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ERGODIC THEOREMS FOR DYNAMIC RANDOM WALKS

NADINE GUILLOTIN-PLANTARD, DOMINIQUE SCHNEIDER

(communicated by G. Peskir)

Abstract. Given any measure-preserving dynamical system (Y,A ,μ, T) and g ∈ Lp(μ) , we

study convergence of the sequence

⎧⎨
⎩1

n

n∑
k=1

g ◦ TSk , n � 1

⎫⎬
⎭ where Sk is a dynamic Z

r -valued

random walk generated by another dynamical system, namely an irrational rotation on the d -
dimensional torus. In this paper, Van der Corput’s inequality and number theory are used for
studying ergodic theorems and universally representative random sequences.

1. Introduction. Principal results

Let us consider a complete probability space (Ω, F , P) and a sequence {Sk, k �
1} of random vectors defined on this space with values in Zr, r � 1. Let (Y, A ,μ, T)
be a measurable dynamical system, where (Y, A ,μ) is a probability space and T is an
action of Zr defined on Y such that Tμ = μ.

Let us introduce the notion of universally representative sequences.

DEFINITION 1.1. A sequence of random vectors S = {Sk, k � 1} with values in
Zr , r � 1 defined on a probability space (Ω, F , P) is universally representative for
Lp , p > 1 if there exists Ωo ⊂ Ω of probability one such that for every ω ∈ Ωo :

For every dynamical system (Y, A ,μ, T) and g ∈ Lp(μ) we have

μ
{

y : lim
n→+∞

1
n

n∑
k=1

g(TSk(ω)y) exists

}
= 1.

For example, when r = 1, the sequence {pk + θk, k � 1} where pk is the
k -th prime number and {θk, k � 1} a sequence of independent, identically distributed
random variables with a moment of strictly positive order, is universally representative
for Lp, p > 1 (see [22] for more explanations).

M. Lacey, K. Petersen, D. Rudolph and M. Wierdl (see Theorem 5 in [18]) also
proved:
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THEOREM 1.2. Let X = {Xk, k � 1} be a sequence of independent, identically
distributed random variables such that E X1 �= 0 and E (X1)2 < ∞. Then the sequence

S =

⎧⎨
⎩

k∑
j=1

Xj , k � 1

⎫⎬
⎭

is universally representative for Lp, p > 1.

In the case r � 2 , they obtained the following result (see Theorem 7 in [18]) :
When g ∈ L2(μ) , then

lim
n→∞
n∈N

1
n

n∑
k=1

g ◦ TSk exists μ-a.e.

where N = {[2t log t], t ∈ N∗}.
There also exists a recent paper of D. Schneider (see [25]) that explains the be-

haviour of the previous averages for almost-everywhere convergence in terms of condi-
tions on the spectral measure of the operator T.

Let us recall another definition.

DEFINITION 1.3. A sequence of random vectors S = {Sk, k � 1} with values in
Zr , defined on a probability space (Ω, F , P) is universally 2 -representative in mean,
if there exists Ωo ⊂ Ω of probability one, such that for every ω ∈ Ωo :

For every dynamical system (Y, A ,μ, T) and g ∈ L2(μ) we have

lim
n→+∞

1
n

n∑
k=1

g ◦ TSk(ω) exists in L2(μ).

In this situation we have the following result (see [8]):

THEOREM 1.4. Let X = {Xk, k � 1} be a sequence of independent, identically
distributed random vectors defined on (Ω, F , P) , with values in Zr . Let us assume
that there exists δ > 0 such that E ||X1||δRr < ∞. Then the sequence of random vectors

S = {
k∑

j=1
Xj, k � 1} is universally 2-representative in mean.

Let us now introduce the dynamic random walk on Zr . Let Xi = (X(1)
i , . . . , X(r)

i ) ,
i � 1 , be a sequence of independent random vectors defined on a probability space
(Ω, F , P) with values in {−1, +1}r such that for every i � 1 , the random variables
X(j)

i , 1 � j � r are independent. Let f 1, . . . , f r be functions defined on Td with
values in [0, 1] and τα the rotation on the d -dimensional torus Td , associated with
the d -dimensional irrational vector α = (α1, . . . ,αd) (i.e. 1,α1, . . . ,αd are linearly
independent over Q ), defined by x = (x1, . . . , xd) �→ (x1 + α1 mod 1, . . . , xd +
αd mod 1) . For every i � 1 and every 1 � j � r , the law of the random variable X(j)

i

is given by

P(X(j)
i = +1) = f j(τi

αx) where x ∈ Td is fixed

= 1 − P(X(j)
i = −1).
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We write

S0 = 0, Sn =
n∑

i=1

Xi for n � 1

for the Zr -random walk generated by the family (Xi)i∈N . It is worth remarking that
(Sn)n∈N is a non-homogeneousMarkov chain. Besides mathematical interest, the walks
we consider here are of some relevance in the statistical mechanics of quasiperiodic
systems in the presence of external spatial disorder (see [13] and [15]) and are well
studied in [9], [10] in the case r = 1 . For r > 1 , the dynamic Zr -random walks (with
a definition more general than the above one) are studied by the first author in [11],
in particular a local limit theorem is established. More applications of the dynamic
random walks can be found in the recent paper [12]. Our main results are summarised
in the following theorems.

THEOREM 1.5. Let f 1, . . . , f r be Riemann integrable functions defined on Td

with values in [0, 1] such that for every j ∈ {1, . . . , r} ,
∫

Td f j(t)(1 − f j(t))dt > 0 .
Then, for every x ∈ Td and for every irrational vector α , the dynamic random walk
(Sn)n∈N is universally 2-representative in mean.

