y22 = x2 and y13 + y23 = x3. This is so
because the solutions to the equation |t| = t1 + t2 + t3 = 0 (mod2) are the multi-indices
(1, 1, 2), (1, 2, 1), (2, 1, 1) and (2, 2, 2).

THEOREM 2.6. Let f : ]0,α1[× · · ·×]0,αk[→ R be a continuous, real function.
If the function g : ]0,α1[× · · · ×]0,αk[→ R defined by

g(r1, . . . , rk) = r−1
1 · · · r−1

k f (r1, . . . , rk)

is matrix monotone of some index (l, j) and order (l, . . . , l), then f is convex.

Proof. We consider the simple root β = e2πi/l of the polynomial Xl − 1 and set

u = diag (βp)l
p=1

which is a unitary matrix acting on C l. We introduce projections

Pj = (u∗)jPuj j = 1, . . . , l

where P defined by

P =
1
l

⎛
⎜⎝

1 · · · 1
...
. . .

...
1 · · · 1

⎞
⎟⎠

is a one-dimensional projection acting on C l. We notice that

Pj =
1
l

(
β (q−p)j

)l

p,q=1
j = 1, . . . , l

and consequently
l∑

j=1

Pj =
1
l

⎛
⎝ l∑

j=1

β (q−p)j

⎞
⎠

l

p,q=1

= El

where El is the l × l identity matrix. The projections P1, . . . , Pl are thus mutually
orthogonal. Let x1i, . . . , xli be real numbers in ]0,αi[ and set

xi = diag
(
xji

)l

j=1
i = 1, . . . , k.
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The k -tuple ((1+ lε)x1, . . . , (1+ lε)xk) is for a sufficiently small ε > 0 in the domain
of g. We define

yji = x1/2
i (Pj + ε)x1/2

i j = 1, . . . l; i = 1, . . . , k

and calculate

y1i + · · · + yli = x1/2
i

⎛
⎝ l∑

j=1

(Pj + ε)

⎞
⎠ x1/2

i = (1 + lε)xi i = 1, . . . , k.

Since g is matrix monotone of index (l, j) and order (l, . . . , l) it follows that

diag
(
g(yt11, . . . , ytkk)

)
|t|=j (mod l)

� g((1 + lε)x1, . . . , (1 + lε)xk)Llk−1

or inserting g(r1, . . . , rk) = r−1
1 · · · r−1

k f (r1, . . . , rk) that

diag
(
(y−1/2

s11 ⊗ · · · ⊗ y−1/2
skk

)f (ys11, . . . , yskk)(y
−1/2
s11 ⊗ · · · ⊗ y−1/2

skk
)
)
|s|=j (mod l)

� c−k
ε

(
(x−1/2

1 ⊗ · · · ⊗ x−1/2
k )f (cεx1, . . . , cεxk)(x

−1/2
1 ⊗ · · · ⊗ x−1/2

k )
)
|t|=|s|=j (mod l)

where cε = 1 + lε. Multiplying to the left and to the right with the self-adjoint matrix

diag
(
y1/2
s11 ⊗ · · · ⊗ y1/2

skk

)
|s|=j (mod l)

we obtain

diag
(
f (ys11, . . . , yskk)

)
|s|=j (mod l)

� c−k
ε

(
(y1/2

t11 x−1/2
1 ⊗ · · · ⊗ y1/2

tkk
x−1/2
k )f (cεx1, . . . , cεxk) ×

(x−1/2
1 y1/2

s11 ⊗ · · · ⊗ x−1/2
k y1/2

skk
)
)
|t|=|s|=j (mod l)

.

We introduce for si = 1, . . . , l and i = 1, . . . , k the l × l matrix

Qsii =
1

x1i + · · · + xli

(
x1/2
pi x1/2

qi β (q−p)si
)l

p,q=1
.

It is an easy calculation to show that Qsii is a projection and that

x1/2
i Psi x

1/2
i =

x1i + · · · + xli

l
Qsii si = 1, . . . , l; i = 1, . . . , k.

