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A NEW CARLSON TYPE INEQUALITY

LEO LARSSON

(communicated by Lars-Erik Persson)

Abstract. Consider a measure space (X, dξ) on which weight functions v , v0 and v1 are
defined, and let θ ∈ (0, 1) and p, p0, p1 ∈ R+ . We investigate the three-weight Carlson type
inequality

‖f v‖Lp(X,dξ ) � A‖f v0‖θLp0 (X,dξ )‖f v1‖1−θ
Lp1 (X,dξ )

to hold for some constant A < ∞ and all measurable functions f . A fairly general inequality
of this type is proved. This result may be regarded as a generalization and unification of some
other recent results of this type in the literature.

1. Introduction

In 1934, F. Carlson [10] showed that if an , n = 1, 2, . . . are non-negative, real
numbers, not all zero, then the inequality( ∞∑

n=1

an

)4

< π2
∞∑

n=1

a2
n

∞∑
n=1

n2a2
n (1)

holds, and π2 is the smallest possible constant.
Carlson also noted in the original paper [10] that the integral companion of the

inequality (1), namely(∫ ∞

0
f (x) dx

)4

� π2
∫ ∞

0
f 2(x) dx

∫ ∞

0
x2f 2(x) dx (2)

holds; here, as well, the constant π2 is sharp, and equality is attained precisely when f
has the form

f (x) =
1

α + βx2
.

Various versions of (1) and (2) will be referred to as Carlson type inequalities.
The inequalities (1) and (2) have been generalized, discussed and applied in several

texts, see e.g. F. I. Andrianov [1], S. Barza [2], S. Barza, V. Burenkov, J. Pečarić and
L.-E. Persson [3], S. Barza, J. Pečarić and L.-E. Persson [4], R. Bellman [5], J. I. Bertolo
and D. L. Fernandez [8], W. B. Caton [11], R. M. Gabriel [12], G. H. Hardy [14] A.
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Kamaly [15, 16], V. I. Levin [21, 22], G. M. Pigolkin [26], G.-S. Yang and J.-C. Fang
[27] and the books D. S. Mitrinović [23] and D. S. Mitrinović, J. Pečarić and A. M.
Fink [24], and the references given there. We remark also that Carlson type inequalities
are of crucial importance for some moment problems (see B. Kjellberg [17, 18]), some
problems in interpolation theory (see N. Ya. Krugljak, L. Maligranda and L.-E. Persson
[19], J. Peetre [25] and J. Gustavsson and J. Peetre [13]), topics in absolutely convergent
Fourier transforms (see A. Beurling [9]), and for optimal reconstruction of a sampling
signal (see J. Bergh [6]).

Let v , v0 and v1 denote weights (positive, measurable functions) on a measure
space (X, dξ) , and let θ ∈ (0, 1) and p, p0, p1 ∈ R+ . In this text, we investigate the
general Carlson type inequality

‖f v‖Lp(X,dξ) � A‖f v0‖θLp0 (X,dξ)‖f v1‖1−θ
Lp1 (X,dξ)

to hold for some A < ∞ and all measurable functions f .
We quote below the main result in S. Barza, V. Burenkov, J. Pečarić and L.-E.

Persson [3], one of the most general results of Carlson type in the literature.
Let S be a measurable subset of the unit sphere in Rn , and define the infinite cone

Ω by

Ω =
{

x ∈ R
n; 0 < |x| < ∞,

x
|x| ∈ S

}
.

Suppose that the positive, measurable functions w , w0 and w1 , defined on Ω , are
homogeneous of degrees γ , γ0 and γ1 , respectively. Thus1

w∗(x) = |x|γ∗w∗

(
x
|x|
)

.

Suppose that 0 < p < p0, p1 < ∞ , and fix θ ∈ (0, 1) . Define

d∗ = γ∗ +
n
p∗

and
1
q

=
1
p
− θ

p0
− 1 − θ

p1
.

THEOREM 1. (Barza et. al.[3], Theorem 1) The Carlson type inequality

‖f w‖Lp (Ω,dx) � A‖f w0‖θLp0 (Ω,dx)‖f w1‖1−θ
Lp1 (Ω,dx) (3)

holds for some constant A (independent of f ) if and only if

d = θd0 + (1 − θ)d1, (4)

d0 �= d1, (5)

1Here and hereafter, the subscript ∗ is used as a wildcard for either no index or one of the indices 0
and 1 .
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and ∥∥∥∥∥ w

wθ
0w1−θ

1

∥∥∥∥∥
Lq(dσ)

< ∞, (6)

where dσ denotes the surface area measure on S . The best constant Ã in (3) is given
by2

Ã = θ− θ
p0 θ− 1−θ

p1 (p0p1)
− 1

q

⎛⎝B
(
θ q

p0
, (1 − θ) q

p1

)
|d0 − d1|

⎞⎠1/q

× (7)

×
(

1
p
− 1

q

)− 1
q
∥∥∥∥∥ w

wθ
0w1−θ

1

∥∥∥∥∥
Lq(dσ)

,

and the sign of equality holds in (3) with A = Ã if and only if f satisfies

|f (x)| = H ˜f (rx)

almost everywhere, with some H � 0 , r > 0 , where

˜f =
(

k
wp

wp0
0

) 1
p0−p

and k is defined through the implicit relation(
k1/p0

w
w0

)r0

=
(

(1 − k)1/p1
w
w1

)r1

where
1
ri

=
1
p
− 1

pi
, i = 0, 1.