REMARKS. 1. This result holds when T is a Zr -action of contractions.
2. The fact that the dynamic random walk (Sn)n∈N is universally 2-representative

in mean means that the set Ωo in Definition 1.3 is the same for every dynamical system
(Y, A ,μ, T) . In fact, we have even more here: the set Ωo is the same for any set of
functions f j, 1 � j � r satisfying the conditions of the above theorem.

In the case r = 1 , with stronger hypotheses on the function f and using the
approximation of the irrational vector α by rationals, we show that the dynamic random
walk is not universally representative for Lp, p � 1 .

THEOREM 1.6. Let f : T1 → [0, 1] be a function of bounded variation such
that

∫
T1 f (t)dt = 1

2 and
∫

T1 f (t)(1 − f (t))dt > 0 . Then, for every x ∈ T1 and for
every irrational α with continuous fraction expansion [a0; . . . , am, . . .] such that the
inequality

am < m1+ε

is satisfied for any m large enough, with ε > 0 , the dynamic random walk (Sn)n∈N

is not universally representative for Lp, p � 1 . For almost every ω ∈ Ω , given any
ergodic aperiodic measure-preserving transformation T on (Y, A ,μ) , there exists a
function g ∈ L1(Y, A ,μ) such that the averages

Aω
n g(y) =

1
n

n∑
k=1

g(TSk(ω)y)

diverge a.e. In fact, the sequence has strong sweeping out: given ε > 0 , we can choose
g to be the characteristic function of a set of measure less than ε , yet to have

lim sup
n→∞

Aω
n g(y) = 1 a.e and lim inf

n→∞ Aω
n g(y) = 0 a.e.



180 NADINE GUILLOTIN-PLANTARD, DOMINIQUE SCHNEIDER

The above one-dimensional result can be generalised in d > 1 under some addi-
tional hypotheses on the mutual irrationality of the components of α = (α1, . . . ,αd) .
To formulate precisely these results, some definitions are needed. In order to facilitate
the exposition, these definitions are postponed until section 2.2. Here, we give the main
result, valid in d � 1 .

THEOREM 1.7. Let f : T1 → [0, 1] be a function of bounded variation in the sense
of Hardy and Krause such that

∫
Td f (t)dt = 1

2 and
∫

Td f (t)(1 − f (t))dt > 0 . Then,
for every x ∈ Td and for every irrational vector α = (α1, . . . ,αd) of type η such that
1 � η < 1 + 1

d , the dynamic random walk (Sn)n∈N is not universally representative
for Lp, p � 1 .

REMARKS. The set of irrational numbers satisfying the hypotheses of Theorem
1.6 corresponds to irrational numbers badly approximated by rationals and is of full
measure. It can also be proved that almost every irrational vector is of type 1 (see [10]).

First in section 2 we study the speed of convergence of ergodic averages associated
with an irrational rotation on the torus in terms of arithmetic properties of rotation angle.
In section 3, a Functional Law of Iterated Logarithm for the dynamic random walk is
established and Theorems 1.6 and 1.7 are proved. In section 4, we prove Theorem 1.5
using the following theorem which will be proved in section 5.

THEOREM 1.8. Let Yn be a sequence of completely independent random variables
with a uniformly bounded positive moment. Then setting,

Zk(θ,ω) = exp [2iπ〈 θ, Yk(ω)〉 ] − E exp [2iπ〈 θ, Yk〉 ]

we have

E sup
θ∈[0,1[r

sup
n

∣∣∣∣∣ 1√
n log n

n∑
k=1

Zk(θ,ω)

∣∣∣∣∣ < ∞ .

In order to prove Theorem 1.5, we will need Van der Corput’s inequality and the
spectral lemma that we recall here.

THEOREM 1.9 (Van der Corput’s Inequality). Let (uk)0�k<n be a finite sequence
of n points in a Hilbert space H . If H is an integer between 0 and n-1, then we have∣∣∣∣∣
∣∣∣∣∣1n

n−1∑
k=0

uk

∣∣∣∣∣
∣∣∣∣∣
2

H

� n + H
n2(H + 1)

n−1∑
k=0

||uk||2H + 2
n + H

n2(H + 1)2

H∑
h=1

(H + 1 − h) · A(n, h),

where A(n, h) = Re

(
n−h−1∑

k=0

〈 uk+h, uk〉H

)
.

This inequality is easily proved by writing down∣∣∣∣∣
∣∣∣∣∣1n

n−1∑
k=0

uk

∣∣∣∣∣
∣∣∣∣∣
2

H

=

∣∣∣∣∣
∣∣∣∣∣1n

n−1∑
k=−H

(
1

H + 1

H∑
h=0

uk+h

)∣∣∣∣∣
∣∣∣∣∣
2

H

,

with the convention uk = 0 if k < 0 or k � n and by using Cauchy-Schwarz’s
inequality. This Hilbert space version of Van der Corput’s lemma is due to Bergelson
(see [1]).
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SPECTRAL LEMMA. Let T be a contraction of a Hilbert space H and p(x) be a
polynomial defined on D = [0, 1[r . Then for every f in H , there exists a Borelian
positive measure which is bounded on D , denoted μf such that

‖ p(T)f ‖2
H �

∫
D
| p(x) |2 μf (dx).