Multiplying the above inequality from the left and the right with the projection

diag
(
Qs11 ⊗ · · · ⊗ Qskk

)
|s|=j (mod l)
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and letting ε tend to zero we thus obtain

f

(
x11 + · · · + xl1

l
, . . . ,

x1k + · · · + xlk

l

)
diag

(
Qs11 ⊗ · · · ⊗ Qskk

)
|s|=j (mod l)

�
(

x11 + · · · + xl1

l

)−1

· · ·
(

x1k + · · · + xlk

l

)−1

×(
(x1/2

1 Pt1 ⊗ · · · ⊗ x1/2
k Ptk)f (x1, . . . , xk)(Ps1x

1/2
1 ⊗ · · · ⊗ Pskx

1/2
k )
)
|t|=|s|=j (mod l)

(4)

where we used that

Qtii y
1/2
tii x−1/2

i →
(

x1i + · · · + xli

l

)1/2

Qtii x
−1/2
i =

(
x1i + · · · + xli

l

)−1/2

x1/2
i Pti

as ε tends to zero. We notice that (4) is an lk−1 × lk−1 block matrix inequality of
lk × lk matrices. Let us in order to examine the inequality calculate the entry[

x1/2
1 Pt1 ⊗ · · · ⊗ x1/2

k Ptk

]
pq

=
[
x1/2
1 Pt1

]
p1q1

· · ·
[
x1/2
k Ptk

]
pkqk

= x1/2
p11 l−1β (q1−p1)t1 · · · x1/2

pkk
l−1β (qk−pk)tk = l−kβ (q−p)·t x1/2

p11 · · · x
1/2
pkk

for p = (p1, . . . , pk) and q = (q1, . . . , qk) with p1, . . . , pk, q1, . . . , qk = 1, . . . , l. We
proceed to calculate the entry[

(x1/2
1 Pt1 ⊗ · · · ⊗ x1/2

k Ptk)f (x1, . . . , xk)(Ps1x
1/2
1 ⊗ · · · ⊗ Pskx

1/2
k )
]

pq

=
l∑

u1,...,uk=1

l−kβ (u−p)·t x1/2
p11 · · · x

1/2
pkk

[
f (x1, . . . , xk)(Ps1x

1/2
1 ⊗ · · · ⊗ Pskx

1/2
k )
]

uq

=
l∑

u1,...,uk=1

l−kβ (u−p)·t x1/2
p11 · · · x

1/2
pkk

f (xu11, . . . , xukk)l
−kβ (q−u)·sx1/2

q11 · · · x
1/2
qkk

= l−2kβq·s−p·tx1/2
p11 · · · x

1/2
pkk

x1/2
q11 · · · x

1/2
qkk

l∑
u1,...,uk=1

β (t−s)·uf (xu11, . . . , xukk)

where we used that f (x1, . . . , xk) is a diagonal matrix with f (xu11, . . . , xukk) as the uth
diagonal entry, and finally calculate the diagonal entry

[
Qq11 ⊗ · · · ⊗ Qqkk

]
qq

= [Qq11]q1q1 · · · [ Qqkk]qkqk = xq11 · · · xqkk

k∏
i=1

(x1i + · · · + xli)−1.

We obtain from (4) an inequality between lk−1 × lk−1 matrices by retaining the (t, s) -
entry in each (t, s) -block on both sides of the inequality and discarding all other entries.
We then insert the entries calculated above in the inequality obtained in this way and
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get

f

(
x11 + · · · + xl1

l
, . . . ,

x1k + · · · + xlk

l

) k∏
i=1

(x1i + · · · + xli)−1×

diag
(
xs11 · · · xskk

)
|s|=j (mod l)

� l−k
k∏

i=1

(x1i + · · · + xli)−1×⎛
⎝x1/2

t11 · · · x1/2
tkk x1/2

s11 · · · x1/2
skk

l∑
u1,...,uk=1

β s·s−t·t+(t−s)·uf (xu11, . . . , xukk)

⎞
⎠

|t|=|s|=j (mod l)

.

