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Abstract. In this paper, we investigate the Hyers-Ulam-Rassias stability of a new quadratic
functional equation

f (x + y + z + w) + 2f (x) + 2f (y) + 2f (z) + 2f (w)

= f (x + y) + f (y + z) + f (z + x) + f (x + w) + f (y + w) + f (z + w).

Moreover, the stability results will be applied to the study of an interesting asymptotic property
of the quadratic function.

1. Introduction

In 1940, S. M. Ulam [14] gave a wide ranging talk before the mathematics club
of the University of Wisconsin in which he discussed a number of important unsolved
problems. Among those was the question concerning the stability of group homomor-
phisms:

Let G1 be a group and let G2 be a metric group with the metric d(·, ·) . Given
ε > 0 , does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the
inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1 , then there exists a homomorphism
H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1?

In other words, we are looking for situations when the homomorphisms are stable,
i.e. if a mapping is almost a homomorphism,then there exists a true homomorphism near
it. The case of approximately additive functions was solved by D. H. Hyers [5] under
the assumption that G1 and G2 are Banach spaces. In 1978, a generalized solution to
Ulam’s problem for approximately linear mappings was given by Th. M. Rassias [12].
The stability problems of several functional equations have been extensively investigated
by a number of authors. The terminology Hyers-Ulam-Rassias stability originates from
these historical backgrounds. These terminologies are also applied to the case of other
functional equations. For more detailed definitions of such terminologies, we can refer
to [6, 9, 10].
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It is easy to see that the quadratic function f (x) = cx2 is a solution of each of the
following functional equations:

f (x + y) + f (x − y) = 2f (x) + 2f (y), (1)
f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (y + z) + f (z + x), (2)
f (x − y − z) + f (x) + f (y) + f (z) = f (x − y) + f (y + z) + f (z − x). (3)

So, it is natural that each equation is called a quadratic functional equation. In particular,
every solution of the quadratic equation (1) is said to be a quadratic function. It is well
known that a function f between real vector spaces is quadratic if and only if there
exists a unique symmetric biadditive function B such that f (x) = B(x, x) for all x
(see [1], [10]). The functional equation (2) was solved by Pl. Kannappan. In fact, he
proved that a functional on a real vector space is a solution of equation if and only
if there exist a symmetric biadditive function B and an additive function A such that
f (x) = B(x, x) + A(x) for any x (see [10]).

A Hyers-Ulam stability theorem for the quadratic functional equation was proved
by F. Skof for functions f : E1 → E2 , where E1 is a normed space and E2 a Banach
space (see [13]). P. W. Cholewa [3] noticed that the theorem of Skof is still true if the
relevant domain E1 is replaced by an abelian group. In the paper [4], S. Czerwik proved
the Hyers-Ulam-Rassias stability of the quadratic functional equation. Recently S. M.
Jung [8] investigated the Hyers-Ulam stability of the equation. Furthermore he proved
the Hyers-Ulam-Rassias stability of the equation [9]. K. W. Jun and Y. H. Lee [7] proved
the Hyers-Ulam-Rassias stability of the pexiderized quadratic equation.

Now, consider the following functional equation:

f (x + y + z + w) + 2f (x) + 2f (y) + 2f (z) + 2f (w)
= f (x + y) + f (y + z) + f (z + x) + f (x + w) + f (y + w) + f (z + w).

(4)

In this paper, the Hyers-Ulam-Rassias stability of the new equation shall be proved
under the approximately even (or odd) condition.

2. Solutions of eq. (4)

In the following theorem, we will find out the general solution of the functional
equation (4).

THEOREM 1. Let X and Y real vector spaces. A function f : X → Y satisfies
the functional equation (4) if and only if there exist a symmetric biadditive function
B : X2 → Y and an additive function A : X → Y such that f (x) = B(x, x) + A(x) for
all x ∈ X .