�
In the present text, we give sufficient conditions on the weights in order for a

Carlson type inequality to hold on a general measure space. In Section 2., we state and
prove our main theorems, the first of which is a one-dimensionalCarlson type inequality
(Theorem2). We also extend the range of parameters p beyond the restrictive condition
p < p0, p1 . From Theorem 2, we can easily deduce a corresponding inequality on a
product measure space, such as the cone Ω in Theorem 1. Two versions of the two-
dimensional inequality are proved (Theorems 3 and 4). An n -dimensional version is
included as well (Theorem 5). In Section 3., some corollaries of the main results are
discussed, and Section 4. is reserved for remarks and comments that do not appear to
fit into the main text.

This work is part of a thesis of the author, presented at Uppsala University. The reader
may consult [20] for more details and further applications of the results presented here.

2There was a misprint in the original article [3]. The constant indicated here is the correct one.
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2. Main results

Our first theorem is a one-dimensional Carlson type inequality on a generalmeasure
space. FromTheorem2,we can deduce a corresponding inequality on a productmeasure
space. The theorems presented in this section have a wide range of applications, some of
which are pointed out in Section 3. (see also L. Larsson [20]). The proofs are postponed
to the end of this section, in order not to interrupt the discussion of our inequalities of
Carlson type.

Given p , p0 , p1 and θ , we define, once and for all, the parameter q by the
relation

1
q

=
1
p
− θ

p0
− 1 − θ

p1
. (8)

THEOREM 2. Let (Z, dζ) be a measure space on which measurable functions
β � 0 , β0 > 0 and β1 > 0 are given. Let p0, p1 ∈ (0,∞] , let θ ∈ (0, 1) and suppose
that p ∈ (0,∞] is such that

1
p

� θ
p0

+
1 − θ

p1
. (9)

For m ∈ Z , define

Zm =
{

z ∈ Z; 2m � β0(z)
β1(z)

< 2m+1

}
,

and define the sequence {ζm}m∈Z of non-negative numbers by

ζm = ζ(Zm), m ∈ Z.

Suppose that for some constant C we have

ζm � C, m ∈ Z, (10)

and that there exists a number s ∈ (0,∞] , satisfying

0 � 1
s

� 1
p
− θ

p0
− 1 − θ

p1
,

for which
β

βθ
0 β

1−θ
1

∈ Ls(dζ). (11)

Then there is a constant A such that

‖f β‖Lp (dζ) � A‖f β0‖θLp0 (dζ)‖f β1‖1−θ
Lp1 (dζ) (12)
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for all measurable functions f satisfying f βi ∈ Lpi(dζ) , i = 0, 1 . We can choose A
to have the form

A = A0

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
Ls(dζ)

, (13)

where A0 does not depend on β∗ .

REMARK 1. As the proof of Theorem 2 will show, the condition (10) is not
necessary if (11) holds with s = q , where q is as defined in (8). However, there are
examples showing that (10) is needed if β/βθ

0 β
1−θ
1 is in Ls , where s > q , see Remark

6.

REMARK 2. The proof will also show that the constant A depends on C as
C1/q−1/s . This can also be seen by the renormalization dζ �→ C dζ . The same
dependence on C holds in Theorem 3 below.

Figure 1 shows the region for (s−1, p−1) in which we can show a Carlson type
inequality.

�

�

1
s

1
p

1

1

θ
p0

+ 1−θ
p1
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Figure 1. The figure shows the region of admissible parameters
in order for a Carlson type inequality to hold.

Once we have the above theorem, a corresponding Carlson type inequality on a product
measure space follows easily.

We assume, here and hereafter, that all measure spaces are σ -finite.
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THEOREM 3. Let (Y, dη) be a measure space. Let weights α � 0 , α0 > 0 and
α1 > 0 be given on Y , and define q by (8). Suppose, in addition to the assumptions in
Theorem 2, that

α
αθ

0 α
1−θ
1

∈ Lq(dη). (14)

Then the Carlson type inequality

‖f v‖Lp (dξ) � A‖f v0‖θLp0 (dξ)‖f v1‖1−θ
Lp1 (dξ) (15)

holds for some constant A on the product space (X, dξ) , where X = Y × Z and
dξ = dη× dζ , and where v∗ = α∗β∗ . A can be chosen to have the form

A = A0

∥∥∥∥∥ α
αθ

0 α
1−θ
1

∥∥∥∥∥
Lq(dη)

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
Ls(dζ)

.

Theorem 3 is not symmetric, in the sense that we have different conditions on the
respective measure spaces. If we impose a condition corresponding to (10) also on the
second factor, then we can loosen the condition (14) slightly, and we get a symmetric
version of this two-dimensional result.

THEOREM 4. Suppose that the hypotheses in Theorem 2 hold with s = sZ .
Suppose, moreover, that there is a constant C such that

η
({2m � α0/α1 < 2m+1}) � C, m ∈ Z,

and that
α

αθ
0 α

1−θ
1

∈ LsY (dη),

where

0 � 1
sZ

� 1
q
, 0 � 1

sY
� 1

q
,

1
sY

+
1
sZ

� 1
q
. (16)

Then there is a constant A of the form

A = A0

∥∥∥∥∥ α
αθ

0 α
1−θ
1

∥∥∥∥∥
LsY (dη)

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
LsZ (dζ)

such that (15) holds.

The region (16) is the shaded triangle in Figure 2. In the special case p0 = p1 , it
can be shown that we can not go outside this triangle. A proof can be found in Remark
7 in Section 4. The author strongly believes that this is the case also for p0 �= p1 .