Multiplying from the left and from the right with the self-adjoint matrix

diag

(
x−1/2
s11 · · · x−1/2

skk

k∏
i=1

(x1i + · · · + xli)1/2

)
|s|=j (mod l)

we obtain

f

(
x11 + · · · + xl1

l
, . . . ,

x1k + · · · + xlk

l

)
Elk−1

� l−k
l∑

u1,...,uk=1

f (xu11, . . . , xukk)
(
β s·s−t·t+(t−s)·u

)
|t|=|s|=j (mod l)

.

(5)

We define for each u = (u1, . . . , uk) with u1, . . . , uk = 1, . . . , l an lk−1 × lk−1 matrix
Πu by setting

Πu = l−(k−1)
(
β s·s−t·t+(t−s)·u

)
|t|=|s|=j (mod l)

. (6)

It is an easy calculation to show that the matrices Πu are self-adjoint projections, and
the inequality (5) can in terms of these projections be written as

f

(
x11 + · · · + xl1

l
, . . . ,

x1k + · · · + xlk

l

)
Elk−1

� 1
l

l∑
u1,...,uk=1

f (xu11, . . . , xukk)Πu.

(7)

Because of
l∑

u1,...,uk=1

β (s−t)·u = lkδts

it follows that
l∑

u1,...,uk=1

Πu = lElk−1 . (8)
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Since each index (t, s) in each Πu satisfy |t| = |s| = j (mod l), confer equation (6), it
follows that Πu = Πv for each v on the form

v = (v1, . . . , vk) = (u1 + i (mod l), . . . , uk + i (mod l)) i = 0, 1, . . . , l − 1. (9)

We also notice that for each u there are exactly l different indices in (9). It follows that
each projection is counted l times in the sum (8). Two projections are consequently
either orthogonal, or identical with their indices connected as in (9). Setting u =
(1, . . . , 1) and multiplying (7) with Πu we obtain

f

(
x11 + · · · + xl1

l
, . . . ,

x1k + · · · + xlk

l

)
Πu

� 1
l

(
f (x11, . . . , x1k) + · · · + f (xl1, . . . , xlk)

)
Πu.

Therefore f is convex. �
A matrix monotone function may tend to minus infinity as the argument of the

function approaches a point located on an axis, but it cannot go too fast.

COROLLARY 2.7. Let g : ]0,α1[× · · ·×]0,αk[→ R be a continuous function,
which is matrix monotone of some index (l, j) and order (l, . . . , l). To each subset of
the domain of g of the form ]0, β1[× · · ·×]0, βk[ where β1, . . . , βk < ∞, there is a
constant C � 0 such that

g(r1, . . . , rk) � − C
r1 · · · rk

(r1, . . . , rk) ∈ ]0, β1[× · · ·×]0, βk[.

Proof. The function f :]0,α1[× · · ·×]0,αk[→ R given by

f (r1, . . . , rk) = r1 · · · rk g(r1, . . . , rk)

is convex by the preceeding theorem, and it is therefore bounded from belowon bounded
subsets of the domain. �

To proceed, we need the following slight generalization of [1, Theorem 1.2].

THEOREM 2.8. Let f be a real, continuous function of k variables defined on the
domain I1 × · · · × Ik where I1, . . . , Ik are intervals containing zero and let (l, j) be
any index. The following statements are equivalent:

(i) f is operator convex and f (r1, . . . , rk) � 0 if ri = 0 for some i = 1, . . . , k.
(ii) The operator inequality

diag
(
f (a∗s11x1as11, . . . , a

∗
skk

xkaskk)
)
|s|=j (mod l)

�
(
(a∗t11 ⊗ · · · ⊗ a∗tkk)f (x1, . . . , xk)(as11 ⊗ · · · ⊗ askk)

)
|t|=|s|=j (mod l)

is valid for all unitary rows ai = (a1i, . . . , ali) of length l acting on any Hilbert
space Hi for i = 1, . . . , k and all k -tuples (x1, . . . , xk) of self-adjoint operators
in the domain of f acting on H1, . . . , Hk.
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(iii) The operator inequality

diag
(
f (ps11x1ps11, . . . , pskkxkpskk)