In the case where T is a measure-preserving transformation, we have an equality
in the spectral lemma. It easily follows from Bochner’s theorem using the fact that if
we define for every k ∈ Zr ,

γk = 〈Tkf , f 〉H

then γ is a non negative definite sequence. The extension to contractions can be
obtained by a simple inductive argument on the degree of the trigonometric polynomial
p .

2. Preliminary results

In this section we consider the dynamical system (Td , B(Td), λ , τα) where λ is
the Lebesgue measure on the torus Td and τα is the irrational rotation over Td defined
in the first section. It is well known that under these conditions this dynamical system
is ergodic and for every f ∈ L1(λ ) , and almost every x ∈ Td ,

Mn =
1
n

n∑
l=1

f (τl
αx) −

∫
Td

f (t)dt →
n→∞ 0.

When f is of bounded variation, this result holds for every x ∈ Td and it is possible to
determine the speed of convergenceof the sequence Mn to 0 in terms of arithmetic prop-
erties of the irrational vector α . When d = 1 , for all irrationals badly approximated
by rationals, Denjoy-Koksma’s inequality gives us a majorization of Mn uniformly in
x for n large enough. But when d � 2 , Denjoy-Koksma’s inequality does not hold
(see Yoccoz [29]) and the method of low discrepancy sequences has to be used.

2.1. Case of one-dimensional torus

Let α be an irrational. We call a rational p
q with p, q relatively prime such that

|α − p
q | < 1

q2 , a rational approximation of α . When α has the continued fraction
expansion α = [α]+ [a1, . . . , an, . . .] , the n -th principal convergent of α is pn

qn
where,

∀n � 2 ,
pn = anpn−1 + pn−2

qn = anqn−1 + qn−2;

the recurrence is given by defining the values of p0, p1 and q0, q1 .

DENJOY-KOKSMA’S INEQUALITY. Let f : R → [0, 1] be a function with bounded
variation V(f ) and p

q a rational approximation of α . Then, for every x ∈ T1 ,∣∣∣∣∣
q∑

l=1

f (τl
αx) − q

∫
T1

f (t)dt

∣∣∣∣∣ � V(f ).
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(see [19] where the theorem is given in a more general case).

PROPOSITION 2.1. Let f be a function with bounded variation V(f ) . For every
irrational α such that the inequality am < m1+ε, with ε > 0, is satisfied for all m
large enough,

sup
x∈T1

∣∣∣∣∣
n∑

l=1

f (τl
αx) − n

∫
T1

f (t)dt

∣∣∣∣∣ = O(log2+ε n).

Proof. The sequence of integers (qi)i�1 being strictly increasing, for a given
n � 1 , there exists mn � 0 such that

qmn � n < qmn+1.

By Euclidean division, we have n = bmnqmn + nmn−1 with 0 � nmn−1 < qmn . We can
use the usual relations

q0 = 1, q1 = a1

qn = anqn−1 + qn−2, n � 2. (1)

We obtain that (amn+1 + 1)qmn > qmn+1 > n and so bmn � amn+1 . If mn > 0 , we
may write nmn−1 = bmn−1qmn−1 + nmn−2 with 0 � nmn−2 < qmn−1. Again, we find
bmn−1 � amn . Continuing in this manner, we arrive at a representation for n of the
form

n =
mn∑
i=0

biqi

with 0 � bi � ai+1 for 0 � i � mn and bmn � 1 . Using Denjoy-Koksma’s inequality,
we get ∣∣∣∣∣

n∑
l=1

f (τl
αx) − n

∫
T1

f (x)dx

∣∣∣∣∣ � V(f )
mn∑
i=0

bi

� V(f )
mn∑
i=0

ai+1.

By hypothesis, there exists m0 � 1 such that,

am < m1+ε, ∀m � m0.

Let n be such that mn > m0 . Thus,∣∣∣∣∣
n∑

l=1

f (τl
αx) − n

∫
T1

f (t)dt

∣∣∣∣∣ � V(f )(
m0−1∑
i=0

ai+1 + (mn + 1)2+ε).

We need to know the asymptotic behaviour of mn . When α is the golden ratio,
an = 1, ∀n � 1 and the relation (1) implies that qn ∼ 1√

5
αn+1 . Let α′ be another

irrational; its partial quotients a′n satisfy necessarily a′n � 1 . Using the relation (1),
we see that q′n � qn, ∀n � 1 . Therefore, mn = O(log n) and the proposition is proved.
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REMARK. Consider φ a homeomorphism of the torus T1 and π the projection
from R onto T1 . We choose φ̃(0) such that πφ̃(0) = φ(0) and we can gradually
define a continuous map φ̃ : R → R such that πφ̃ = φπ. The function φ̃ is called
a lifting of φ ; and φ preserves the orientation of T1 if its liftings are nondecreasing
functions. Then, ( 1

n (φ̃n(t)−t))n�1 converges uniformly to a number α(φ̃) when n goes
to infinity. The fractional part πα(φ̃) does not depend on the lifting and is called the
rotation number of the homeomorphism φ . Let μ be a φ -invariant probabilitymeasure.
Using the Denjoy-Koksma’s theorem (see [10]), we may generalise the work made in
this section to the case where the law of the random variable X(j)

i , i � 1, 1 � j � r , is
given by

P(X(j)
i = +1) = f j(φ i(x)) where x ∈ T1

= 1 − P(X(j)
i = −1),

where φ is an orientation preserving homeomorphism with irrational rotation number
α , f j, 1 � j � r and α being defined as in Theorem 1.6. The conclusions of Theorem
1.6 remain valid, that is, the newly defined dynamic random walk (Sn)n∈N is not
universally representative for Lp, p � 1 and has strong sweeping out.