Proof. We first assume that f is a solution of the functional equation (4). If we
put x = y = z = w = 0 in (4), f (0) = 0 . Let w = 0 in (4). Then a function
f satisfies the functional equation (2). Therefore, according to [10], the assertion is
trivial. Conversely, if there exist a symmetric biadditive function B : X2 → Y and an
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additive function A : X → Y such that f (x) = B(x, x) + A(x) for all x ∈ X , we may
easily check that f satisfies the equation (4). �

3. Approximately even case

In this section, let X and Y be a real normed space and aBanach space, respectively
unless we give any specific reference. Let R

+ denote the set of all nonnegative real
numbers. Let H : R

+×R
+×R

+×R
+ → R

+ be a function such that H(tu, tv, tw, tx) �
tpH(u, v, w, x) for all t, u, v, w, x ∈ R

+ and for some p ∈ R. And let E , O : R
+ → R

+

be functions satisfying E(tx) � tqE(x) , O(tx) � tqO(x) , respectively, for all t, x ∈ R
+

and for some q ∈ R. For convenience, we use the following abbreviation:

Df (x, y, z, w) =f (x + y + z + w) + 2f (x) + 2f (y) + 2f (z) + 2f (w)
− f (x + y) − f (y + z) − f (z + x) − f (x + w)
− f (y + w) − f (z + w).

We first prove the following lemma.

LEMMA 2. Given p ∈ R , assume that a mapping f : X → Y satisfies the following
inequality:

‖Df (x, y, z, w)‖ � H(‖x‖, ‖y‖, ‖z‖, ‖w‖)
for all x, y, z, w ∈ X (or X − {0}) . Then it holds that

∥∥∥∥f (x) − 2n + 1
22n+1

f (2nx) +
2n − 1
22n+1

f (−2nx)
∥∥∥∥ (5)

� H(‖x‖, ‖x‖, ‖x‖, ‖x‖)
n∑

k=1

2(k−1)p

2k+1
+ 3‖f (0)‖

n∑
k=1

1
2k+1

for all x ∈ X (or X − {0} , respectively) and n ∈ N.

Proof. We can prove Lemma 2 by using the same argument of Lemma 5 in [8]. �
In the following theorem, we can prove the Hyers-Ulam-Rassias stability of the

equation (4) under the approximately even condition.

THEOREM 3. Let p, q < 1 be real numbers. Suppose that a function f : X → Y
satisfies

‖Df (x, y, z, w)‖ � H(‖x‖, ‖y‖, ‖z‖, ‖w‖), (6)
‖f (x) − f (−x)‖ � E(‖x‖)

for all x, y, z, w ∈ X . Then there exists a unique quadratic function g : X → Y which
satisfies (4) and the inequality

‖f (x) − g(x)‖ � H(‖x‖, ‖x‖, ‖x‖, ‖x‖)
4 − 2p+1

+
3
2
‖f (0)‖ (7)
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for all x ∈ X . Moreover, if f is measurable or f (tx) is continuous in t for each fixed
x ∈ X, then g(tx) = t2g(x) for all x ∈ X and t ∈ R.

Proof. It follows from (5) and the second condition in (6) that

∥∥∥∥f (x) − f (2nx)
22n

∥∥∥∥ � H(‖x‖, ‖x‖, ‖x‖, ‖x‖)
n∑

i=1

2(i−1)p

2i+1
(8)

+ 3‖f (0)‖
n∑

i=1

1
2i+1

+
(2n − 1)2nq

22n+1
E(‖x‖)

for all x ∈ X . In order to prove convergence of the sequence {gn(x) = f (2nx)
22n }, we

show that {gn(x)} is a Cauchy sequence in Y. By (8), we have for n � m > 0,

∥∥∥ f (2nx)
4n

− f (2mx)
4m

∥∥∥ =
1
4m

∥∥∥∥ f (2n−m2mx)
4n−m

− f (2mx)
∥∥∥∥

� 1
4m

[
H(‖x‖, ‖x‖, ‖x‖, ‖x‖)2mp

n−m∑
i=1

2(i−1)p

2i+1
+ 3‖f (0)‖

n−m∑
i=1

1
2i+1

+
(2n−m − 1)2(n−m)q2mq

22n−2m+1
E(‖x‖)

]

= H(‖x‖, ‖x‖, ‖x‖, ‖x‖)
n−m∑
i=1

2(m+i−1)p

22m+i+1
+ 3‖f (0)‖

n−m∑
i=1

1
22m+i+1

+
(2n−m − 1)2nq

22n+1
E(‖x‖).