)
|s|=j (mod l)

�
(
(pt11 ⊗ · · · ⊗ ptkk)f (x1, . . . , xk)(ps11 ⊗ · · · ⊗ pskk)

)
|t|=|s|=j (mod l)

is valid for all partitions of unity p1i + · · · + pli = 1 on any Hilbert space Hi

by orthogonal projections for each i = 1, . . . , k and all k -tuples (x1, . . . , xk) of
self-adjoint operators in the domain of f acting on H1, . . . , Hk.

The indices s, t in (ii) and (iii) are multi-indices of the form s = (s1, . . . , sk), where
si = 1, . . . , l for i = 1, . . . , k with weight |s| = s1 + · · · + sk.

In the reference [1] the sufficiency of (ii) and (iii) in order to obtain (i) were
only established for indices of the form (l, 0). However, rewriting of the original proof
shows, mutatis mutandis, that the inequalities are indeed sufficient for the operator
convexity of f for any index. The theorem above is stated for more general domains of
the function f than in the original reference, cf. the discussion in the survey article [5].
It has the following version for functions of matrices [5].

THEOREM 2.9. Let f be a real, continuous function of k variables defined on the
domain I1 ×· · ·× Ik where I1, . . . , Ik are intervals containing zero and let (l, j) be any
index. Let (n1, . . . , nk) be a k -tuple of natural numbers and consider the statements:

(i) f is matrix convex of order (ln1, . . . , lnk) and f (r1, . . . , rk) � 0 if ri = 0 for
some i = 1, . . . , k.

(ii) The matrix inequality

diag
(
f (a∗s11x1as11, . . . , a

∗
skk

xkaskk)
)
|s|=j (mod l)

�
(
(a∗t11 ⊗ · · · ⊗ a∗tkk)f (x1, . . . , xk)(as11 ⊗ · · · ⊗ askk)

)
|t|=|s|=j (mod l)

is valid for all unitary rows ai = (a1i, . . . , ali) of length l acting on a Hilbert
space Hi of dimension ni for i = 1, . . . , k and all k -tuples (x1, . . . , xk) of
self-adjoint operators in the domain of f acting on H1, . . . , Hk.

(iii) The matrix inequality

diag
(
f (ps11x1ps11, . . . , pskkxkpskk)

)
|s|=j (mod l)

�
(
(pt11 ⊗ · · · ⊗ ptkk)f (x1, . . . , xk)(ps11 ⊗ · · · ⊗ pskk)

)
|t|=|s|=j (mod l)

is valid for all partitions of unity p1i + · · · + pli = 1 on a Hilbert space Hi of
dimension ni by orthogonal projections for each i = 1, . . . , k and all k -tuples
(x1, . . . , xk) of self-adjoint operators in the domain of f acting on H1, . . . , Hk.
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(iv) The matrix inequality

diag
(
f (ps11x1ps11, . . . , pskkxkpskk)

)
|s|=j (mod l)

�
(
(pt11 ⊗ · · · ⊗ ptkk)f (x1, . . . , xk)(ps11 ⊗ · · · ⊗ pskk)

)
|t|=|s|=j (mod l)

is valid for all partitions of unity p1i + · · · + pli = 1 on a Hilbert space Hi of
dimension lni by orthogonal projections for each i = 1, . . . , k and all k -tuples
(x1, . . . , xk) of self-adjoint operators in the domain of f acting on H1, . . . , Hk.

(v) f is matrix convex of order (n1, . . . , nk) and f (r1, . . . , rk) � 0 if ri = 0 for
some i = 1, . . . , k.

The implications (i) ⇒ (ii) ⇒ (iii) and (iv) ⇒ (v) are then valid.

