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Abstract. Let Φ be a Young function and (u, v) a pair of weights on a probability space. We
consider the inequality

sup
λ∈(0,∞)

Φ(λ) E

[
u : {Mf > λ}

]
� E

[
Φ
(
C|f∞|

)
v
]

for martingales f = (f n)n∈Z+ , where Mf = supn∈Z+
|f n| and f∞ = limn f n a.s. We give

some necessary and sufficient conditions for this inequality to hold, and extend Uchiyama’s
result.

1. Introduction

Let u and v be (strictly) positive integrable random variables (r.v.’s) on a prob-
ability space (Ω, A, P) . Such r.v.’s will be called weights. Let 1 < p < ∞ and let
F = (Fn)n∈Z+ be a filtration, that is, an increasing sequence of sub-σ -algebras of A .
In [5] Uchiyama proved that the inequality

sup
λ∈(0,∞)

λ p
E
[
u : {Mf > λ}

]
� Cp,u,v E

[
|f∞|p v

]
holds for all uniformly integrable (P, F) -martingales f = (f n)n∈Z+ if and only if there
is a constant K > 0 such that almost surely (a.s.)

sup
n∈Z+

E
[
v−1/(p−1)

∣∣Fn

]p−1
E[ u | Fn ] � K, (Ap )

where Mf = supn |f n|, f∞ = limn f n a.s., and E[ u : Λ] = E[ u1Λ] .
Let Φ be an N -function. In this paper, we give some necessary and sufficient

conditions for the inequality

sup
λ∈(0,∞)

Φ(λ ) E
[
u : {Mf > λ}

]
� E

[
Φ(C|f∞|) v

]
(WΦ )
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to hold, where f = (f n) is a uniformly integrable (P, F) -martingale and C > 0 is a
constant independent of f = (f n) . We show that (WΦ ) holds for all f = (f n) if and
only if there is a constant C′ > 0 such that a.s.

sup
λ∈(0,∞)

n∈Z+

1
Φ(λ ) E[ u | Fn ]

E

[
Ψ
(
Φ(λ ) E[ u | Fn ]

C′vλ

)
v

∣∣∣∣Fn

]
� 1, (1)

where Ψ is the complementary N -function of Φ .
Under the assumption that Φ satisfies the Δ2 - and ∇2 -conditions, we also show

that condition (1) holds if and only if there is a constant K > 0 such that a.s.

sup
ε∈(0,∞)

n∈Z+

ε ϕ
(

E

[
ϕ−1

( 1
εv

) ∣∣∣Fn

])
E[ u | Fn ] � K, (AΦ )

where ϕ is the right-derivative of Φ and ϕ−1 is the right-continuous inverse function
of ϕ . Note that if Φ(t) = t p (1 < p < ∞) , then condition (AΦ ) (or (1)) coincides
with (Ap ). We also study some norm inequalities in weighted Orlicz spaces.

2. Preliminaries

We shall work with a complete probability space (Ω, A, P) with a filtration
F = (Fn)n∈Z+ . We denote by M the collection of all uniformly integrable (P, F) -
martingales, and by T the collection of all F -stopping times. For f = (f n)n∈Z+ ∈ M ,
we let

Mf = sup
n∈Z+

|f n| and f∞ = lim
n→∞ f n a.s.

If x is a nonnegative r.v. that is not integrable and if B is a sub-σ -algebra of A ,
then we define

E[ x | B ] = lim
n→∞ E[ x ∧ n | B ].

If u is a weight, then Pu denotes the measure defined by

Pu(Λ) = E[ u : Λ ] = E[ u1Λ] (Λ ∈ A).

The integral
∫
Ω x dPu of x ∈ L1(Pu) is denoted by Eu[ x ] , that is, Eu[ x ] = E[ xu ] .

Now let Φ be a Young function with the right-derivative ϕ . In other words, let ϕ
be a nonnegative, nondecreasing, and right-continuous function on R+ , and let

Φ(t) =
∫ t

0
ϕ(s) ds (t ∈ R+).