2.2. Generalisation to d -dimensional torus

We recall some definitions and well known results from the method of low dis-
crepancy sequences in dimension d � 1 .

Suppose we are given a function f (x) = f (x(1), . . . , x(d)) with d � 1. By a
partition P of [0, 1]d , we mean a set of d finite sequences η(j)

0 ,η(j)
1 , . . . ,η(j)

mj (j =

1, . . . , d), with 0 = η(j)
0 � η(j)

1 � . . . � η(j)
mj = 1 for j = 1, . . . , d . In connection with

such a partition, we define, for j = 1, . . . , d an operator Δj by

Δjf (x(1), . . . , x(j−1),η(j)
i , x(j+1), . . . , x(d)) = f (x(1), . . . , x(j−1),η(j)

i+1, x
(j+1), . . . , x(d))

−f (x(1), . . . , x(j−1),η(j)
i , x(j+1), . . . , x(d)),

for 0 � i < mj.

DEFINITION 2.2.
1. For a function f on [0, 1]d , we set

V(d)(f ) = sup
P

m1−1∑
i1=0

. . .

md−1∑
id=0

|Δ1,...,df (η(1)
i1 , . . . ,η(d)

id
)|,

where the supremum is extended over all partitions P of [0, 1]d . If V(d)(f ) is
finite, then f is said to be of bounded variation on [0, 1]d in the sense of Vitali.

2. For 1 � p � d and 1 � i1 < i2 < . . . < ip � d , we denote by V(p)(f ; i1, . . . , ip)
the p -dimensional variation in the sense of Vitali of the restriction of f to
Ed

i1...ip = {(t1, . . . , td) ∈ [0, 1]d; tj = 1 whenever j is none of the ir, 1 � r � p}.
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If all the variations V(p)(f ; i1, . . . , ip) are finite, the function f is said to be of
bounded variation on [0, 1]d in the sense of Hardy and Krause.

Let x1, . . . , xn be a finite sequence of points in [0, 1]d with xl = (xl1 , . . . , xld) for
1 � l � n . We introduce the function

Rn(t1, . . . , td) =
A(t1, . . . , td; n)

n
− t1 . . . td

for (t1, . . . , td) ∈ [0, 1]d , where A(t1, . . . , td; n) denotes the number of elements xl, 1 �
l � n, for which xli < ti for 1 � i � d .

DEFINITION 2.3. The discrepancy D∗
n of the sequence x1, . . . , xn in [0, 1]d is

defined to be
D∗

n = sup
(t1,...,td)∈[0,1]d

|Rn(t1, . . . , td)|.

For a real number t, let ‖t‖ denote its distance to the nearest integer, namely,

‖t‖ = inf
n∈Z

| t − n |
= inf({t}, 1 − {t})

where {t} is the fractional part of t .

DEFINITION 2.4. For a real number η , a d -tuple α = (α1, . . . ,αd) of irrationals
is said to be of type η if η is the infimum of all numbers σ for which there exists a
positive constant c = c(σ;α1, . . . ,αd) such that

rσ(h)‖〈 h,α〉 ‖ � c

holds for all h �= 0 in Zd , where r(h) =
d∏

i=1
max(1, |hi|) and 〈 ·, ·〉 denotes the

standard inner product in Rd.

REMARK. The type η of α is also equal to

sup{γ : inf
h∈(Zd)∗

rγ (h)‖〈 h,α〉 ‖ = 0}.

We always have η � 1 (see [20]). We now give a result (see [17]) which gives us
the asymptotic behaviour of the discrepancy of the sequence w = (x1 + lα1, . . . , xd +
lαd), l = 1, 2, . . . in function of the mutual irrationality of the components of α .

PROPOSITION 2.5. Let α = (α1, . . . ,αd) be an irrational vector. Suppose there
exists η � 1 and c > 0 such that

rη(h)‖〈 h,α〉 ‖ � c
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for all h �= 0 in Zd . Then, for every x ∈ [0, 1]d , the discrepancy of the sequence
w = (x1 + lα1, . . . , xd + lαd), l = 1, 2, . . . satisfies D∗

n(w) = O(n−1 logd+1 n) for

η = 1 and D∗
n(w) = O(n−

1
((η−1)d+1) log n) for η > 1 .

The proof is based on the Erd´́os-Turán-Koksma’s theorem: For h ∈ Zd, define
p(h) = max

1�j�d
|hj| , and let x1, . . . , xn be a finite sequence of points in Rd . Then, for

any positive integer m , we have

D∗
n � Cd

⎛
⎝ 1

m
+
∑

0�p(h)�m

1
r(h)

∣∣∣∣∣1n
n∑

l=1

e2πi〈 h,xl〉
∣∣∣∣∣
⎞
⎠

where Cd only depends on the dimension d . This theorem combined with the results
of [17] (p. 131) gives us the result.

THEOREM 2.6 (Hlawka, Zaremba). Let f be of bounded variation on [0, 1]d in
the sense of Hardy and Krause, and let ω be a finite sequence of points x1, . . . , xn in
[0, 1]d . Then, we have∣∣∣∣∣1n

n∑
l=1

f (xl) −
∫

Td
f (t)dt

∣∣∣∣∣ �
d∑

p=1

∑
1�i1<i2<...<ip�d

V(p)(f ; i1, . . . , ip)D∗
n(ωi1...ip),

where D∗
n (ωi1...ip) is the discrepancy in Ed

i1...ip of the sequence ωi1...ip obtained by

projecting ω onto Ed
i1...ip .