The indices s, t in (ii), (iii) and (iv) aremulti-indices of the form s = (s1, . . . , sk),
where si = 1, . . . , l for i = 1, . . . , k with weight |s| = s1 + · · ·+ sk. Since the Hilbert
spaces in (ii) are finite dimensional, it follows that any row ai = (a1i, . . . , ali) satisfying
condition (3) is unitary.

THEOREM 2.10. Let f : [0,α1[× · · · × [0,αk[→ R be a continuous real function
such that f (r1, . . . , rk) � 0 if ri = 0 for some i = 1, . . . , k. The constants α1, . . . ,αk

may be plus infinity. If f is matrix convex of order (ln1, . . . , lnk) for some integer l � 2
and some k -tuple of natural numbers (n1, . . . , nk), then the function

g(r1, . . . , rk) = r−1
1 · · · r−1

k f (r1, . . . , rk) (r1, . . . , rk) ∈]0,α1[× · · · ×]0,αk[

is matrix monotone of index (l, j) and order (n1, . . . , nk) for j = 0, 1, . . . , l − 1.

Proof. Let (x1, . . . , xk) be any k -tuple of positive invertible operators in the
domain of f acting on Hilbert spaces H1, . . . , Hk of dimensions n1, . . . , nk and let

y1i + · · · + yli = xi

be any decomposition of xi of length l for each i = 1, . . . , k. We set

asii = x−1/2
i y1/2

sii si = 1, . . . , l; i = 1, . . . , k

and observe that

ysii = a∗siixiasii si = 1, . . . , l; i = 1, . . . , k.

If f ismatrix convex of order (ln1, . . . , lnk) wemay apply Jensen’smatrix inequality for
functions of several variables, cf. Theorem 2.9 (i) ⇒ (ii). For each j = 0, 1, . . . , l− 1
we have

diag
(
f (ys11, . . . , yskk)

)
|s|=j (mod l)

= diag
(
f (a∗s11x1as11, . . . , a

∗
skk

xkaskk)
)
|s|=j (mod l)
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�
(
(a∗t11 ⊗ · · · ⊗ a∗tkk)f (x1, . . . , xk)(as11 ⊗ · · · ⊗ askk)

)
|t|=|s|=j (mod l)

=
(
(y1/2

t11 x−1/2
1 ⊗ · · · ⊗ y1/2

tkk
x−1/2
k )f (x1, . . . , xk)×

(x−1/2
1 y1/2

s11 ⊗ · · · ⊗ x−1/2
k y1/2

skk
)
)
|t|=|s|=j (mod l)

=
(
(y1/2

t11 ⊗ · · · ⊗ y1/2
tkk

)g(x1, . . . , xk)(y
1/2
s11 ⊗ · · · ⊗ y1/2

skk
)
)
|t|=|s|=j (mod l)

and multiplying to the left and to the right with the self-adjoint operator

C = diag
(
y−1/2
s11 ⊗ · · · ⊗ y−1/2

skk

)
|s|=j (mod l)

in the above inequality, we obtain

diag
(
(y−1

s11 ⊗ · · · ⊗ y−1
skk

)f (ys11, . . . , yskk)
)
|s|=j (mod l)

�
(
g(x1, . . . , xk)

)
|t|=|s|=j (mod l)

or equivalently

diag
(
g(ys11, . . . , yskk)

)
|s|=j (mod l)

� g(x1, . . . , xk)Llk−1

showing that g is matrix monotone of index (l, j) and order (n1, . . . , nk). �

THEOREM 2.11. Let f : [0,α1[× · · · × [0,αk[→ R be a continuous, real function
and suppose the function

g(r1, . . . , rk) = r−1
1 · · · r−1

k f (r1, . . . , rk) (r1, . . . , rk) ∈ ]0,α1[× · · ·×]0,αk[

is matrix monotone of some index (l, j) and order (ln1, . . . , lnk). Then the following
statements are valid:

(i) f (r1, . . . , rk) � 0 if ri = 0 for some i = 1, . . . , k.
(ii) f is matrix convex of order (n1, . . . , nk).

Proof. Since g is an increasing function in each coordinate, cf. Proposition 2.5,
the first statement follows.