As usual, we call Φ an N -function if ϕ satisfies the following three conditions:

• ϕ(0) = lim
s→0+

ϕ(s) = 0 ;

• 0 < s < ∞ ⇐⇒ 0 < ϕ(s) < ∞ ;

• lim
s→∞ϕ(s) = ∞ .
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Note that every N -function is strictly increasing and has the inverse function.
The right-continuous inverse function of ϕ is given by

ϕ−1(t) = sup{s ∈ R+ : ϕ(s) � t} (t ∈ R+).

It is clear that

ϕ
(

1
2 ϕ

−1(t)
)

� t � ϕ
(
ϕ−1(t)

)
∧ ϕ−1

(
ϕ(t)

)
(t ∈ R+). (2)

The Young function given by

Ψ(t) =
∫ t

0
ϕ−1(s) ds (t ∈ R+)

is called the complementary function of Φ . Note that Ψ is an N -function if and only
if so is Φ . It is well known that

st � Φ(s) + Ψ(t) (s, t ∈ R+). (3)

This is called the Young inequality (see e.g. [3, p. 12]). We also use the following
inequalities (see [3, p. 13] and [1]):

t � Φ−1(t)Ψ−1(t) � 2t (t ∈ R+); (4)

Φ
(
Ψ(t)/t

)
� Ψ(t), Ψ

(
Φ(t)/t) � Φ(t) (t ∈ R+). (5)

We say that Φ satisfies the Δ2 -condition and write Φ ∈ Δ2 if there is a constant c > 0
such that

Φ(2t) � cΦ(t) (t ∈ R+). (6)

It is well known that Φ satisfies the Δ2 -condition if and only if there is a constant
c′ > 0 such that

ϕ(2t) � c′ϕ(t) (t ∈ R+)

(cf. [4, p. 211]). We say that Φ satisfies the ∇2 -condition and write Φ ∈ ∇2 if Ψ
satisfies the Δ2 -condition, namely

Ψ(2t) � dΨ(t) (t ∈ R+) (7)

for some constant d > 0 .

3. Weak type inequalities

Throughout the rest of the paper, we assume that σ(F) = σ
(⋃

n Fn
)

= A . Our
main result is as follows:
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THEOREM 1. Let (Φ, Ψ) be a pair of complementary N -functions and (u, v) a
pair of weights. Then the following are equivalent:
(i) There is a constant C > 0 , independent of f = (f n) ∈ M , such that

sup
λ∈(0,∞)

Φ(λ ) Pu(Mf > λ ) � Ev
[
Φ
(
C|f∞|

)]
.

(ii) There is a constant C > 0 , independent of f = (f n) ∈ M and n ∈ Z+ , such that
a.s.

Φ
(
|f n|
)

E[ u | Fn ] � E
[
Φ
(
C|f∞|

)
v
∣∣Fn

]
.

(iii) There is a constant C > 0 , independent of f = (f n) ∈ M and τ ∈ T , such that
a.s.

Φ
(
|f τ |
)

E[ u | Fτ ] � E
[
Φ
(
C|f∞|

)
v
∣∣Fτ

]
.

(iv) There is a constant C > 0 , independent of λ ∈ (0, ∞) and n ∈ Z+ , such that
a.s.

E

[
Ψ
(
Φ(λ ) E[ u | Fn ]

Cvλ

)
v

∣∣∣∣Fn

]
� Φ(λ ) E[ u | Fn ].

COROLLARY 1. Let (Φ, Ψ) and (u, v) be as in Theorem 1. If Φ ∈ Δ2∩∇2 , then
the following are equivalent:
(i) There is a constant C > 0 , independent of f = (f n) ∈ M , such that

sup
λ∈(0,∞)

Φ(λ ) Pu(Mf > λ ) � C Ev
[
Φ
(
|f∞|

)]
.