By applying Theorem 3, we get the upper edge of the triangle in Figure 2. Then,
letting the measure spaces switch roles, we can apply Theorem 3 to get the right edge.
Bilinear interpolation can then be used to get inequality in the whole triangle.
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Figure 2. The diagram shows the region for (s−1
Z , s−1

Y ) in which
a Carlson type inequality holds on a product measure space.

The proof of our last theorem is sketched briefly at the end of this section. It generalizes
Theorems 3 and 4 to product spaces with any finite number of factors.

THEOREM 5. Let p, p0, p1 ∈ (0,∞] and θ ∈ (0, 1) , and suppose that

1
p

� θ
p0

+
1 − θ

p1
.

Let (Zi, dζ (i)) be measure spaces, on which there are defined measurable functions

β (i) � 0 , β (i)
0 > 0 and β (i)

1 > 0 , i = 1, . . . , n . Let k be an integer such that
0 � k � n . Define

B(i) =
β (i)

(β (i)
0 )θ (β (i)

1 )1−θ
, i = 1, . . . , n.

Suppose that
B(i) ∈ Lsi(Zi, dζ (i)), i = 1, . . . , k,

where

0 � 1
si

� 1
q
,

1
s1

+ . . . +
1
sk

� k − 1
q

, (17)

and
B(i) ∈ Lq(Zi, dζ (i)), i = k + 1, . . . , n.
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Suppose, moreover, that for i = 1, . . . , k , the sequences

{ζ (i)
m }m∈Z,

defined by

ζ (i)
m =

{
z ∈ Zi; 2m � β (i)

0

β (i)
1

< 2m+1

}
,

are bounded. Then there is a constant A such that the Carlson type inequality

‖f β‖Lp(Z,dζ) � A‖f β0‖θLp0 (Z,dζ)‖f β1‖1−θ
Lp1 (Z,dζ) (18)

holds, where
Z = Z1 × · · · × Zn,

dζ = dζ (1) × · · · × dζ (n),

and
β∗(z1, . . . , zn) = β (1)

∗ (z1) · · · β (n)
∗ (zn).

REMARK 3. If we put n = k = 1 in the above theorem, we get Theorem 2.
Similarly, with n = 2 , we get Theorems 3 and 4 by letting k = 1 and k = 2 ,
respectively. Note also that if we put n = 1 and k = 0 in Theorem 5, then we get
Theorem 2 with s = q , without requiring the condition (10) as discussed in Remark 1.

To prove Theorem 2, we employ the following lemma, which is a weak version of
Lemma 1 in [3].

LEMMA 1. Suppose that p � min{p0, p1} . Define r0 and r1 by

1
ri

=
1
p
− 1

pi
, i = 0, 1.

If the measurable function a : Z → [0, 1] is chosen so that

M0 =
∥∥∥∥a1/p β

β0

∥∥∥∥
Lr0 (dζ)

and

M1 =
∥∥∥∥(1 − a)1/p β

β1

∥∥∥∥
Lr1 (dζ)

are both finite, then

‖f β‖p
Lp (dζ) � Mp

0‖f β0‖p
Lp0 (dζ) + Mp

1‖f β1‖p
Lp1 (dζ). (19)

Proof. We write

‖f β‖p
Lp (dζ) =

∫
|f β0|pa

(
β
β0

)p

dζ +
∫

|f β1|p(1 − a)
(
β
β1

)p

dζ

and apply Hölder’s inequality with exponents p0/p and p0/(p0−p) in the first integral,
and p1/p and p1/(p1 − p) in the second. This gives the desired result.
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The idea of the proof of Theorem 2 is to define the function a in the above lemma in
such a way that we can dominate the Mi by suitable powers of

‖f β1‖Lp1 (dζ)

‖f β0‖Lp0 (dζ)
,

and in this way get the multiplicative inequality (12) from the additive (19). This will
give us a Carlson type inequality in the case s = ∞ and p � min{p0, p1} . We then
prove the result for p satisfying

1
p

=
θ
p0

+
1 − θ

p1
,

and use an interpolation argument to get the desired inequality for intermediate p .
Then, the inequality is proved when s satisfies

1
s

=
1
p
− θ

p0
− 1 − θ

p1
.

A similar interpolation argument is then used to conclude that inequality holds under the

correct conditions on the weights for all points
(

1
s ,

1
p

)
in the region shown in Figure 1.

Proof of Theorem 2. We may assume without loss of generality that p0 � p1 .
Furthermore, by replacing |f | by |f |r for some suitable r , p∗ by p∗/r , s by s/r , and
adjusting the weights correspondingly, we may assume that all exponents are � 1 (this
is needed when we apply the Riesz-Thorin interpolation theorem below). Suppose first
that (11) holds with s = ∞ , and assume that p � p0 . Define the sequence {am}m∈Z

by

am =
{

1 if m � m0,
0 if m < m0,

where m0 is to be specified shortly. Let the function a be equal to am on each Zm . By
the definition of the Zm , we have

β
β0

�
∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
L∞(dζ)

2−m(1−θ)

and

β
β1

�
∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
L∞(dζ)

2(m+1)θ
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on Zm . Thus

Mr0
0 =

∫
Z

(
a1/p β

β0

)r0

dζ �

�
∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
r0

L∞(dζ)

∑
m∈Z

∫
Zm

ar0/p
m 2−m(1−θ)r0 dζ �

� C

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
r0

L∞(dζ)

∞∑
m=m0

2−m(1−θ)r0 =

= C

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
r0

L∞(dζ)

2−m0(1−θ)r0

1 − 2−(1−θ)r0
,

where C is the bound on ζm in the statement of the theorem. Similarly,

Mr1
1 � C

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
r1

L∞(dζ)

2m0θr1

1 − 2−θr1
.