PROPOSITION 2.7. Let f be a function with bounded variation in the sense of
Hardy and Krause and α an irrational vector of type η , then

sup
x∈Td

∣∣∣∣∣
n∑

l=1

f (τl
αx) − n

∫
Td

f (t)dt

∣∣∣∣∣ =
{

O(logd+1 n) if η = 1

O(n1− 1
((η−1)d+1) log n) if η > 1.

Proof. Let η′ be such that η � η′ < 1 + 1
d . Then there exists c > 0 such that

rη
′
(h)‖〈 h,α〉 ‖ � c

holds for all h �= 0 in Zd . If we are given a p -tuple αp = (αi1 , . . . ,αip), 1 � p � d,
of α , then

rη
′
(h)‖〈 h,αp〉 ‖ � c

holds for all h �= 0 in Zp, 1 � p � d . Thus, every p -tuple, 1 � p � d , is of type δ
such that 1 � δ � η and (αi1 , . . . ,αip) is an irrational vector. For every p, 1 � p � d ,
we define wi1 ...ip by the projection of w on Ed

i1...ip . By Proposition 2.5, we have for
every p, 1 � p � d ,{

nD∗
n(wi1 ...ip) = O(logp+1 n) if δ = 1

nD∗
n(wi1 ...ip) = O(n1− 1

((δ−1)p+1) log n) if 1 < δ � η.
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Now, ∀p = 1, . . . , d,

0 � 1 − 1
(δ − 1)p + 1

� 1 − 1
(η − 1)d + 1

� 1.

Therefore, using Hlawka-Zaremba’s theorem, we obtain the proposition.

3. Proof of Theorems 1.6 and 1.7

In order to prove that a standard random walk (Sn)n∈N (sum of i.i.d. random
variables with Bernoulli distribution) is not universally representative for Lp, p � 1 ,
Lacey and al. [18] used the Strassen’s Functional Law of the Iterated Logarithm [27]
implying that the walk is constant for long stretches with some fluctuations that they
are able to control by choosing a suitable function g . In our situation we could not use
the classical Strassen’s Functional Law of t ted Logarithm which only concerns sums of
identically distributed and independent variables satisfying suitable conditions. So we
will follow the ideas developped by Szüsz and Volkmann [28]. Their aim was to give a
proof of Strassen’s result without using functional tools but the probabilistic concepts
used by Kolmogorov [14] to establish the classical Law of the Iterated Logarithm. In
this way they extend the Strassen’s result to sums of random variables not necessarily
identically distributed and even weaken Kolmogorov’s hypotheses.

3.1. A Strassen’s Functional Law of the Iterated Logarithm for the dynamic
random walk

The dynamic Z -randomwalk (Sn)n∈N is defined as in section 1. We assume in this
section that f is a Riemann integrable function such that c =

∫
Td 4f (t)(1−f (t))dt > 0 .

Let us define for every i � 1 , the random variables Yi = Xi − (2f (τi
αx) − 1) and the

sum S̃n =
n∑

i=1

Yi . Then we investigate the behaviour of the functions ψn(t) obtained

by linear interpolation of the values

ψn

( i
n

)
= Tn(i) where Tn(i) =

S̃i√
2nc log log n

, i = 1, . . . , n; ψn(0) = 0.

The set Σ will denote the set of absolutely continuous functions F defined on [0, 1]
with F(0) = 0 whose derivative satisfies∫ 1

0
F′(t)2dt � 1.

PROPOSITION 3.1. For every x ∈ Td and every irrational vector α , the set of
limit functions of the sequence ψ3,ψ4,ψ5, . . . under uniform convergence is almost
certainly the set Σ .

The proof will be deduced from the following lemmas.
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LEMMA 3.1. For any v with 0 < v < C2.

√
log logVar(S̃n)

Var(S̃n)
, one has

E (evS̃n) < e
v2

2 Var(S̃n)(1+δn), n � 1

where δn → 0 as n → ∞ .

Proof. One has for every i � 1 ,

E (evYi) =
∞∑
l=0

vl

l!
E (Yl

i ) = 1 +
v2

2
Var(Yi) +

∞∑
l=3

vl

l!
E (Yl

i ).

Therefore,

E (evS̃n) =
n∏

i=1

E (evYi) < exp

(
v2

2
Var(S̃n) +

∞∑
l=3

vl

l!

n∑
i=1

E (|Yi|l)
)

.

We have

1
n
Var(S̃n) =

1
n

n∑
i=1

4f (τi
αx)(1 − f (τi

αx)) →
n→+∞ c, uniformly in x ∈ Td

(see [21] p. 156). This result and the fact that the random variables Yi are bounded by
2 imply that the sequence

√
log logVar(S̃n)

Var(S̃n)
.

⎛
⎜⎜⎝

n∑
i=1

E (|Yi|l)
log logVar(S̃n)

⎞
⎟⎟⎠

1/l

converges uniformly with respect to l with l � 3 to zero when n tends to +∞ . Thus
the lemma follows.

LEMMA 3.2 (Bernstein-KolmogorovInequality). For any t < C3 ·log logVar(S̃n) ,
one has

P

(
S̃n >

√
2tVar(S̃n)

)
< e−t(1+o(1)).

Proof. We have the classical inequality, for any v > 0 ,

P

(
S̃n >

1
v
(t + log E (evS̃n))

)
< e−t.

