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FURTHER INEQUALITIES FOR THE EXPECTATION AND VARIANCE
OF A RANDOM VARIABLE DEFINED ON A FINITE INTERVAL

N. S. BARNETT, P. CERONE, S. S. DRAGOMIR

(communicated by N. Elezovic)

Abstract. Some new elementary inequalities for the expectation and the variance of a continuous
random variable defined on a finite interval are given.

1. Introduction

Let X be a continuous random variable having the probability density function
f :]a,b] — (0,00) and cumulative distribution function F : [a,b] — [0, 1].

In a recent paper [11], the authors pointed out a number of inequalities for the
expectation, E (X) and the variance, 6% (X) from which we cite the following:

0< 0 (X) < [b— EX)][EX) —d < 7 (b—a)’; (1

0 < [b-EX)]EX)—d -0 (X)
b ir)

< Blg+ L+ D)7 (b—a) T f],. 2)

providedf € L, [a,b], p > 1, [%Jré: 1;

where B (-,-) is Euler’s Beta function. That is, we recall
1
B(o, B) ::/ 1 =0 ar B> o0.
0

We note that the proof of (2) was based on the use of the elementary identity (see
(2.5) in [11)):

b
E(X) —d][b— E(X)] - 6 (X) = / (b—1)(t—a)f (1)dr. (3)
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For a more general result incorporating (3) see [4].
Moreover, if m <f < M a.e. on [a,b], then

m(b—a)’

— L < - E)E(X) —a - 0> (X) <

and

b~ EX)][E(X)~a] - 0® (X) —

In this current paper, we point out some additional results.

2. The Results

LEMMA 1. Let X be a continuous random variable having the cumulative distri-
bution function F : [a,b] — [0, 1]. Then,

o’ (X) = b—E(X X) — a)

_a// t — 1) (F (1) — F (1)) ddr. (6)

Proof. Using integration by parts, we have

2w = [ a-r@iaro
= (bE(X))22/b(tE(X))F(t)dt. (7)

Further, using Korkine’s identity,

b b b
bia/a h(t)g(t)dt = bia/a h(t)dt-bia/a g(t)dt

+2(blfa)2/a /a (h (1) — (7)) (g (1) — g (7)) drd,

we have

b b b
/u(th(X))F(t)dt = bia/ (t—E ())dt/ F(t)dt

b— // t—1) F(1))dtdt. (8)

b+a

Since,

/ub(t—E(X))dt:(b—a)( —E(X))
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and .
/ F(t)di=b—E(X),
then, by (7) and (8),

o (X) = (bE(X))22{b++2E(X)-(bE(X))
+2(b¥—a /b/b(t_f) (F (1) —F(T))drdtl
= (b= EX)' = (b+a—2E(X) (b~ E(X)

_a/ / t—1) F (7)) drdt
b_a/ub/ub(fT)(F(f)F(T))drdt

REMARK 1. Since the mapping F is monotonic nondecreasing on [a, b], then

= (b—EX))(E(X) -

and the lemma is proved.

(t—1)(F(tr)—F(t) <0 forall t,7 € [a,b]; 9)

which implies that
o’ (X) <[b - EX)][E(X) —d], (10)

an inequality that was proved in [11] and [12] using two different methods.
The inequality (10) can be improved as follows.

THEOREM 1. With the assumptions in Lemma 1,

(b~ EX)) (E(X) —a) - 0* (X)

/|t\F dt——(b E(X ))/ |t dt| =0

Proof. In [13], S. S. Dragomir proved the following refinement of Chebychev’s
inequality

(11)

T (h,g) = max{[T (b, [g])|,|T (|n|, )|, |T (|A], [¢)]} = (12)

provided (h, g) are synchronous on [a, b], that is,

(h(t)—h(1))(g(t) —g(r)) 20 forall ¢,7 € [a,b]

1 1
h . .
b—a/a (¢) dt b_a/ag(t)dt

and

b
T(h,g)::b1 /h(t)g(t)dt—

—a ),
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If we define h (t) = ¢, t € [a, b], then from ( 6)

1

T(hF) = ba/b/b(t—r)(F(t)—F(T))drdt
1

— (b () (E(X) —a) - & (%))

ﬁ/ﬂb/jr|F<r>dr—ﬁ/ab|rdt/abm)dr,

T(h7‘FD = T(h7F)7
T(|hl,|F]) = T(|h|,F).

