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TRANSFORMATION AND THE SPECTRAL RADIUS

DERMING WANG
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Abstract. Employing Heinz and McIntosh inequalities, this paper presents a simplified proof of
Yamazaki’s characterization of the spectral radius: If Tn is the n -th Aluthge transformation of
a bounded linear operator T , then the sequence {||Tn||}∞n=0 converges to the spectral radius of
T.

1. Introduction

Let T be a bounded linear operator on a Hilbert space with spectrum σ(T). The
spectral radius r(T) of T is defined by

r(T) = sup{|λ | : λ ∈ σ(T)}.

It is well known that the spectral radius may be characterized as

r(T) = lim
k→∞

||Tk||1/k. (1)

Employing a norm inequality of Heinz and a laborious scheme, Yamazaki [6] recently
obtained a new characterization (Theorem 3 below) of the spectral radius as the limit
of the norm of the n -th Aluthge transformation of T. In this paper we will further
employ a norm inequality due to McIntosh to give a simplified proof of Yamazaki’s
characterization.

2. Preliminaries

For a bounded linear operator T, we will write T0 = T, and throughout the
discussion, T and T0 will be used interchangeably. Let T = T0 = U0|T0| be the polar
decomposition of T. Following [1], we define

T1 = |T0|1/2U0|T0|1/2.

Mathematics subject classification (2000): 47A10, 47A30.
Key words and phrases: Heinz and McIntosh inequalities, Aluthge transformation, spectral radius.

c© � � , Zagreb
Paper MIA-06-11

121



122 DERMING WANG

The operator T1 is known as the Aluthge transformation, or first Aluthge transforma-
tion of T. Let T1 = U1|T1| be the polar decomposition of T1. The second Aluthge
transformation T2 of T is defined by

T2 = |T1|1/2U1|T1|1/2.

Inductively, if Tn = Un|Tn| is the polar decomposition of the n -th Aluthge transforma-
tion, one defines the (n + 1) -st Aluthge transformation as

Tn+1 = |Tn|1/2Un|Tn|1/2.

Yamazaki’s characterization of the spectral radius is

lim
n→∞ ||Tn|| = r(T). (2)

3. The Result

Our proof, by Lemmas 1 – 4 and Theorem 3 below, employs the following two
thoerems. The first theorem is the McIntosh inequality, the second, the Heinz inequality.

THEOREM 1 ([5], [2, Theorem 1]). For bounded linear operators A, B and X,

‖A∗XB‖ � ‖AA∗X‖1/2‖XBB∗‖1/2.

THEOREM 2 ([3], [4]). For positive operators A and B, and bounded linear
operator X,

‖AαXBα‖ � ‖AXB‖α‖X‖1−α,

for all 0 � α � 1.

For the Aluthge transformations defined above, it is apparent that ‖Tn+1‖ � ‖Tn‖
for all n � 0. Moreover, it is known that σ(Tn) = σ(T) for all n � 0. Consequently,
the sequence {‖Tn‖}∞n=0 is a decreasing sequence which is bounded below by r(T).
This yields our first lemma.

LEMMA 1. There is an s � r(T) for which lim
n→∞ ||Tn|| = s.

To prove (2), we need only show that s = r(T). Our next lemma shows that for
any positive integer k, the sequence {‖Tk

n‖}∞n=0 is decreasing.

LEMMA 2. For any positive integer k,

‖Tk
n+1‖ � ‖Tk

n‖
for all n � 0. Consequently, the decreasing sequence {‖Tk

n‖}∞n=0 is convergent.

Proof. By Theorem 1, we have

‖Tk
n+1‖ = ‖|Tn|1/2Tk−1

n Un|Tn|1/2‖
� ‖|Tn|Tk−1

n Un‖1/2‖Tk−1
n Un|Tn|‖1/2

� ‖Tk
n‖.

�
Using Theorem 2, Lemma 3 was essentially proven by Yamazaki [6, Lemma 3].

For the sake of completeness, we reproduce the proof here.
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LEMMA 3. For any positive integer k,

‖Tk
n+1‖ � ‖Tk+1

n ‖1/2‖Tk−1
n ‖1/2,

for all n � 0.

Proof. By Theorem 2, we have

‖Tk
n+1‖ = ‖|Tn|1/2Tk−1

n Un|Tn|1/2‖
� ‖|Tn|Tk−1

n Un|Tn|‖1/2‖Tk−1
n Un‖1/2

� ‖Tk+1
n ‖1/2‖Tk−1

n ‖1/2.

�
The next lemma shows that the decreasing sequence {‖Tk

n‖}∞n=0 converges to sk,
where s = lim

n→∞ ‖Tn‖ is as in Lemma 1.

LEMMA 4. For any positive integer k, lim
n→∞ ‖Tk

n‖ = sk.

Proof. We will prove the lemma by induction. Since lim
n→∞ ‖Tn‖ = s by Lemma

1, the lemma is proven for k = 1. Assume the lemma is proven for 1 � k � m. By
Lemma 3,

‖Tm
n+1‖ � ‖Tm+1

n ‖1/2‖Tm−1
n ‖1/2 � ‖Tm

n ‖1/2‖Tn‖1/2‖Tm−1
n ‖1/2. (3)

Let lim
n→∞ ‖Tm+1

n ‖ = t. The existence of the limit follows from Lemma 2. Taking limits,

the induction hypothesis and (3) show that

sm � t
1
2 s

m−1
2 � s

m
2 + 1

2 + m−1
2 = sm.

It follows that t = sm+1, and the proof is complete. �
We are now ready to prove Yamazaki’s characterization of the spectral radius.

THEOREM 3 ([6]). For any bounded linear operator T ,

lim
n→∞ ‖Tn‖ = r(T).

Proof. It follows from Lemmas 2 and 4 that, for each positive integer k, the
decreasing sequence {‖Tk

n‖1/k}∞n=0 converges to s. Therefore,

s � ‖Tk
n‖1/k (4)

for all n and k. Now fix an n. If r(T) < s, then (1) would imply that

‖Tk
n‖1/k < s

for sufficiently large k. Clearly this is a contradiction to (4). Therefore, we must have
s = r(T), and the result follows from Lemma 1. �
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