(ii) There is a constant K > 0 such that a.s.

sup
ε∈(0,∞)

n∈Z+

ε ϕ
(

E

[
ϕ−1

( 1
εv

) ∣∣∣Fn

])
E[ u | Fn ] � K. (AΦ )

Here ϕ is the right-derivative of Φ and ϕ−1 is the right-continuous inverse
function of ϕ .

REMARK. We cannot replace (AΦ ) by the condition that a.s.

sup
n∈Z+

ϕ
(

E
[
ϕ−1

(
1/v
) ∣∣Fn

])
E[ u | Fn ] � K.

See Appendix.

Before proving these results, we note that if x > 0 a.s. and if B is a sub-σ -algebra
of A , then E[ x | B ] > 0 a.s. Indeed, since E

[
x : {E[ x | B ] = 0}

]
= 0 , we see that

1{E[ x | B ]=0} = 0 a.s.
In order to prove Theorem 1, we need the following lemmas.
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LEMMA 1. Let B be a sub-σ -algebra of A and C a positive constant. Then the
inequality

E

[
Ψ
(
Φ(λ ) E[ u | B ]

Cvλ

)
v

∣∣∣∣B
]

� Φ(λ ) E[ u | B ] (8)

holds a.s. for all λ ∈ (0, ∞) if and only if the inequality

E

[
Ψ
(
Φ(η) E[ u | B ]

Cvη

)
v

∣∣∣∣B
]

� Φ(η) E[ u | B ] (9)

holds a.s. for all B -measurable r.v.’s η such that 0 < η < ∞ a.s.

Proof. Suppose that (8) holds for all λ ∈ (0, ∞) . Then it is easy to verify that
(9) holds for simple B -measurable r.v. η such that 0 < η < ∞ . If η is any positive
bounded r.v., then there is a sequence {ηn} of simple r.v.’s such that ηn ↓ η . Hence,
from Fatou’s lemma, we see that (9) holds for such η . Finally, using the monotone
convergence theorem, we obtain (9) for any B -measurable r.v. η such that 0 < η < ∞
a.s. This completes the proof, since the converse is trivial. �

LEMMA 2. Let B and C be as in Lemma 1. If (8) holds a.s. for all λ ∈ (0, ∞) ,
then

Φ
(
E[ x | B ]

)
E[ u | B ] � E

[
Φ(C′x) v

∣∣B ] (10)

a.s. for any nonnegative r.v. x , with C′ = 2C .

Proof. To prove (10), we may assume that x ∈ L∞ . In view of the dominated
convergence theorem, we may assume in addition that x > 0 a.s.

Let C′ = 2C and set

η = Φ−1

(
E
[
Φ(C′x) v

∣∣B ]
E[ u | B ]

)
.

Then Φ(η) E[ u | B ] = E
[
Φ(C′x) v

∣∣B ] a.s. Using the Young inequality (3) and
inequality (9) (which is valid by Lemma 1), we find that a.s.

E[ x | B ] =
η

2Φ(η) E[ u | B ]
E

[
Φ(η) E[ u | B ]

Cvη
· C′x · v

∣∣∣∣B
]

� η
2Φ(η) E[ u | B ]

{
E

[
Ψ
(
Φ(η) E[ u | B ]

Cvη

)
v

∣∣∣∣B
]

+ E
[
Φ(C′x) v

∣∣B ]
}

� η
2Φ(η) E[ u | B ]

{
Φ(η) E[ u | B ] + E

[
Φ(C′x) v

∣∣B ]}

= η,

so that a.s.

Φ
(
E[ x | B ]

)
E[ u | B ] � Φ(η) E[ u | B ] = E

[
Φ(C′x) v

∣∣B ].
This completes the proof. �

As the following lemma shows, the converse of Lemma 2 is true.
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LEMMA 3. Let B be a sub-σ -algebra of A and C′ a positive constant. If (10)
holds a.s. for all nonnegative r.v.’s x , then (8) holds a.s. for all λ ∈ (0, ∞) , with
C = 2C′ .