Since the right-hand side of the inequality tends to 0 as m tends to infinity, the sequence
{gn(x)} is a Cauchy sequence. Therefore, we may define g(x) = lim

n→∞ 2−2nf (2nx) for

all x ∈ X ; it follows g(0) = 0 vacuously. By letting n → ∞ in (8), we arrive at the
formula

‖f (x) − g(x)‖ � H(‖x‖, ‖x‖, ‖x‖, ‖x‖)
4 − 2p+1

+
3
2
‖f (0)‖

for all x ∈ X . To show that g satisfies the equation (4), replace x, y, z and w by
2nx, 2ny, 2nz and 2nw, respectively in the first condition in (6) and divide by 4n, then
it follows that

‖gn(x + y + z + w) + 2gn(x) + 2gn(y) + 2gn(z) + 2gn(z)
− gn(x + y) − gn(y + z) − gn(z + x) − gn(x + w) − gn(y + w) − gn(z + w)‖
� 2−2n+npH(‖x‖, ‖y‖, ‖z‖, ‖w‖).

Taking the limit as n → ∞, we find that g satisfies (4) for all x, y, z, w ∈ X .
Analogously, by the second condition in (6), we can show that g is even. Putting
z = −y, w = 0 and f = g in (4), we see that g is quadratic, i.e.

g(x + y) + g(x − y) − 2g(x) − 2g(y) = 0.
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Now, let T : X → Y be another quadraticmappingwhich satisfies (4) and the inequality
(7). Obviously, we have g(2nx) = 4ng(x) and T(2nx) = 4nT(x) for all x ∈ X and
n ∈ N. Hence it follows from (7) that

‖g(x) − T(x)‖ = 4−n‖g(2nx) − T(2nx)‖
� 4−n(‖g(2nx) − f (2nx)‖ + ‖f (2nx) − T(2nx)‖)
� 4−n

[
2npH(‖x‖, ‖x‖, ‖x‖, ‖x‖)

2 − 2p
+ 3‖f (0)‖

]

for all x ∈ X. By letting n → ∞ in the preceding inequality, we immediately find the
uniqueness of g. The proof of the last assertion in the theorem goes through in the same
way as that of [4]. This completes the proof. �

Define functions H : R
+ × R

+ × R
+ × R

+ → R
+ and E : R

+ → R
+ by

H(x, y, z, w) = (xp + yp + zp + wp)ε and E(x) = xqθ , where ε, θ � 0 and p, q ∈ R .
Then we have the following corollary.

COROLLARY 4. Let ε � 0, θ � 0 and p, q < 1 be real numbers. Suppose that a
function f : X → Y satisfies

‖Df (x, y, z, w)‖ � ε(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p), (9)
‖f (x) − f (−x)‖ � θ‖x‖q

for all x, y, z, w ∈ X . Then there exists a unique quadratic function g : X → Y which
satisfies (4) and the inequality

‖f (x) − g(x)‖ � 2ε‖x‖p

2 − 2p
+

3
2
‖f (0)‖ (10)

for all x ∈ X . Moreover, if f is measurable or f (tx) is continuous in t for each fixed
x ∈ X, then g(tx) = t2g(x) for all x ∈ X and t ∈ R.

COROLLARY 5. Assume that a function f : X → Y satisfies

‖Df (x, y, z, w)‖ � ε,
‖f (x) − f (−x)‖ � θ

for some ε, θ � 0 and for all x, y, z, w ∈ X . Then there exists a unique quadratic
function g : X → Y which satisfies (4) and the inequality

‖f (x) − g(x)‖ � ε

for all x ∈ X . Moreover, if f is measurable or f (tx) is continuous in t for each fixed
x ∈ X, then g(tx) = t2g(x) for all x ∈ X and t ∈ R.
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Proof. In similar fashion of Lemma 2, we note that

∥∥∥f (x) − 2n + 1
22n+1

f (2nx) +
2n − 1
22n+1

f (−2nx)
∥∥∥ �

n∑
k=1

1
2k
ε.

The arguments used in Theorem 3 carry over almost verbatim. �

4. Approximately odd case

THEOREM 6. Let p, q < 1 be real numbers. Suppose that a function f : X → Y
satisfies

‖Df (x, y, z, w)‖ � H(‖x‖, ‖y‖, ‖z‖, ‖w‖), (11)
‖f (x) + f (−x)‖ � O(‖x‖)

for all x, y, z, w ∈ X . Then there exists a unique additive function A : X → Y which
satisfies (4) and the inequality

‖f (x) − A(x)‖ � H(‖x‖, ‖x‖, ‖x‖, ‖x‖)
4 − 2p+1

+
3
2
‖f (0)‖ (12)

for all x ∈ X . Moreover, if f (tx) is continuous in t for each fixed x ∈ X , then A is
linear.