Now, from (12),

T(|h], F)

Using the result (12), we get (11).

REMARK 2. If a < b < 0 or 0 < a < b, then the first inequality in (11) becomes
an identity and is of no special interest.
If a < 0 < b, however, then,

b 0 b
/ [t| F () dt = f/ tF(t)dt+/ tF (1) dr;
a a 0
I 1 [é®+1D?
bfa/u ]t ba{ 2 }

and by (11), we get

(b~ E(X)) (E(X) —a) — 0° (X)

>2 /th(t)dt—/OtF(t)dt—%(b—E(X)) > 0. (13)
0 a —a

Assume that f (x), f : [a,b] — (0,00) is the p.d.f. of X, then the following
theorem holds.

THEOREM 2. With the assumptions in Lemma 1,
0 < (b—E(X))(E(X)—a)— 0" (X)

T f € Lolab);
< (14)

1
22 0—a) T, Do
lechLp[a,b},p>l,[;+5:1,

where ||-||, (p > 1) are the usual Lebesgue norms.
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Proof. Using (6),
0 < (b—EX))(EXX)~a)-0*(X)
1 b b t
= b—a/a /a (t—r1) </Tf(u)du>dtdr.

By the modulus property, we have

0 < (b E(X)) (E(X) —a) — 6* (X)

// t—1) </f du)dtdr
b%/ / - /wa)du

If f € Lo [a,b], then we can write,
It =7 If ll

b—a

forall 7,7 € [a, b], and so

1 b (b
= [ el e

For the second part, we apply Holder’s integral inequality to write:

< du /f” du| <|t—1]4 (/f” )
\t—f\allf\l,,,
where p > 1, I%—Fézl.
In addition,
M < —/ / 0= 2l — 1l ||, drdz

211, (b —a)*
(2 + ;) (3 v 5)

and the second inequality in (14) is proved.

dtdt =M

Wb e e ¢ =

blf—la/a l/a (t—1) qdr+/t (t— )Hédrldt

27
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REMARK 3. Inequality (2) and Theorem 2 provide the same bound for the quantity
3
[b— E(X)] [E(X) —a] — 0>(X) whichis 22 |If|| if f € Lo [a,b]. A com-
puter simulation using Maple 6 shows that the second bound in (2) is better than the
corresponding bound in Theorem 2, but we don’t have an analytic proof of this.

Using the Cauchy-Buniakowsky-Schwartz inequality, we have the following in-
equality.
THEOREM 3. If X and F are as in Lemma 1, then,
0 < (b-EX))(EX)~a)-0*(X)

(b—a)2 2 e
< S e-alFk- - B (17)

Proof. Using the Cauchy-Buniakowsky-Schwartz integral inequality for double
integrals,

/ab/ab(ff)(F(T)F(t))d,dT
< (/ab/ab (tr)Zdth> (/ / ) dth)%.(lg)

/b/b(t—r)zdtdr = (b;“)A"
/ / (1)) dtdt = 2 (b—a)/abﬁ(t)dt— (/ubF(t)dt>

2[(b = a) IFIE - (o - EX)]

However,

and, by (18),

// - 7) _F (1)) dudi] <

and the inequality in (17) is proved.

(ST

(b—a)’
V3

(b= a)lIFI} = (b — E(x))?]

If it is assumed that the mapping f is convex on [a, b], then the following result
can be obtained.

THEOREM 4.  Assume that the p.df., f : [a,b] — (0,00) is convex. Then we
have the inequality

_a// o ()

(X)]E (X) —a] — 0*(X)

+0%(X)— (b—E(X))(E(X)—a). (19)
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Proof. Using the Hermite-Hadamard inequality,

f (H—T) < [T f (u)du <f(t) +f (1)

2 T—1 2
forall ¢,7 € [a,b], t # T, we have

(-7 (”TT) <0 F@ - F@) <Dy

forall 7,7 € [a, b].
Integrating (21) on [a,b]” and using the representation (6), gives:

S Lo
E// (1— 1) (1)) dide

(X) —a] - 0* (X)

w//f V27O (2 duar.