Proof. Given λ ∈ (0, ∞) and k ∈ (0, ∞) , we let

η =
Φ(λ ) E[ u | B ]

2λ
and x =

v
η
Ψ
( η

C′v

)
1Λ,

where Λ = {η � kv} . Then by (10),

Φ

⎛
⎜⎝2λ E

[
Ψ
( η

C′v

)
v 1Λ

∣∣∣B ]
Φ(λ ) E[ u | B ]

⎞
⎟⎠ = Φ

(
E[ x | B ]

)
�

E
[
Φ(C′x) v

∣∣B ]
E[ u | B ]

. (11)

On the other hand, by (5),

Φ(C′x) = Φ
(

C′v
η

Ψ
( η

C′v

)
1Λ

)
� Ψ

( η
C′v

)
1Λ. (12)

Combining (11) and (12), we find that

2λ E

[
Ψ
( η

C′v

)
v 1Λ

∣∣∣B ]
Φ(λ ) E[ u | B ]

� Φ−1

⎛
⎜⎝ E

[
Ψ
( η

C′v

)
v 1Λ

∣∣∣B ]
E[ u | B ]

⎞
⎟⎠ .

This, together with (4), implies that

2λ E

[
Ψ
( η

C′v

)
v 1Λ

∣∣∣B ]
Φ(λ ) E[ u | B ]

Ψ−1

⎛
⎜⎝ E

[
Ψ
( η

C′v

)
v 1Λ

∣∣∣B ]
E[ u | B ]

⎞
⎟⎠

�
2 E

[
Ψ
( η

C′v

)
v 1Λ

∣∣∣B ]
E[ u | B ]

.

Since E
[
Ψ
( η

C′v
)
v 1Λ

∣∣B ] � Ψ
(

k
C′
)

E[ v | B ] < ∞ a.s.,

Ψ−1

⎛
⎜⎝ E

[
Ψ
( η

C′v

)
v 1Λ

∣∣∣B ]
E[ u | B ]

⎞
⎟⎠ � Φ(λ )

λ
,

and hence by (5),

E

[
Ψ
( η

C′v

)
v 1Λ

∣∣∣B ]
E[ u | B ]

� Ψ
(
Φ(λ )
λ

)
� Φ(λ ).
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From the definition of η , we conclude that

E

[
Ψ
(
Φ(λ ) E[ u | B ]

2 C′vλ

)
v 1{η�kv}

∣∣∣∣B
]

� Φ(λ ) E[ u | B ].

Letting k → ∞ , we obtain (8) with C = 2C′ . �
We are now in a position to prove Theorem 1.

Proof of Theorem 1. (ii)⇔ (iii). It is obvious that (iii)⇒ (ii). To prove the
converse, suppose that (ii) holds. Setting f∞ ≡ λ (λ ∈ R+) and then letting n → ∞ ,
we see that

Φ(λ ) u � Φ(Cλ ) v (λ ∈ R+).
Therefore, if τ ∈ T , then

Φ
(
|f τ |
)

E[ u | Fτ ] =
∞∑

n=0

Φ
(
|f n|
)

E[ u | Fn ] 1{τ=n} + Φ
(
|f∞|

)
u 1{τ=∞}

�
∞∑

n=0

E
[
Φ
(
C|f∞|

)
v
∣∣Fn

]
1{τ=n} + Φ

(
C|f∞|

)
v 1{τ=∞}

= E
[
Φ
(
C|f∞|

)
v
∣∣Fτ

]
,

as was to be shown.
(ii)⇔ (iv). Lemma 2 yields that (iv) implies (ii), and Lemma 3 yields that (ii)

implies (iv).
(iii)⇒ (i). Let λ ∈ (0, ∞) , and define

τ = inf
{
n ∈ Z+ : |f n| > λ

}
∈ T .