If the constants D0 and D1 are chosen so that(
D0(1 − 2−(1−θ)r0)

)1/(1−θ)r0

= 2
(
D1(1 − 2−θr1)

)−1/θr1
, (20)

then, given δ > 0 , we can find m0 such that(
D1(1 − 2−θr1)

)−1/θr1 � 2−m0

δ
�
(
D0(1 − 2−(1−θ)r0)

)1/(1−θ)r0

or
2−m0(1−θ)r0

1 − 2−(1−θ)r0
� D0δ (1−θ)r0

and
2m0θr1

1 − 2−θr1
� D1δ−θr1 .

Thus, for any δ > 0 , we have

M0 � C1/r0

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
L∞(dζ)

D1/r0

0 δ 1−θ (21)

and

M1 � C1/r1

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
L∞(dζ)

D1/r1

1 δ−θ . (22)

Now, put

δ = K
‖f β1‖Lp1 (dζ)

‖f β0‖Lp0 (dζ)
,
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where

K =
(

θ
1 − θ

)1/p

C1/r1−1/r0D−1/r0

0 D1/r1

1 .

Then (19), (21) and (22) yield, after simplification

‖f β‖Lp (dζ) � Cθ/r0+(1−θ)/r1Dθ/r0

0 D(1−θ)/r1

1

(θθ(1 − θ)1−θ)1/p
×

×
∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
L∞(dζ)

‖f β0‖θLp0 (dζ)‖f β1‖1−θ
Lp1 (dζ),

which proves the Carlson type inequality (12) in this case. We note that (20) can be
written as

Dθ/r0

0 D(1−θ)/r1

1 =
2θ(1−θ)

(1 − 2−(1−θ)r0)θ/r0(1 − 2−θr1)(1−θ)/r1
,

and
θ
r0

+
1 − θ

r1
=

1
q
,

so that we can choose

A = A0

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
L∞(dζ)

in (12), where in this case
A0 = (23)

= Ā :=
2θ(1−θ)C1/q

(θθ(1 − θ)1−θ)1/p(1 − 2−(1−θ)r0)θ/r0(1 − 2−θr1)(1−θ)/r1
.

Suppose next that p is chosen so that

1
p

=
θ
p0

+
1 − θ

p1
. (24)

This can be written as
pθ
p0

+
p(1 − θ)

p1
= 1,

and thus p0/pθ and p1/p(1 − θ) are conjugate exponents. It follows by Hölder’s
inequality that∫

Z
|f β |p dζ �

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
p

L∞(dζ)

∫
Z
|f β0|pθ |f β1|p(1−θ) dζ �

�
∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
p

L∞(dζ)

(∫
Z
|f β0|p0 dζ

)pθ/p0
(∫

Z
|f β1|p1 dζ

)p(1−θ)/p1

,

or

‖f β‖Lp (dζ) �
∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
L∞(dζ)

‖f β0‖θLp0 (dζ)‖f β1‖1−θ
Lp1 (dζ).
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This proves (12) when p satisfies (24).
Consider now a fixed f , and also keep the weights βi and the exponents pi ,

i = 0, 1 , fixed. Define the linear operator T on L∞(dζ) by

Tb = (f βθ
0 β

1−θ
1 )b.

We note that the constant in the cases of the inequality proved so far has the form

A = A0

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
L∞(dζ)

(in the latter case, A0 = 1 ). Let

Ā0 =
2θ(1−θ)C(1−θ)(1/p0−1/p1)

(θθ(1 − θ)1−θ)1/p0(1 − 2−θp0p1/(p1−p0))(1−θ)(1/p0−1/p1)
,

that is, Ā0 is Ā as defined in (23) where we have replaced p by p0 . Let p̃ be p as
defined in (24). Since the modulus of any b ∈ L∞ can be written as

|b| =
β

βθ
0 β

1−θ
1

for the correct choice of β , the previously proved cases of our Carlson type in-
equality says that the operator T is bounded L∞ → Lp0 , with norm not exceeding
Ā0‖f β0‖θLp0 (dζ)‖f β1‖1−θ

Lp1 (dζ) , and L∞ → Lp̃ with normatmost ‖f β0‖θLp0 (dζ)‖f β1‖1−θ
Lp1 (dζ) ,

respectively. By the Riesz-Thorin theorem, we get boundedness of T also for interme-
diate p . More precisely, if pσ is defined by

1
pσ

=
σ
p0

+
1 − σ

p̃
,

where σ is any number in (0, 1) , then the norm of T as an operator L∞ → Lpσ is at
most

(Ā0‖f β0‖θLp0 (dζ)‖f β1‖1−θ
Lp1 (dζ))

σ(‖f β0‖θLp0 (dζ)‖f β1‖1−θ
Lp1 (dζ))

1−σ =

= Āσ
0 ‖f β0‖θLp0 (dζ)‖f β1‖1−θ

Lp1 (dζ).

In other words,

‖Tb‖pσ � Āσ
0 ‖f β0‖θLp0 (dζ)‖f β1‖1−θ

Lp1 (dζ)

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
L∞(dζ)

,

or, re-translated to our original situation

‖f β‖Lpσ (dζ) � Āσ
0

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
L∞(dζ)

‖f β0‖θLp0 (dζ)‖f β1‖1−θ
Lp1 (dζ).