’ bt—r M dtdt
[ [ ] ]
// 1 —1)°f (1) dedt = /bl/ab(t—r)zdi']f(t)dt

=/b[(b‘” §(t‘“)3]f<t)dt

=[b-

Now

~CO o0+ i) a
- b;“/ab (60— 300 —a)s @a
e —<b—a>/ab<b—t><r—a>f<r>dr

= O ) [0 () - - B (E(X) - )

on using the identity (3) (see [11]).
Hence, from (23) and the above,

ol [

+ [0® (X) = (b~ E(X)) (E (X) — a)],

3

29
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(23)
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and the second part of (19) is proved.

REMARK 4. The second inequality in (19) is equivalent to:

b—EMX)][EX) —a] < 0* (X) + = (b—a)’. (24)

REMARK 5. For b — a < -1, then the result of Theorem 35 is better than that

7 5
of Theorem 4. For b —a > % the opposite applies. It must be remembered that
Theorem 4 relies on f being convex whereas Theorem 3 does not.

The following representation for the absolutely continuous p.d.f., f : [a,b] — R
holds.

LEMMA 2. Let X be a random variable having the p.df, f : [a,b] — R
absolutely continuous on [a,b]. Then we have

(b—a)’
6

n ﬁ/ab/ab(tf) (/T'(u”Tf)f'(u)du>dm. (25)

Proof. We use the following identity which holds for the absolutely continuous
mapping g : [a,b] — R

/abgm)du— B 0w /ab ( a;b> Sl G0

can be easily proven by using the integration by parts formula.
We know that

(E(X) —a) (b—E(X)) — 0 (X)

ia/b/b(tr)/tf(u)dudtdr

_a// (— 1) { ;f( )(tr)/rt<ut+TT>f’(u)du}dtd7:
_a// ( )Zf())dm

*b_a/ / (1—1) (/ (u”Tf)f'(u)du>d;dr. (27)

However, observe that (see the proof of Theorem 4)

_a// ( )J;f()>dtdr

= o’ (X)+ 5[(E(X)*b)2*(E(X) a) (b~ E X))+ (E(X) —a)’|.

o’ (X) = (b—EX)(E(X)—a)—




FURTHER INEQUALITIES FOR THE EXPECTATION AND VARIANCE 31

Using (27), we have

(E(X) —a) (b - E (X)) — 0 (X)

= 0 (0 + 5 [(E0O b ~ (B0 ) (b~ E(X)) + (E(X) )]

bia/ab/ab(tr) </TZ(MHTT)f’(u)du>dth,

which is clearly equivalent to (25).

Using Lemma 2, we are able to obtain the following bounds.

THEOREM 5. Assume that f is as in Lemma 2, then we have the inequality

2 (b— a)z
(b~ EX]E (X) —a] - 0” (X) — —
e (5~ ay i '€ Luc o]
*|! L
g q || Hp . (bfa)3+‘11 lf‘ f/ c Lp [a,b], (28)
2(3q+1)(4g+1)(q+1)4
p>1, 5+:=1
f/
H24H1 (b _ a)3 )
Proof. Using the equality (25), we may write
2 (b— a)z
0" (X) = (b-E(X)) (E(X) —a) + —
/ / It — 1| / <u H—T>f’(u)du didt:=N.  (29)
Now, it may be easily shown that,
! t+7 t— 1)
[ (=55 rwad <. 57
T

forall 7,7 € [a, b].
Also, by Holder’s integral inequality, we may write

1
q

1
t t » t ¢ q
/(u—i)f’(u)du "(u)|” du /u—i du
T 2 T 2
=g
< Il
2(g+1)7
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forall ¢, 7 € [a, b], and further,

/ (“—”TTW’W” < ol
= ”WHI
Consequently,
oo S5 i f7 € Loo [a,B];
/T' (MHTT)f'(u)du << I, % if f'¢L,la,bl, (30)

1 1 _
p>1,l—j+a—17

Il 52 f e Ly [a,b).