The lemma 3.1 with

v =

√
2t

Var(S̃n)
gives us

log E (evS̃n) <
v2

2
Var(S̃n)(1 + o(1)),

which proves the inequality.

The following inequality can be found in Kolmogorov [14].
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LEMMA 3.3. For any t satisfying C4 < t < C3 · log logVar(S̃n) , one has

P(S̃n >
√

2tVar(S̃n)) > e−t(1+o(1)).

By combining lemmas 3.2 and 3.3, we deduce

LEMMA 3.4. For any β > 1 and ε > 0 there exists an no = no(β , ε) such that,
for all y satisfying C4 < |y| <

√
C5 · log logVar(S̃n) , we have

e−
y2

2 (1+ε) < P

(
S̃n ∈

(
y
√

Var(S̃n), βy
√

Var(S̃n)
))

, n � no.

Proof of Proposition 3.1. Let k be a sufficiently large natural number. We restrict
our attention to indices n divisible by k . Now we can split the sum S̃n into k sums of
n
k terms each,

ξ1 = Y1 + . . . + Yn
k
, ξ2 = Yn

k +1 + . . . + Y 2n
k
, . . .

Let tl ∈ [0, 1] and β > 1 be given. If we apply Lemma 3.4 with n
k , ξl,

√
nc
k + o(1)

instead of n, S̃n,
√

Var(S̃n) and with y = tl
√

2k log log n , then

P

(
ξl ∈
(

y

√
nc
k

, βy

√
nc
k

))
> e−k log log n(1+ε)t2l .

Using that the random variables ξi are independent, we get

P

(
ξl√

2nc log log n
∈ (tl, β tl) for l = 1, . . . , k

)
> (log n)

−(1+ε)k
k∑

l=1

t2l
.

Now we can choose

tl = F

(
l + 1

k

)
− F

(
l
k

)
, l = 0, 1, . . . , k − 1.

Let ε′ > 0 be given and set I =
∫ 1

0 F′(t)2dt . Then for k large enough, we get∣∣∣∣∣k
k∑

l=1

t2l − I

∣∣∣∣∣ < ε′.

If I < 1 , the series
∞∑

m=1

(log qm)−(1+ε)I, q > 1,

diverges for sufficiently small ε and the proof is finished by applying the Borel-Cantelli
Lemma and using the argument of [14]. If I = 1 , we apply all this to a function F∗ ∈ Σ
whose corresponding integral I∗ < 1 and which is close to F under the metric of
uniform convergence.
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3.2. Dynamic random walk is not universally representative

By Theorem 1.3 in Del Junco and Rosenblatt [2], it is enough to find for a.e. ω ,
for each ε > 0 and N ∈ N , a set E of measure less than ε for which μ(sup

n�N
Aω

n 1E >

1 − ε) > 1 − ε . Given ε > 0 , choose q ∈ N with 4
q < ε and fix n large. Take

α, β ∈]0, 1[ such that β(q + 1)q−1 < 1 . Let β−1 = 0 and for i = 0, . . . , q − 1 , let
βi = (q + 1)iβ . We define a continuous function F on [0, 1] by F(0) = 0 and

F = (i + 1)α on [βi−1 + β(q + 1)i−1, βi] for i = 0, . . . , q − 1,

linearly in between and constant elsewhere. We choose α small enough so that∫ 1
0 F′(t)2dt � 1. Under the hypotheses of Theorem 1.6 (resp. Theorem 1.7), by

Proposition 2.1 (resp. Proposition 2.7), if wn =
√

2nc log log n , for any ε > 0 given,
for n large enough, we have

1
wn

∣∣∣∣∣
k∑

i=1

(2f (τi
αx) − 1)

∣∣∣∣∣ < ε for k = 1, . . . , n.

Then, by Proposition 3.1, for a.e. ω and n large enough,∣∣∣∣Sk(ω)
wn

− F

(
k
n

)∣∣∣∣ < α for k = 1, . . . , n.

We fix such n,ω . By standards methods for transferring counterexamples by use
of Rokhlin towers, we may work with the translation action of Z on itself and find
g : Z → {0, 1} taking value 1 on an infrequently visited set but giving large values of
the averages for most initial points. For each i = 1, . . . , q, let Ii = [(i−1)αwn, iαwn[ .
Let us define the function g by g(x) = 1 if x(mod qαwn) ∈ I1 ∪ I2 ∪ Iq , 0 otherwise.
If g is transferred by means of the Rokhlin lemma to any aperiodic transformation of
Z , we have μ(g = 1) < 4

q < ε . For each x ∈ Z , we can choose i ∈ {1, . . . , q} such
that x(mod qαwn) ∈ Iq−i+1 . Then,

Aω
nβi−1

g(x) � 1
nβi−1

∑
nβi−2�k�nβi−1

g(x + Sk(ω))

=
1

nβi−1

∑
nβi−2�k�nβi−1

g

(
x + wnF

(
k
n

)
+ δkwn

)
where δk ∈] − α,α[.

� q − 1
qnβi−1

∑
nβi−2+nβ(q+1)i−2�k�nβi−1

g(x + iαwn + δkwn)

� q − 1
q

· nβi−1 − nβi−2 − nβ(q + 1)i−2

nβi−1
� 1 − 3

q
> 1 − ε

since (x + iαwn + δkwn)(mod qαwn) ∈ [δkwn(mod qαwn), (α + δk)wn(mod qαwn)[⊂
I1 ∪ I2 ∪ Iq (since δk ∈] − α,α[).