This concludes the proof in the case s = ∞ .
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Suppose now that p satisfies

1
p

� θ
p0

+
1 − θ

p1
. (25)

Suppose also that s = q , where q is defined by (8). This can be written as

p
q

+
pθ
p0

+
p(1 − θ)

p1
= 1,

and hence we can apply Hölder’s inequality with three factors, using the exponents

q
p
,

p0

pθ
,

p1

p(1 − θ)
,

which yields

‖f β‖p
Lp (dζ) =

∫
Z
|f β |p dζ =

=
∫

Z

(
β

βθ
0 β

1−θ
1

)p

|f β0|pθ |f β1|p(1−θ) dζ �

�
(∫

Z

(
β

βθ
0 β

1−θ
1

)q

dζ

)p/q

×

×
(∫

Z
|f β0|p0 dζ

)pθ/p0
(∫

Z
|f β1|p1 dζ

)p(1−θ)/p1

=

=

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
p

Lq(dζ)

‖f β0‖pθ
Lp0 (dζ)‖f β1‖p(1−θ)

Lp1 (dζ).

As before, we apply the Riesz-Thorin interpolation theorem to get our result for the
remaining range of parameters. We now consider T as an operator Ls → Lp . If
0 < σ < 1 , let

1
sσ

=
σ
∞ +

1 − σ
q

=
1 − σ

q
.

The norm of T : L∞ → Lp is at most

Ā‖f β0‖θp0
‖f β1‖1−θ

p1
,

where Ā is given by (23), and T : Lq → Lp has norm at most

‖f β0‖θp0
‖f β1‖1−θ

p1
.

The Riesz-Thorin theorem now implies that the norm of T as an operator Lsσ → Lp

does not exceed
Āσ‖f β0‖θp0

‖f β1‖1−θ
p1

.

We finally note that σ/q = 1/q− 1/s , and that Ā depends on C as C1/q by (23), and
thus Āσ has a factor

C1/q−1/s,
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as indicated in Remark 2. The proof is complete.

Proof of Theorem 3. If p, p0, p1 < ∞ , then the condition (8) can be written as

p
q

+
pθ
p0

+
p(1 − θ)

p1
= 1,

and thus we can apply Hölder’s inequality with three factors, using the exponents

q
p
,

p0

pθ
,

p1

p(1 − θ)
.

Assuming that (12) holds with constant

A = Ā = A0

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
Ls(dζ)

,

we thus get, by also using Fubini’s theorem

‖f v‖p
Lp (dξ) =

∫
Y
αp
∫

Z
|f β |p dζ dη �

� Āp
∫

Y

(
α

αθ
0 α

1−θ
1

)p

· · ·

· · ·
(∫

Z
|f α0β0|p0 dζ

)pθ/p0
(∫

Z
|f α1β1|p1 dζ

)p(1−θ)/p1

dη �

� Āp

(∫
Y

(
α

αθ
0 α

1−θ
1

)q

dη

)p/q

×

×
(∫

Y

∫
Z
|f α0β0|p0 dζ dη

)pθ/p0

×

×
(∫

Y

∫
Z
|f α1β1|p1 dζ dη

)p(1−θ)/p1

=

= Āp

∥∥∥∥∥ α
αθ

0 α
1−θ
1

∥∥∥∥∥
p

Lq(dη)

‖f v0‖pθ
Lp0 (dξ)‖f v1‖p(1−θ)

Lp1 (dξ).

Taking p th roots, we get (15) with

A = A0

∥∥∥∥∥ α
αθ

0 α
1−θ
1

∥∥∥∥∥
Lq(dη)

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
Ls(dζ)

.

If p = ∞ , then by (8) and (9) we also have p0 = p1 = q = ∞ , and

|f v| �
∥∥∥∥∥ α
αθ

0 α
1−θ
1

∥∥∥∥∥
L∞(Y)

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
L∞(Z)

|f α0β0|θ |f α1β1|1−θ .
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By taking suprema, the desired result follows. If p < ∞ but p0 or p1 is infinite, the
inequality follows similarly.

Proof of Theorem 4. As in the proof of Theorem 2, we may assume that all
exponents are � 1 . Theorem3 applied first as-is, and thenwith the factors interchanged,
gives the result when (s−1

Z , s−1
Y ) is situated along two of the edges of the triangle shown

in Figure 2. The plan is to use bilinear interpolation to get inequality in the convex hull
of the two faces, namely in the whole triangle. Keep everything but α and β fixed.
Define the bilinear operator T on

LsY (Y, dη) × LsZ (Z, dζ)

by
T(a, b) = (f (α0β0)θ(α1β1)1−θ)ab.

Then the inequality (15), with

A = A0

∥∥∥∥∥ α
αθ

0 α
1−θ
1

∥∥∥∥∥
sY

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
sZ

,

says that T is bounded as an operator

LsY (dη) × LsZ (dζ) → Lp(dξ),

where either sY = q and q � sZ � ∞ or sZ = q and q � sY � ∞ . By applying a
multilinear interpolation theorem (see J. Bergh and J. Löfström [7], Theorem 4.4.1), we
conclude that whenever (s−1

Y , s−1
Z ) is in the triangle (16), we have

‖T(a, b)‖p � A0‖f α0β0‖θp0
‖f α1β1‖1−θ

p1

∥∥∥∥∥ α
αθ

0 α
1−θ
1

∥∥∥∥∥
sY

∥∥∥∥∥ β
βθ

0 β
1−θ
1

∥∥∥∥∥
sZ

for some constant A0 , and this is precisely (15).