Using (30), we may write, from (29), for f’ belonging to the obvious Lebesgue space
Lyla,b]l,p>1,

I b b 3
!U,'Jj; L[ e — =] drdr,

f 1
N < | 1” 20— 2t diar, (31)
4(g+1)4 (b—a)

dth

Now, since some straight forward algebra shows that

(b—a)

b b b [ gt b
/ / it — 1 didr = / /(t—r)3dr+/ (t—1)dr| di = T
a a a a t
b b - b [ gt b b b
// It — 7|77 dtdt = / /(r—r) +adTJr/ (t—0)*"adr| dt
a a a a t

24 (b —a)*
(Bg+1)(4g+1)

/ab/ab(t—T)Zdth _ /ab [/ﬂt(f—f)zdf—&-/tb(r—t)zdﬂ[} dr

U

6
we obtain the desired inequality (28) from using (31) and (29).

and
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The following representation for the mappings whose derivatives are absolutely
continuous on [a, b] also holds.

LEMMA 3. Let X be a random variable having the p.d.f. f : [a,b] — R and with
the property that f' : [a,b] — R is absolutely continuous on [a,b]. We have

(b a)
6

+ﬁ/ab/ab(tﬂ/;(fu) (u—1)f" (u)dudtdr.

Proof. We use the following identity which holds for the mappings g whose
derivatives are absolutely continuous:

0’ (X) = (b —E(X)) (E(X) —a) - (32)

b b
[ ewan= 05 g g oo wa 63)

and can easily be proven by using the integration by parts formula twice.
We know that

1 b b T
(b—E(X))(E(X)—a)—Gz(X):b / / (t—T)/f(u)dudth
—aJa Ja t
and then, using the representation (33) writen for f instead of g, and proceeding as in
the proof of Lemma 2, we end up with the identity (32).
Using the representation of Lemma 3, we are able to obtain the following bounds.

THEOREM 6. Assume that f is as in Lemma 3. Then we have the inequality

2 (b_a)z
b~ EXEX) —da] - 0" (X) - —=—
Hf”Hoo b— 5 . "eL b
o0 (b —a) if f" €L la,b]
Ll 1 L
< WM[B(P+LP+1)]”U’*Q)4+” if f"€Lyla,b], (34)
Il,+§:1,p>1;

1,
160

(b - (1)4 )
where the p -norms are taken on the interval |a,b].
Proof. Using the equality (32), we may write

(b—a)’

o’ (X) —[p—E(X)][E(X) —a] - 7

1 b b
———— t—
4<bfa>/u / £~

/t(l—u)(u—‘r)f”(u)du dtdt := K.
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First of all, let us observe that

< Il

/Tt(tu)(ur)du

/t(tu)(u’[)f”(u)du

1"
-

forall 7,7 € [a, b].
Further, by Holder’s integral inequality, we obtain

t
< 171, / 6= ul fu — 7" du
T

= f"|l, lt =27 [B(p + 1,p+ 1)]?

1
P

/ (t—u)(u—"1)f" (u)du

forall ¢, 7 € [a,b], where B is the Beta function of Euler and zlﬂ + é =1;p>1.
Also, we have

/t(tu) (u—1)f" (u)du

< 7Nl max (7 —u) (u—1)]
u€ [t

-’
= =y,
forall 7,7 € [a, b].
Consequently, we may state the inequality
t
/ (t—u)(u—1)f" (u)du
T
LA it " € Lo [a,b];
<q W B G+ L+ D) =o' i 7 e Lyfab],  (35)
1% + % =1, p>1
=
3 1
forall 7,7 € [a, b].
Using (35) and the definition of K above, we may write
7" b b .
!4@!20) fa fa (t— T)4dtd’[ if f" € Ly la,bl;
7l 1 b b 341 .
K<\ e B+ Lp+ )P [ [t =<7 didr if {" equ [a,b],
il I;+5:17P>1;
b b 3
60— L)) 1t =1 dedr.

(36)
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Now, since some straight forward algebra shows that

and

/ab/ab (t— 1) drdr = %.

b b .
/ / 0= o drdr
a a

Il
s~
S
a\:‘
—
~
IS
N
[
b
~i-
QU
_Q
+
.\w
—
_Q
\
=
[
+
~i-
QU
)
QU
<

207 (b—a)*
(4p+1)(Sp+1)

/ab /at(tr)3dr+/tb(rt)3dr dt

Ple—a)'+b-0" (b—a)’
e

b b
/ / it — 1] drdr

then by (36), we deduce the desired inequality (34).

(10]

(11]
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