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CALCULUS PROOFS OF SOME COMBINATORIAL INEQUALITIES

TOMISLAV DOŠLIĆ AND DARKO VELJAN

Abstract. Using calculus we show how to prove some combinatorial inequalities of the type
log-concavity or log-convexity. It is shown by this method that binomial coefficients and Stirling
numbers of the first and second kinds are log-concave, and that Motzkin numbers and secondary
structure numbers of rank 1 are log-convex. In fact, we prove via calculus a much stronger
result that a natural continuous “patchwork” (i.e. corresponding dynamical systems) of Motzkin
numbers and secondary structures recursions are increasing functions. We indicate how to prove
asymptotically the log-convexity for general secondary structures. Our method also applies to
show that sequences of values of some orthogonal polynomials, and in particular the sequence
of central Delannoy numbers, are log-convex.
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