Proof of Theorem 5. We note first that if we can get the inequality on the product
space made up from the first k factors, then the result will follow by an application
of Hölders inequality, just as in the proof of Theorem 3. We thus concentrate of the
factors (Zi, dζ (i)) , i = 1, . . . , k . Fix such an index i . Let Y be the product of the
other k − 1 factors. By Theorem 3, we get inequality with si ∈ [q,∞] and sj = q ,
j �= i . Repeating this procedure for all i = 1, . . . , k , the inequality is seen to hold
when (s−1

1 , . . . , s−1
k ) is situated along the lines joining the point (q−1, . . . , q−1) to

the points (q−1, . . . , q−1, 0, q−1, . . . , q−1) . These line segments make up a skeleton,
whose convex hull is all of the simplex defined in (17). Thus, assuming as above that
all exponents are � 1 , the result follows by using n -linear interpolation.

3. Applications and further results

In this section, we discuss some of the applications of our results, beginning with
Carlson’s inequality (1).
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(a) Let Z = {1, 2, . . .} , and define the measure dζ on Z by

ζ({k}) =
1
k
, k ∈ Z.

Let β(k) = k , β0(k) = k1/2 and β1(k) = k3/2 . Define the parameters p∗ as p = 1
and p0 = p1 = 2 , and put θ = 1/2 . If ak = |f (k)| , k ∈ Z , we have∫

Z
|f β |p dζ =

∞∑
k=1

ak,

∫
Z
|f β0|p0 dζ =

∞∑
k=1

a2
k

and ∫
Z
|f β1|p1 dζ =

∞∑
k=1

k2a2
k .

The reader can verify that the weights satisfy the requirements (10) and (11) of Theorem
2, with C = 1 and s = ∞ , respectively. Except that we do not get the sharp constant,
Theorem 2 now implies (1).

(b) Let us also show how (4), (5) and (6) in Theorem 1 imply (3), although not with
the best constant. Let Z = (0,∞) , equipped with the homogeneous measure

dζ(ρ) = ρ−1 dρ,

where dρ denotes Lebesgue measure. Let Y = S , where S is the subset of the unit
sphere in Rn defining the cone Ω , and let dη be its surface area measure dσ . Define

α∗(s) = w∗(s), s ∈ S,

and put
β∗(ρ) = ρd∗ , ρ ∈ (0,∞).

The condition (6) is precisely (14). By (4), it follows that

β
βθ

0 β
1−θ
1

≡ 1,

so that (11) certainly holds with s = ∞ . Let τ = d0 − d1 . Then τ is non-zero, by the
assumption (5). Let

V(ρ) =
β0(ρ)
β1(ρ)

= ρτ .

Then

ζ
({2m � V < 2m+1}) � 1

|τ| log 2, m ∈ Z,
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so (10) is satisfied as well. We note that∫
Ω
|f w∗|p∗ dx =

∫
S

∫ ∞

0
|f (s, ρ)w∗(s)ργ∗ |p∗ρn−1 dρ dσ =

=
∫

S

∫ ∞

0
|f (s, ρ)w∗(s)ρd∗ |p∗ρ−1 dρ dσ =

=
∫

Y

∫
Z
|f α∗β∗|p∗ dζ dη =

∫
X
|f v∗|p∗ dξ .

(3) now follows from Theorem 3.
Note that, in Theorem 3, we do not restrict ourselves to p < p0, p1 , but allow a

wider range of p . We thus get the following proposition, which does not follow from
Theorem 1.

PROPOSITION 1. Suppose that 0 < θ < 1 , and that the positive numbers p , p0

and p1 satisfy
1
p

� θ
p0

+
1 − θ

p1
.

If d = θd0 + (1 − θ)d1 and d0 �= d1 , and if

w

wθ
0w1−θ

1

∈ Lq,

where the d∗ and the w∗ are as in Theorem 1, then there is a constant A such that

‖f w‖Lp (Ω,dx) � A‖f w0‖θLp0 (Ω,dx)‖f w1‖1−θ
Lp1 (Ω,dx)

holds for all measurable functions f .

(c) In the following application, we control the integrability of the Fourier transform of
a function by integral norms of the function itself and its derivatives.

Fix an integer n � 1 . Suppose that f : Rn → C is integrable. We define the
Fourier transform of f by

ˆf (z) =
∫

Rn
f (x)e−iz·x dx, z ∈ R

n,

where z · x denotes the Euclidian inner product in Rn .

PROPOSITION 2. Suppose that 1 < r0, r1 � 2 , and that α is a positive integer
satisfying

α >
n
r0

. (26)

Define

θ =
n/r1

α + n
(

1
r1
− 1

r0

) .
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Then there is a constant C such that

‖ ˆf ‖L1(Rn) � C

⎛⎝∑
|γ |=α

‖Dγ f ‖Lr0 (Rn)

⎞⎠θ

‖f ‖1−θ
Lr1 (Rn).

Here, γ = (γ1, . . . , γn) ∈ Zn
+ , and standard multi-index notation is used. Dγ f denotes

the derivative
∂|γ |f

∂xγ11 · · · ∂xγnn
.

Proof. Define, on Rn , the measure

dζ =
dz
|z|n

and the weights
β(z) = |z|n,

β0(z) = |z|n/r′0
∑
|γ |=α

|zγ |,

and
β1(z) = |z|n/r′1 .

Put p = 1 , p0 = r′0 and p1 = r′1 . Let

B(z) =
β(z)

βθ
0 (z)β1−θ

1 (z)
=

= |z|n/q

⎛⎝∑
|γ |=α

|zγ |
⎞⎠−θ

,

where q is defined by
1
q

= 1 − θ
p0

− 1 − θ
p1

.