Let (x1, . . . , xk) be a k -tuple of positive invertible operators in the domain of f
acting on Hilbert spaces H1, . . . , Hk of dimensions ln1, . . . , lnk and let

p1i + · · · + pli = 1 i = 1, . . . , k

be resolutions of the identity on Hi of length l. We choose a positive ε such that
(1 + lε)x is in the domain of f and set

ysii = x1/2
i (psii + ε)x1/2

i si = 1, . . . , l; i = 1, . . . , k.

We consider the decompositions

y1i + · · · + yli = (1 + lε)xi i = 1, . . . , k
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and use the assumption to obtain

diag
(
g(ys11, . . . , yskk)

)
|s|=j (mod l)

� g((1 + lε)x1, . . . , (1 + lε)xk)Llk−1 .

We introduce the diagonal block matrix

C = diag
(
x1/2
1 (ps11 + ε)x1ps11 ⊗ · · · ⊗ x1/2

k (pskk + ε)xkpskk

)
|s|=j (mod l)

and multiply to the left with C∗ and to the right with C in the above inequality to obtain

diag
(
(ps11x1(ps11 + ε)x1/2

1 ⊗ · · · ⊗ pskkxk(pskk + ε)x1/2
k )g(ys11, . . . , yskk)×

(x1/2
1 (ps11 + ε)x1ps11 ⊗ · · · ⊗ x1/2

k (pskk + ε)xkpskk)
)
|s|=j (mod l)

�
(
(pt11x1(pt11 + ε)x1/2

1 ⊗ · · · ⊗ ptkkxk(ptkk + ε)x1/2
k )g((1 + lε)x1, . . . , (1 + lε)xk)

×(x1/2
1 (ps11 + ε)x1ps11 ⊗ · · · ⊗ x1/2

k (pskk + ε)xkpskk)
)
|t|=|s|=j (mod l)

.

Inserting

g(ys11, . . . , yskk) = (x−1/2
1 (ps11 + ε)−1x−1/2

1 ⊗ · · · ⊗ x−1/2
k (pskk + ε)−1x−1/2

k )×
f (x1/2

1 (ps11 + ε)x1/2
1 , . . . , x1/2

k (pskk + ε)x1/2
k )

and

g((1 + lε)x1, . . . , (1 + lε)xk) =

(1 + lε)−k(x−1/2
1 ⊗ · · · ⊗ x−1/2

k )f ((1 + lε)x1, . . . , (1 + lε)xk)(x
−1/2
1 ⊗ · · · ⊗ x−1/2

k )

in the inequality, and then letting ε tend to zero we obtain

diag
(
(ps11x

1/2
1 ⊗ · · · ⊗ pskkx

1/2
k )f (x1/2

1 ps11x
1/2
1 , . . . , x1/2

k pskkx
1/2
k )×

(x1/2
1 ps11x1ps11 ⊗ · · · ⊗ x1/2

k pskkxkpskk)
)
|s|=j (mod l)

�
(
(pt11x1pt11 ⊗ · · · ⊗ ptkkxkptkk)f (x1, . . . , xk)×

(ps11x1ps11 ⊗ · · · ⊗ pskkxkpskk)
)
|t|=|s|=j (mod l)

.

The identity

f (x1/2
1 ps11x

1/2
1 , . . . , x1/2

k pskkx
1/2
k )(x1/2

1 ps11 ⊗ · · · ⊗ x1/2
k pskk) =

(x1/2
1 ps11 ⊗ · · · ⊗ x1/2

k pskk)f (ps11x1ps11, . . . , pskkxkpskk)

follows by first considering polynomials and then applying Weierstrass’ approximation
theorem. Inserting the identity in the inequality above we obtain

diag
(
(ps11x1ps11 ⊗ · · · ⊗ pskkxkpskk)f (ps11x1ps11, . . . , pskkxkpskk)×

(ps11x1ps11 ⊗ · · · ⊗ pskkxkpskk)
)
|s|=j (mod l)