Here and elsewhere we follow the convention that inf ∅ = ∞ . Then {τ < ∞} =
{Mf > λ} and |f τ | > λ on {τ < ∞} . If (iii) holds, then

Φ(λ ) Pu(Mf > λ ) � E
[
Φ
(
|f τ |
)
u : {τ < ∞}

]
= E

[
Φ
(
|f τ |
)

E[ u | Fτ ] : {τ < ∞}
]

� E
[
Φ
(
C|f∞|

)
v : {τ < ∞}

]
� Ev

[
Φ
(
C|f∞|

) ]
.

Thus (i) follows from (iii).
(i)⇒ (ii). Suppose that (i) holds, and let f = (f n) ∈ M . If Λ ∈ Fn and if

λ ∈ (0, ∞) , then

Φ(λ ) E
[
1{|f n|>λ} u : Λ] = Φ(λ ) Pu

({
|f n| > λ

}
∩ Λ
)

� Φ(λ ) Pu

({
E
[
|f∞|

∣∣Fn
]

> λ
}
∩ Λ
)

� Φ(λ ) Pu

(
sup

n
E
[
|f∞| 1Λ

∣∣Fn
]

> λ
)

� Ev
[
Φ
(
C|f∞| 1Λ

) ]
= E

[
Φ
(
C|f∞|

)
v : Λ

]
.
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Therefore we have:

Φ(λ ) 1{|f n|>λ} E[ u | Fn ] � E
[
Φ(C|f∞|

)
v
∣∣Fn

]
a.s.

This implies that

Φ
(
|f n|
)

E[ u | Fn ] = sup
λ∈(0,∞)

Φ(λ ) 1{|f n|>λ} E[ u | Fn ]

� E
[
Φ(C|f∞|

)
v
∣∣Fn

]
a.s.,

which proves (ii). �
We now turn to the proof of Corollary 1. Note first that if Φ ∈ Δ2 , then (i) of

Theorem1 and (i) of Corollary 1 are equivalent. Hence it suffices to prove the following
lemma.

LEMMA 4. Let B be a sub-σ -algebra of A and suppose that Φ ∈ Δ2∩∇2 . Then
(8) holds a.s. for all λ ∈ (0, ∞) if and only if

sup
ε∈(0,∞)

ε ϕ
(

E

[
ϕ−1

( 1
εv

) ∣∣∣B ])E[ u | B ] � K (13)

a.s. for some constant K > 0 .

Proof. Suppose that inequality (13) holds a.s. Then, by (2),

E

[
ϕ−1

(η
v

) ∣∣∣B ] � ϕ−1

(
Kη

E[ u | B ]

) (
η ∈ (0, ∞)

)
.

As in the proof of Lemma 1, we can show that the same inequality holds for any
nonnegative B -measurable r.v. η . Note that, since Φ ∈ ∇2 ,

Ψ(t) � tϕ−1(t) � Ψ(2t) � dΨ(t),

where d > 0 is the constant in (7). Hence, if η is nonnegative and B -measurable,
then

E

[
Ψ
(η

v

)
v
∣∣∣B ] � E

[
ηϕ−1

(η
v

) ∣∣∣B ] � ηϕ−1

(
Kη

E[ u | B ]

)

� d
K
Ψ
(

Kη
E[ u | B ]

)
E[ u | B ]

� Ψ
(

Cη
E[ u | B ]

)
E[ u | B ],

where C =
(

d
K ∨ 1

)
K = d∨K . Setting η = (Cλ )−1Φ(λ ) E[ u | B ] and using (5), we

see that

E

[
Ψ
(
Φ(λ ) E[ u | B ]

Cvλ

)
v

∣∣∣∣B
]

� Ψ
(
Φ(λ )
λ

)
E[ u | B ] � Φ(λ ) E[ u | B ]

for all λ ∈ (0, ∞) . Thus (8) holds a.s. with C = d ∨ K .
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Suppose conversely that (8) holds a.s. for all λ ∈ (0, ∞) . Then (9) holds a.s. for
B -measurable r.v.’s η such that 0 < η < ∞ a.s. Given ε ∈ (0, ∞) , we let

η = 2ϕ−1

(
4C

ε E[ u | B ]

)
.