190 NADINE GUILLOTIN-PLANTARD, DOMINIQUE SCHNEIDER

4. Proof of Theorem 1.5

In this section we prove Theorem 1.5 assuming that Theorem 1.8 is satisfied and
using Van der Corput’s inequality. The proof of Theorem 1.8 will be given in the next
section. Van der Corput’s inequality permits us to determine sufficient conditions for a
sequence of points in a Hilbert space to go to 0 in the Cesàro sense for the Hilbertian
norm. Given a finite family of n points (uk)1�k�n in a Hilbert space H , a sufficient
condition to get

lim
n→∞

∣∣∣∣∣
∣∣∣∣∣1n

n∑
k=1

uk

∣∣∣∣∣
∣∣∣∣∣
H

= 0 ,

is:

(a) ∀l � 0,

∣∣∣∣∣1n
n∑

k=1

〈 uk+l, uk〉H

∣∣∣∣∣ � ψl,n and lim
n→∞ψl,n = γl exists

and

(b) lim
L→∞

1
L

L−1∑
l=0

γl = 0.

For all l � 1 , we denote Sl
k = Xk+1 + . . . + Xk+l, ∀k � 1 and we define φ (l)

k (θ), θ ∈
[0, 1[r the characteristic function of the random variable Sl

k ,

φ (l)
k (θ) = E (e2πi〈 θ,Sl

k〉 )

The random vectors Xi are independent with independent directions and the law of X(j)
i

is known, so

φ (l)
k (θ) =

r∏
i=1

l∏
j=1

(cos(2πθi) + i(2f i(τk+j
α x) − 1) sin(2πθi)), θ ∈ [0, 1[r. (2)

The Zr -action T can be rewritten as a composition of r commuting automorphisms
T1, . . . , Tr of the space Y i.e.

T = T1 ◦ . . . ◦ Tr.

We denote by H the closed space of L2(μ) spanned by the functions f such that for
every i = 1, . . . , r , Tif = ±f . Then, the Hilbert space L2(μ) can be decomposed as
a direct sum of the space H and the orthogonal complement H⊥ of the space H .

LEMMA 4.1. Let g ∈ H⊥ and let μg be the spectral measure of T at the point g .
Then μg(θ) = 0 for every θ ∈ {0, 1

2}r .

Proof. Let θ = (θ1, . . . , θr) with θi ∈ {0, 1
2} for every i = 1, . . . , r . Let us

define the new Zr -action
T̃ = T̃1 ◦ . . . ◦ T̃r
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where T̃i = exp(−2πiθi)Ti, i = 1, . . . , r . The Zr -action T̃ is a contraction of L2(μ) .
Then, by Von Neumann’s theorem for the Zr -action T̃ (see for instance [21] p. 24), the
average

1
nr

n∑
k1,...,kr=1

T̃kg

converges in L2(μ) to a function h ∈ L2(μ) . Moreover, the function h is fixed for the
Zr -action T̃ : for every i = 1, . . . , r , T̃ih = h that is to say for every i = 1, . . . , r ,
Tih = ±h so h ∈ H . Using the spectral lemma, we now have

〈 h, g〉 2,μ = lim
n→∞

1
nr

n∑
k1,...,kr=1

exp(−2πi〈 θ, k〉 )〈Tkg, g〉 2,μ

=
∫

[0,1[r
lim

n→∞
1
nr

n∑
k1,...,kr=1

exp(2πi〈 t − θ, k〉 )μg(dt)

= μg(θ) = 0.

Let us come back to the proof of Theorem 1.5. Let g ∈ H⊥ . We use the spectral
lemma and get the equality

∣∣∣∣∣
∣∣∣∣∣1n

n∑
k=1

g ◦ TSk

∣∣∣∣∣
∣∣∣∣∣
2

2,μ

=
∫

[0,1[r

∣∣∣∣∣1n
n∑

k=1

exp(2πi〈 θ, Sk〉 )

∣∣∣∣∣
2

μg(dθ).

In order to prove that this term goes to 0 as n → ∞ , we apply the Van der Corput’s in-
equality to the Hilbert space L2([0, 1[r,μg) and to the sequence uk = exp(2πi〈 θ, Sk〉 ) ,
k � 1 . Let us begin by verifying the point (a). For every l � 1 ,

1
n

n∑
k=1

〈 uk+l, uk〉 2,μg =
1
n

n∑
k=1

∫
[0,1[r

exp(2πi〈 θ, Sl
k〉 )μg(dθ)

=
∫

[0,1[r

1
n

n∑
k=1

(exp(2πi〈 θ, Sl
k〉 ) − φ (l)

k (θ))μg(dθ)

+
∫

[0,1[r

1
n

n∑
k=1

φ (l)
k (θ)μg(dθ).

By applying Theorem 1.8 to the independent random variables Yn = Sl
ln+m , the

first integral goes to 0 as n → ∞ . We have to estimate the second one. Using (2) and
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the fact that log(1 − x) � −x for every x ∈ [0, 1[ , we get∣∣∣∣∣1n
n∑

k=1

φ (l)
k (θ)

∣∣∣∣∣ � 1
n

n∑
k=1

|φ (l)
k (θ)|

=
1
n

n∑
k=1

r∏
i=1

exp

⎛
⎝1

2

l∑
j=1

log(1 − 4f i(τk+j
α x)(1 − f i(τk+j

α x)) sin2(2πθi))

⎞
⎠

� max
k�1

r∏
i=1

exp

⎛
⎝− sin2(2πθi)

2

l∑
j=1

4f i(τk+j
α x)(1 − f i(τk+j

α x))

⎞
⎠ = ψl(θ).