Then B is homogeneous of degree

n
q
− θα = 0,

and thus constant along rays from the origin. In particular, since B is continuous, as
is easily seen, B is bounded on Rn . This gives the condition (11) of Theorem 2 with
s = ∞ . Moreover, if V is defined by

V(z) =
β0(z)
β1(z)

=

= |z|n
(

1
r1
− 1

r0

) ∑
|γ |=α

|zγ |,
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then V is homogeneous of degree

τ = α + n

(
1
r1

− 1
r0

)
,

and τ > 0 by the assumption (26). There is a constant C0 such that

ζ
({2m � V < 2m+1}) � C0

τ
, m ∈ Z,

that is, (10) holds. Thus, by Theorem 2, we have

‖ ˆf ‖L1(Rn) �

� C

(∫
Rn

| ˆf (z)β0(z)|p0 dζ(z)
)θ/p0

(∫
Rn

| ˆf (z)β1(z)|p1 dζ(z)
)(1−θ)/p1

=

= C

⎛⎜⎝∫
Rn

∣∣∣∣∣∣ ˆf (z)
∑
|γ |=α

|zγ |
∣∣∣∣∣∣
r′0

dz

⎞⎟⎠
θ/r′0 (∫

Rn
| ˆf (z)|r′1 dz

)(1−θ)/r′1
=

= C

⎛⎜⎝∫
Rn

⎛⎝∑
|γ |=α

| ˆf (z)zγ |
⎞⎠r′0

dz

⎞⎟⎠
θ/r′0 (∫

Rn
| ˆf (z)|r′1 dz

)(1−θ)/r′1
=

= C

⎛⎜⎝∫
Rn

⎛⎝∑
|γ |=α

|D̂γ f (z)|
⎞⎠r′0

dz

⎞⎟⎠
θ/r′0 (∫

Rn
| ˆf (z)|r′1 dz

)(1−θ)/r′1
=

= C

∥∥∥∥∥∥
∑
|γ |=α

|D̂γ f |
∥∥∥∥∥∥
θ

Lr′
0 (Rn)

‖ ˆf ‖1−θ
Lr′

1 (Rn)
�

� C

⎛⎝∑
|γ |=α

‖D̂γ f ‖
Lr′

0 (Rn)

⎞⎠θ

‖ ˆf ‖1−θ
Lr′

1 (Rn)
,

where we have used the triangle inequality. We can now apply the Hausdorff-Young
inequality (this is where we need 1 < ri � 2 ) to each term of the sum, and to the
rightmost norm, and we get

‖ ˆf ‖L1(Rn) � C

⎛⎝∑
|γ |=α

‖Dγ f ‖Lr0 (Rn)

⎞⎠θ

‖f ‖1−θ
Lr1 (Rn),

which is what we wanted.

In analogy with Proposition 2, we get the corresponding discrete version, except
that we have to treat the 0 th Fourier coefficient with a little extra care.
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If f : Tn → C is integrable, where Tn is the n -dimensional torus

T
n = R

n/Z
n,

define the m th Fourier coefficient of f by

ˆf (m) =
∫

Tn
f (x)e−2πim·x dx, m ∈ Z

n.

A(Tn) is, by definition, the vector space of all integrable functions having abso-
lutely convergent Fourier series. We equip A(Tn) with the norm

‖f ‖A(Tn) =
∑
m∈Zn

| ˆf (m)|,

under which it becomes a Banach space.

PROPOSITION 3. Suppose that 1 < r0, r1 � 2 , and that α is a positive integer
satisfying

α >
n
r0

.

Define

θ =
n/r1

α + n
(

1
r1
− 1

r0

) .

Then there is a constant C such that

‖f ‖A(Tn) � | ˆf (0)| + C

⎛⎝∑
|γ |=α

‖Dγ f ‖Lr0 (Tn)

⎞⎠θ

‖f ‖1−θ
Lr1 (Tn). (27)

Proof. Assume first that ˆf (0) = 0 . We can then proceed as in the proof of the
previous proposition, but define the weights β∗ and the functions B and V only on the
integer lattice. The general case follows easily from this.

If we let r0 = r1 = r in Proposition 3, then

θ =
n
rα

.

If we also keep in mind that | ˆf (0)| � ‖f ‖L1(Tn) , we get the following special case.

COROLLARY 1. (A. Kamaly [15], Theorem 1) Let f ∈ A(Tn) and ˆf (0) = 0 . Let
1 < r � 2 , and let the positive integer α be such that α > n

r . Then we get

‖f ‖A(Tn) � C‖f ‖1− n
rα

r

⎛⎝∑
|γ |=α

‖Dγ f ‖r

⎞⎠ n
rα

.
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In the case ˆf (0) �= 0 , we obtain

‖f ‖A(Tn) � ‖f ‖1 + C‖f ‖1− n
rα

r

⎛⎝∑
|γ |=α

‖Dγ f ‖r

⎞⎠
n
rα

.

The constant C depends only on α , n and r .

For more applications of the main result, see [20].

4. Concluding remarks

REMARK 4. Although we lose track of best constants and cases of equality in our
very general setting, we can still compare the asymptotic behaviour of constants in the
cases where the best constants are known. Consider, for example, the best constant
in Theorem 1, given by 7). It has a factor |d0 − d1|−1/q . Applying Theorem 3, with
s = ∞ , to the case of homogeneousweights on the cone Ω , the constant A has a factor
C1/q−1/s = C1/q (see Remark 2), where

C =
1

|d0 − d1| log 2

(see Section 3.). Thus we do, indeed, have the correct asymptotic behaviour of our
constant when |d0 − d1| → 0 .