Then, by (2) and the inequality tϕ(t) � Φ(2t) , we have that

4C
ε E[ u | B ]

� ϕ
(η

2

)
� 2

η
Φ(η)

and hence that
2
εv

� Φ(η) E[ u | B ]
Cvη

. (14)

On the other hand, using (2), (6), and the inequality Φ(t) � tϕ(t) , we find:

Φ(η) � c2 Φ
(η

4

)
� c2 η

4
ϕ
(η

4

)

� c2

2
ϕ

(
1
2
ϕ−1

(
4C

ε E[ u | B ]

))
ϕ−1

(
4C

ε E[ u | B ]

)

� 2Cc2

ε E[ u | B ]
ϕ−1

(
4C

ε E[ u | B ]

)
. (15)

Therefore, by (9), (14), and (15),

E

[
Ψ
( 2
εv

)
v

∣∣∣∣B
]

� E

[
Ψ
(
Φ(η) E[ u | B ]

Cvη

)
v

∣∣∣∣B
]

� Φ(η) E[ u | B ]

� 2Cc2

ε
ϕ−1

(
4C

ε E[ u | B ]

)
.

Since 1
εvϕ

−1
(

1
εv
)

� Ψ
(

2
εv
)
, we obtain that

E

[
ϕ−1

( 1
εv

) ∣∣∣B ] � 2Cc2ϕ−1

(
4C

ε E[ u | B ]

)
.

Since Φ ∈ Δ2 , there is a constant k > 0 such that ϕ(4Cc2t) � kϕ(t) for all t ∈ R+ .
Therefore by (2),

ϕ
(

E

[
ϕ−1

( 1
εv

) ∣∣∣B ]) � ϕ

(
2Cc2ϕ−1

(
4C

ε E[ u | B ]

))

� k ϕ

(
1
2
ϕ−1

(
4C

ε E[ u | B ]

))
� 4kC

ε E[ u | B ]
.

Thus (13) holds a.s. with K = 4kC . �
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4. Norm inequalities

In this section we study some weighted norm inequalities. Let Φ be an N -
function. Given a weight u , we consider the Orlicz space LΦ(u) consisting of r.v.’s x
such that E

[
Φ
(
λ |x|

)
u
]

< ∞ for some λ ∈ (0, ∞) . For each α ∈ (0, ∞) , we define
a norm on LΦ(u) by setting

‖x‖Φ, u, α = inf
{
λ ∈ (0, ∞) : E

[
Φ
(
λ−1|x|

)
u
]

� α
} (

x ∈ LΦ(u)
)
.

Note that the norms ‖ · ‖Φ, u, α and ‖ · ‖Φ, u, 1 are equivalent. Indeed, using the elemen-
tary inequality Φ(at) � aΦ(t) (0 < a � 1, t ∈ R+) , we see that

(α ∧ 1) ‖ · ‖Φ, u, α � ‖ · ‖Φ, u, 1 � (α ∨ 1) ‖ · ‖Φ, u, α .

For convenience, we follow the convention that ‖x‖Φ, u, α = ∞ unless x ∈ LΦ(u) . Our
aim here is to prove:

THEOREM 2. Let (Φ, Ψ) be a pair of complementary N -functions and (u, v) a
pair of weights. Then the following are equivalent:
(i) There is a constant C > 0 , independent of f = (f n) ∈ M and α ∈ (0, ∞) , such

that
sup

λ∈(0,∞)
λ‖1{Mf >λ}‖Φ, u, α � C‖f∞‖Φ, v, α .

(ii) There is a constant C > 0 , independent of x ∈ LΦ(v) , n ∈ Z+ , and α ∈ (0, ∞) ,
such that ∥∥E[ x | Fn ]

∥∥
Φ, u,α � C‖x‖Φ, v,α .

(iii) There is a constant C > 0 , independent of x ∈ LΦ(v) , τ ∈ T , and α ∈ (0, ∞) ,
such that ∥∥E[ x | Fτ ]

∥∥
Φ, u,α � C‖x‖Φ, v,α .