We denote

γl =
∫

[0,1[r
ψl(θ)μg(dθ).

Let us now verify that the condition (b) is satisfied so that we need to study the behaviour
as L → ∞ of the sequence

1
L

L∑
l=1

γl =
1
L

L∑
l=1

∫
[0,1[r

ψl(θ)μg(dθ).

The sequence
1
L

L∑
l=1

ψl(θ) is bounded by 1 for every θ ∈ [0, 1[r and we have

1
L

L∑
l=1

ψl(θ) � 1
L

L∑
l=1

max
k�1

r∏
i=1

exp

⎛
⎝− sin2(2πθi)

2
(

l∑
j=1

4f i(τk+j
α x)(1 − f i(τk+j

α x)) − lci)

⎞
⎠

× exp

(
− lci sin2(2πθi)

2

)

where ci =
∫

Td f i(t)(1 − f i(t))dt > 0 . Under the hypotheses of Theorem 1.5, we have
for every i ∈ {1, . . . , r} ,

sup
x∈Td

∣∣∣∣∣∣
1
n

n∑
j=1

4f i(τj
αx)(1 − f i(τj

αx)) − ci

∣∣∣∣∣∣ →
n→∞ 0

(see [21] p. 156). Then,
1
L

L∑
l=1

γl goes to 0 as L → ∞ , the spectral measure μg having

no mass point at the points (θ1, . . . , θr) , with θi ∈ {0, 1
2} from the previous lemma so

that the condition (b) is verified.
We now have to treat the functions belonging to the space H . As these functions

are limits of finite linear combinations of the functions spanning the space H , it is
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enough to treat the latter ones. If g is a function such that for every i = 1, . . . , r ,
Tig = ±g , then the sampled ergodic average of g is given by

1
n

n∑
k=1

(−1)

∑
i∈I

S(i)
k

g

where I = {i ∈ {1, . . . , r}; Tig = −g} . It is easy to see from the definition of the
dynamic random walk that when card(I) is even, this average is g . Otherwise, it is
either 0 when n is even or − g

n for n odd, so that its norm in L2(μ) converges to 0 as
n → ∞ .

5. Proof of Theorem 1.8

Since we assumed that for some positive ε , we have E (|Yn|ε) � c < ∞, there
exists δ > 0 so that for almost every ω , the absolute value of the derivative of∑

k�n

Zk(θ,ω)

with respect to θ is less than nδ if n is large enough. It follows that for each n , for a
suitably large σ > 0 , the sup over all θ can be replaced by a sup over the set

Θn = {kn−σ ; k = 1, . . . , nσ}.
By Borel-Cantelli lemma, we need to show that for a large enough constant K ,

P

⎛
⎝ sup

θ∈Θn

(log n/n)1/2

∣∣∣∣∣∣
∑
k�n

Zk(θ,ω)

∣∣∣∣∣∣ > K log n

⎞
⎠ < cn−2.

But then we just need to show that for every positive σ , there is a K so that for each
θ ,

P

⎛
⎝(log n/n)1/2

∣∣∣∣∣∣
∑
k�n

Zk(θ,ω)

∣∣∣∣∣∣ > K log n

⎞
⎠ < cn−σ .

Denoting by Rk the real part of Zk , we only show

P

⎛
⎝(log n/n)1/2

∑
k�n

Rk > K log n

⎞
⎠ < cn−σ ,

for large enough K , the remaining cases (imaginary part, < −K log n ) being entirely
similar. Because of the estimate

P

⎛
⎝(log n/n)1/2

∑
k�n

Rk > K log n

⎞
⎠ � E exp

⎛
⎝(log n/n)1/2

∑
k�n

Rk

⎞
⎠ · e−K log n,
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we only need to prove that

E exp

⎛
⎝(log n/n)1/2

∑
k�n

Rk

⎞
⎠ � ec log n.

Denote s = (log n/n)1/2 . Since the random variables Rk are uniformly bounded by 2,
have zero mean and E (R2

k) � 2 , using the power series expansion of the function exp ,
we obtain the bound

E (esRk) � e4s2

.

But then since the Rk are independent,

E exp

⎛
⎝(log n/n)1/2

∑
k�n

Rk

⎞
⎠ � e4ns2

= e4 log n.

6. Open problems

• The assumption on the partial quotients of the angle α in Theorem1.6 is sufficient
to obtain the result. In fact, this hypothesis means that the dynamic random walk
we look at is not so far away from the standard Bernoulli random walk but we
don’t know if it is necessary.

• In [18], it is shown that in case of a random walk in Z , one can get almost
everywhere convergence in case of a transient random walk. We think that under
the hypotheses

∫
f dt �= 1

2 but still
∫

f (1 − f ) dt > 0 , the almost everywhere
convergence should hold for the dynamic random walk.

• In [18], it is also shown that in case of a random walk in dimension strictly greater
than one, there is no almost everywhere convergence result. It should be the same
for the random walks considered in this paper. Technical difficulties appear due
to the temporal inhomogeneity of the dynamic random walk.

Acknowledgement. We would like to thank an anonymous referee for her/his
insightful comments.

RE F ER EN C ES

[1] BERGELSON, V. Weakly mixing PET. Ergodic Theory Dynam. Systems (1987), Vol 7, No. 3, 337–349.
[2] DEL JUNCO, A. and ROSENBLATT, J Counterexamples in ergodic theory and number theory. Math. Ann.

(1979) 245, 185–197.
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