�
(
(pt11x1pt11 ⊗ · · · ⊗ ptkkxkptkk)f (x1, . . . , xk)×

(ps11x1ps11 ⊗ · · · ⊗ pskkxkpskk)
)
|t|=|s|=j (mod l)
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and hence

diag
(
(ps11 ⊗ · · · ⊗ pskk)f (ps11x1ps11, . . . , pskkxkpskk)(ps11 ⊗ · · · ⊗ pskk)

)
|s|=j (mod l)

�
(
(pt11 ⊗ · · · ⊗ ptkk)f (x1, . . . , xk)(ps11 ⊗ · · · ⊗ pskk)

)
|t|=|s|=j (mod l)

.

Because of (i) we obtain

f (ps11x1ps11, . . . , pskkxkpskk)

� (ps11 ⊗ · · · ⊗ pskk)f (ps11x1ps11, . . . , pskkxkpskk)(ps11 ⊗ · · · ⊗ pskk)

and consequently

diag
(
f (ps11x1ps11, . . . , pskkxkpskk)

)
|s|=j (mod l)

�
(
(pt11 ⊗ · · · ⊗ ptkk)f (x1, . . . , xk)(ps11 ⊗ · · · ⊗ pskk)

)
|t|=|s|=j (mod l)

which is Jensen’s matrix inequality. We thus deduce, cf. Theorem 2.9 (iv) ⇒ (v), that
f is matrix convex of order (n1, . . . , nk). �

One may think that the preceeding theorem, which ensures matrix convexity of
f , could replace Theorem 2.6 which with similar conditions only imparts ordinary
convexity on f . However, it is essential in the proof of the preceeding theorem that f
is defined also on the axes, while this is not required in Theorem 2.6. This problem can
easily be overcome for functions of only one variable by making a small translation of
the matrix monotone function g. This remedy is not available for functions of several
variables, since the translation of the decomposition of an operator no longer is a
decomposition of the translated operator, cf. equation (2).

COROLLARY 2.12. Let g : ]0,α1[× · · ·×]0,αk[→ R be a continuous real function.
If g is matrix monotone of some index (l, j) and order (lmn1, . . . , lmnk) for a natural
number m and a k -tuple of natural numbers (n1, . . . , nk), then it is matrix monotone
of index (m, h) and order (n1, . . . , nk) for h = 0, 1, . . . , m − 1.

Proof. The real and continuous function f defined by

f (r1, . . . , rk) = r1 · · · rk g(r1, . . . , rk) 0 < ri < αi for i = 1, . . . , k

is convex by Theorem 2.6. It therefore extends to a continuous function

˜f : [0,α1[× · · · × [0,αk[→ R,

and it follows that ˜f (r1, . . . , rk) � 0 if ri = 0 for some i = 1, . . . , k. The function
˜f is matrix convex of order (mn1, . . . , mnk) by Theorem 2.11. The function g is thus
matrix monotone of index (m, h) and order (n1, . . . , nk) for h = 0, 1, . . . , m − 1 by
Theorem 2.10. �

COROLLARY 2.13. Let g : ]0,α1[× · · ·×]0,αk[→ R be a continuous function. If
g is operator monotone of some index, then it is operator monotone of all indices.
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DEFINITION 2.14. We say that a continuous function g : ]0,α1[× · · · ×]0,αk[→ R
is operator monotone, if it is operator monotone of some and hence operator monotone
of all indices.

Proof (of Theorem 1.2): The statement follows by combining Theorem 2.10,
Theorem 2.11 and Definition 2.14. �

The simplest example of operator convex functions satisfying the boundary condi-
tions in Theorem 1.2 are the negative constants. The function

g(r1, . . . , rk) = −r−1
1 · · · r−1

k

defined in the first (open) quadrant is thus operator monotone, cf. also Corollary 2.7.
The set of operator monotone functions defined on a given domain is a weakly closed
convex cone, but the constant function g(r1, . . . , rk) = 1 is not operator monotone for
k � 2. This must indeed be so since the function (r1, r2) → r1r2 is not convex.
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