(iv) There is a constant C > 0 , independent of λ ∈ (0, ∞) and n ∈ Z+ , such that
a.s.

E

[
Ψ
(
Φ(λ ) E[ u | Fn ]

Cvλ

)
v

∣∣∣∣Fn

]
� Φ(λ ) E[ u | Fn ].

Once we establish the following lemma, the proof of Theorem 2 is easy.

LEMMA 5. Let B be a sub-σ -algebra of A and C a positive constant. Then the
following are equivalent:
(i) If x is a nonnegative r.v. in LΦ(v) , then

sup
λ∈(0,∞)

λ‖1{E[ x | B ]>λ}‖Φ, u, α � C‖x‖Φ, v,α for all α ∈ (0, ∞).

(ii) If x ∈ LΦ(v) , then∥∥E[ x | B ]
∥∥
Φ, u, α � C‖x‖Φ, v,α for all α ∈ (0, ∞).

(iii) If x is a nonnegative r.v., then

Φ
(
E[ x | B ]

)
E[ u | B ] � E

[
Φ(Cx) v

∣∣B ] a.s.
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Proof. (i)⇒ (iii). Let x be a nonnegative r.v. and suppose that (i) holds. To
prove the inequality in (iii), we may assume that E

[
Φ(Cx) v

]
< ∞ . If we set

α = E
[
Φ(Cx) v

]
, then

λ

Φ−1

(
α

E
[
u : {E[ x | B ] > λ}

]) = λ‖1{E[ x | B ]>λ}‖Φ, u, α � C‖x‖Φ, v,α � 1,

provided that E
[
u : {E[ x | B ] > λ}

]
�= 0 . Thus

Φ(λ ) E
[
u : {E[ x | B ] > λ}

]
� α = E

[
Φ(Cx) v

]
for any λ ∈ (0, ∞) . Replacing x by x1Λ with Λ ∈ B yields that

Φ(λ )1{E[ x | B ]>λ} E[ u | B ] � E
[
Φ(Cx) v

∣∣B ] a.s.

Taking the supremum over λ ∈ (0, ∞) , we conclude that the inequality in (iii) holds
a.s.

(iii)⇒ (ii). Let x ∈ LΦ(v) and α ∈ (0, ∞) . If we set β = ‖x‖Φ, v,α , then a.s.

Φ
(∣∣E[ x | B ]

∣∣
Cβ

)
E[ u | B ] � E

[
Φ
(
β−1|x|

)
v
∣∣B ]

by the inequality in (iii).
Therefore

E

[
Φ
(∣∣E[ x | B ]

∣∣
Cβ

)
u

]
� E

[
Φ
(
β−1|x|

)
v
]

� α,

whence ∥∥E[ x | B ]
∥∥
Φ, u, α � Cβ = C‖x‖Φ, v,α .

(ii)⇒ (i). Let x be a nonnegative r.v. in LΦ(v) . If (ii) holds, then for all λ ∈
(0, ∞) ,

λ‖1{E[ x | B ]>λ}‖Φ, u,α �
∥∥E[ x | B ]

∥∥
Φ, u,α � C‖x‖Φ, v,α ,

which proves (i). �

Proof of Theorem 2. The equivalence of (ii) and (iii) follows from Theorem 1 and
Lemma 5. The equivalence of (ii) and (iv) follows from Lemmas 2, 3, and 5. It only
remains to prove the equivalence of (i) and (iii).

(iii)⇒ (i). Let f = (f n) ∈ M . Given λ > 0 , we define

τ = inf
{
n ∈ Z+ : |f n| > λ

}
∈ T .