Proof. Using Lemma 2 and the second condition in (11), we get
∥∥∥∥f (x) − f (2nx)

2n

∥∥∥∥ � H(‖x‖, ‖x‖, ‖x‖, ‖x‖)
n∑

i=1

2(i−1)p

2i+1
(13)

+ 3‖f (0)‖
n∑

i=1

1
2i+1

+
2n − 1
22n+1

O(2n‖x‖)

for all x ∈ X . We will show that {2−nf (2nx)} is a Cauchy sequence in Y . By (13),
we have, for n � m > 0,

∥∥∥ f (2nx)
2n

− f (2mx)
2m

∥∥∥ =
1
2m

∥∥∥∥ f (2n−m2mx)
2n−m

− f (2mx)
∥∥∥∥

� 1
2m

[
H(‖x‖, ‖x‖, ‖x‖, ‖x‖)2mp

n−m∑
i=1

2(i−1)p

2i+1
+ 3‖f (0)‖

n−m∑
i=1

1
2i+1

+
(2n−m − 1)2(n−m)q2mq

22n−2m+1
O(‖x‖)

]

= H(‖x‖, ‖x‖, ‖x‖, ‖x‖)
n−m∑
i=1

2(m+i−1)p

2m+i+1
+ 3‖f (0)‖

n−m∑
i=1

1
2m+i+1

+
(2n−m − 1)2nq

22n−m+1
O(‖x‖),
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which becomes arbitrarily small as m → ∞ . Now,we can define A(x) = lim
n→∞ 2−nf (2nx)

for all x ∈ X ; it follows A(0) = 0 . Similarly, as in the proof of Theorem 3, due to (11),
we see that the mapping A satisfies the equation (4) and is odd. Let z = −y, w = 0
and f = A in (4). Since A is odd and A(0) = 0 , we get

2A(x) = A(x + y) + A(x − y). (14)

In particular, putting y = x in the above relation (14), we obtain A(2x) = 2A(x) . If
set u = x + y and v = x − y in (14), we have

2A(
u + v

2
) = A(u) + A(v).

By replacing u, v and 2x, 2y in the preceding relation and dividing by 2, we note that
the mapping A is additive mapping. The validity of the inequality (12) follows directly
from (13) and the definition of A .

Now, G : X → Y be another additive mapping which satisfies (12). It then follows
from (12) that

‖A(x) − G(x)‖ = 2−n‖A(2nx) − G(2nx)‖
� 2−n(‖A(2nx) − f (2nx)‖ + ‖f (2nx) − G(2nx)‖)
� 2−n

[
2npH(‖x‖, ‖x‖, ‖x‖, ‖x‖)

2 − 2p
+ 3‖f (0)‖

]

for all x ∈ X. This implies the uniqueness of the A . The proof of the linearity of A
needs no essential alternations in comparison with the case [12]. �

Now as Corollary 4 in section 3, we can define functions H, O . Then we obtain
the following Corollary.

COROLLARY 7. Let ε � 0, θ � 0 and p, q < 1 be real numbers. Suppose that a
function f : X → Y satisfies

‖Df (x, y, z, w)‖ � ε(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p),
‖f (x) + f (−x)‖ � θ‖x‖q

for all x, y, z, w ∈ X . Then there exists a unique additive function A : X → Y which
satisfies (4) and the inequality

‖f (x) − A(x)‖ � 2ε‖x‖p

2 − 2p
+

3
2
‖f (0)‖

for all x ∈ X . Moreover, if f (tx) is continuous in t for each fixed x ∈ X, then A is
linear.
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COROLLARY 8. Assume that a function f : X → Y satisfies

‖Df (x, y, z, w)‖ � ε,
‖f (x) + f (−x)‖ � θ

for some ε, θ � 0 and for all x, y, z, w ∈ X . Then there exists a unique additive
function A : X → Y which satisfies (4) and the inequality

‖f (x) − A(x)‖ � ε

for all x ∈ X . Moreover , if f (tx) is continuous in t for each fixed x ∈ X , then A is
linear.

Proof. By same method of Lemma 2, we get

∥∥∥f (x) − 2n + 1
22n+1

f (2nx) +
2n − 1
22n+1

f (−2nx)
∥∥∥ �

n∑
k=1

1
2k
ε.

The proof is similar to the theorem 6. �
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