Consider now what happens if we let θ → 0 in (7). Since t−t → 1 if t → 0 , the
only factor which blows up is(

B

(
θ

q
p0

, (1 − θ)
q
p1

))1/q

,

or even (
Γ
(
θ

q
p0

))1/q

.

It is well-known that

Γ(t) ∼ 1
t

as t → 0,

so that Ã ∼ θ−1/q. The critical factor in our constant A is

(1 − 2−θr1)−(1−θ)/r1 ,

see (23). This behaves like θ−1/r1 as θ → 0 . Now,

1
q

∣∣∣∣
θ=0

=
1
p
− 1

p1
=

1
r1

.

Thus, we have the correct qualitative constant also in this limiting case. The behaviour
when θ → 1 can be treated analogously.
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REMARK 5. We show by an example that the condition

1
p

� θ
p0

+
1 − θ

p1
(28)

is, in general, necessary for Theorem 2 to hold. Consider Z = [0, 1] equipped with
Lebesgue measure. Fix θ ∈ (0, 1) and p0, p1 > 0 . Let β = β0 = β1 = 1 . Since the
measure is finite, the condition (10) is trivially satisfied. Also,

B =
β

βθ
0 β

1−θ
1

≡ 1,

so B ∈ Ls for any s . If 0 < ε < 1 , let f ε be the characteristic function of the interval
[0, ε] . Then

‖f εβ∗‖p∗ = ε1/p∗ ,

and hence ‖f εβ‖p

‖f εβ0‖θp0
‖f εβ1‖1−θ

p1

= ε
1
p− θ

p0
− 1−θ

p1 .

Thus, if (28) is violated, this quotient can be made as large as we want by choosing ε
small, that is, there is no finite constant such that (12) holds.

REMARK 6. Let us show that the condition (10) can not be relaxed in the case
s > q , in order for (12) to hold in general. We consider the interval Z = (1,∞) and
we let dζ be Lebesgue measure. Let

β∗(z) = z−1/p∗ .

Then
β(z)

βθ
0 (z)β1−θ

1 (z)
= z−1/q.

This quotient is in Ls precisely when s > q . For R > 1 , let f R be the characteristic
function of the interval (1, R) . Then∫

Z
|f Rβ∗|p∗ dζ =

∫ R

1

dz
z

= logR,

so that (∫
Z |f Rβ |p dζ

)1/p(∫
Z |f Rβ0|p0 dζ

)θ/p0
(∫

Z |f Rβ1|p1 dζ
)(1−θ)/p1

= (logR)1/q.

This clearly tends to infinity as R → ∞ . Thus, even though the condition (11) in
Theorem 2 is satisfied, there is no finite constant A such that (12) holds.

REMARK 7. The triangle (16) of Theorem 4 is, at least in the case p0 = p1 , in the
following sense, the largest possible region in which we have an inequality of Carlson
type on a product space. It suffices to show failure on the diagonal sZ = sY = s ,
s > 2q . Let Z = Y = (2,∞) and consider the measures

dζ(z) =
dz
z

, dη(y) =
dy
y

.
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Define
β0(z) = z1/p0 , β1(z) = z1+1/p0 ,

α0(y) = y1+1/p0 , α1(y) = y1/p0 .

Also, let
β = gβθ

0 β
1−θ
1

and
α = gαθ

0 α
1−θ
1 ,

where
g(t) = (log t)−1/2q.

Then
A =

α
αθ

0 α
1−θ
1

and

B =
β

βθ
0 β

1−θ
1

are both in Ls if and only if s > 2q . The condition (10) is then satisfied on both
spaces. Thus Theorem 2 guarantees that the Carlson type inequality holds for both
factors. Consider, however, the functions f R , defined on Z × Y by

f R(z, y) = (g(z)g(y))q/p0
√

z2 + y2
−1−2/p0

KR(z, y),

where KR is the characteristic function of the set

PR =
{

(z, y) ∈ (2,∞)2; r0 �
√

z2 + y2 � R,
π
8

� arc tan
y
z

� 3π
8

}
,

and

r2
0 =

8
√

2√
2 − 1

.

It can be shown that there are constants c and C such that for all (z, y) ∈ PR , we have

c(log
√

z2 + y2)2 � (log z)(log y) � C(log
√

z2 + y2)2.

Thus, if dξ denotes the product measure, we have∫
|f Rαβ |p dξ � k

∫ R

r0

dr
r log r

and (∫
|f Rα0β0|p0 dξ

)θ/p0
(∫

|f Rα1β1|p0 dξ
)(1−θ)/p0

�

� K

(∫ R

r0

dr
r log r

)1/p0

.
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Hence
‖f Rαβ‖Lp(dξ)

‖f Rα0β0‖θLp0 (dξ)‖f Rα1β1‖1−θ
Lp0 (dξ)

�

� H

(∫ R

r0

dr
r log r

)1/q

→ ∞, R → ∞,

where H is a positive constant, and we see that a Carlson type inequality can not hold
on the product space.

REMARK 8. The author conjectures that the simplex (17) in Theorem 5 is the
largest possible parameter region in which we can prove the Carlson type inequality
(18). The counter-example in Remark 7 above will only generalize to a smaller set than
the complement of (17) if k > 2 .

REMARK 9. We recall that Theorem 1 gives necessary and sufficient conditions for
the Carlson type inequality (3) to hold for special parameters and the specific product
measure space. It remains an open question whether there are similar necessary and
sufficient conditions in more general cases – or even in the general situation discussed
in Theorems 2 to 5.
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