Since {Mf > λ} = {τ < ∞} ∈ Fτ and |f τ | > λ on {τ < ∞} , we see that

λ1{Mf >λ} � |f τ |1{τ<∞} � E
[
|f∞|

∣∣Fτ
]
.
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Hence, if (iii) holds, then

λ‖1{Mf >λ}‖Φ, u, α � ‖E
[
|f∞|

∣∣Fτ
]
‖Φ, u,α � C‖f∞‖Φ, v,α

for all λ ∈ (0, ∞) (with the convention that ‖f∞‖Φ, v,α = ∞ unless f∞ ∈ LΦ(v) ).
(i)⇒ (iii). Let y be a nonnegative r.v. in LΦ(v) and let τ ∈ T . If y ∈ L1(P) , then

we can consider the martingale f =
(
E[ y | Fn ]

)
n∈Z+

∈ M and apply (i) to conclude
that

λ‖1{E[ y | Fτ ]>λ}‖Φ, u, α � C‖y‖Φ, v, α
(
λ , α ∈ (0, ∞)

)
. (16)

This inequality remains valid for any nonnegative y ∈ LΦ(v) \ L1(P) . Indeed, setting
yk = y ∧ k , we see that

λ‖1{E[ yk | Fτ ]>λ}‖Φ, u, α � C‖yk‖Φ, v, α � C‖y‖Φ, v, α ,

which implies (16). Thus (i) of Lemma 5 holds with B = Fτ . Therefore, for any
x ∈ LΦ(v) , ∥∥E[ x | Fτ ]

∥∥
Φ, u, α � C‖x‖Φ, v,α

by Lemma 5. This completes the proof. �

Appendix

Recall condition (AΦ ) in Corollary 1:

sup
ε∈(0,∞)

n∈Z+

ε ϕ
(

E

[
ϕ−1

( 1
εv

) ∣∣∣Fn

])
E[ u | Fn ] � K. (AΦ )

If ϕ(t) = t p−1 , then (AΦ ) is equivalent to the condition that a.s.

sup
n∈Z+

ϕ
(

E
[
ϕ−1(1/v)

∣∣Fn
])

E[ u | Fn ] � K. (17)

In general, however, (AΦ ) cannot be replaced by (17) as shown below.

According to Bonami and Lépingle [2, Section 3], for any p ∈ (1, ∞) , there exists
a weight u (on a suitable probability space) satisfying the following conditions:

(i) u ∈ L∞(P) ;

(ii) sup
n∈Z+

E
[
u−1/(p−1)

∣∣Fn
]p−1

E[ u | Fn ] ∈ L∞(P) ;

(iii) sup
n∈Z+

E
[
u−1/(q−1)

∣∣Fn
]q−1

E[ u | Fn ] �∈ L∞(P) for any q ∈ (1, p) .
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Let 1 < q < p < ∞ and let Φ be the N -function defined by

Φ(t) =
∫ t

0
ϕ(s) ds, where ϕ(s) =

{
s q−1 if s ∈ [0, 1),
s p−1 if s ∈ [1, ∞).

Suppose that u satisfies (i) – (iii) above. Then

sup
ε∈(0,∞)

n∈Z+

ε ϕ
(

E

[
ϕ−1

( 1
εu

) ∣∣∣Fn

])
E[ u | Fn ]

� sup
ε∈(0,∞)

n∈Z+

ε E

[ ( 1
εu

)1/(q−1)
1{εu>1}

∣∣∣Fn

]q−1
E[ u | Fn ]

= sup
n∈Z+

E
[
u−1/(q−1)

∣∣Fn
]q−1

E[ u | Fn ].

By (iii) the right-hand side does not belong to L∞(P) . On the other hand, since
ϕ−1(1/u) � 1 + u−1/(p−1) , we find that

sup
n∈Z+

ϕ
(

E
[
ϕ−1(1/u)

∣∣Fn
])

E[ u | Fn ]

� sup
n∈Z+

{
1 + E

[
u−1/(p−1)

∣∣Fn

]}p−1
E[ u | Fn ]

� 2 p−1 sup
n∈Z+

{
1 + E

[
u−1/(p−1)

∣∣Fn
]p−1

}
E[ u | Fn ].

The right-hand side belongs to L∞(P) by (i) and (ii). This shows that (17) does not
imply (AΦ ) even in the case where v = u .
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