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CALCULUS PROOFS OF SOME COMBINATORIAL INEQUALITIES

TOMISLAV DOŠLIĆ AND DARKO VELJAN

(communicated by V. Volenec)

Abstract. Using calculus we show how to prove some combinatorial inequalities of the type
log-concavity or log-convexity. It is shown by this method that binomial coefficients and Stirling
numbers of the first and second kinds are log-concave, and that Motzkin numbers and secondary
structure numbers of rank 1 are log-convex. In fact, we prove via calculus a much stronger
result that a natural continuous “patchwork” (i.e. corresponding dynamical systems) of Motzkin
numbers and secondary structures recursions are increasing functions. We indicate how to prove
asymptotically the log-convexity for general secondary structures. Our method also applies to
show that sequences of values of some orthogonal polynomials, and in particular the sequence
of central Delannoy numbers, are log-convex.

1. Introduction

In combinatorics the most prominent question is usually to find explicitly the
size of certain finite set defined in an intricate way. It often happens that there is
no explicit expression for the size in question, but instead one can find recursion,
generating function or other gadgets which enable us to compute concrete sizes or
numbers. The next question then usually asks how the sequence of numbers satisfying
certain recursionbehaves. By behavior of the sequence (an)n�0 of positive real numbers
it is often meant its log-concavity (or log-convexity). Recall that a sequence (an)n�0

of positive real numbers is log-concave if a2
n � an−1an+1 for all n � 1 , and log-

convex if a2
n � an−1an+1 for all n � 1 . We say that a sequence (an)n�0 is log-

straight or geometric if a2
n = an−1an+1 for all n � 1 . A (finite) sequence of positive

numbers a0, a1, . . . , an is said to be unimodal if, for some 0 � j � n we have
a0 � a1 � . . . � aj � aj+1 � . . . � an . This place j is called a peak of the sequence
if it is unique. If there are more such maximal values, we speak about a plateau of
the sequence. It is easy to see that a log-concave positive sequence is unimodal. The
literature on log-concavity and unimodality is vast. We refer the interested reader to the
book [7]. Combinatorial inequalities, and in particular, the questions concerning log-
concavity (or log-convexity) are surveyed in [3], [12] and [10]. Some analytic methods
are described in [2].

In combinatorics, a preferable way to prove a combinatorial inequality is to give a
combinatorial proof. There are two basic ways to do it. Suppose that we are given finite
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sets A and B with |A| = a and |B| = b and we want to prove, say, a � b . One way
to prove it is to construct an injection A → B (or a surjection B → A ), and the other is
to show that the number c = b − a is nonnegative, by showing that c is cardinality of
certain set or that c is the dimension of certain vector space (and hence nonnegative)
etc. As an example, let us show that binomial coefficients

( n
k

)
, k = 0, 1, . . . , n are

log-concave. It is trivial to check algebraically that
( n

k

)2 �
(

n
k−1

) ( n
k+1

)
by using the

standard formula
( n

k

)
= n!

k!(n−k)! , but combinatorially it goes as follows.
First define the Narayana numbers N(n, k) for integers n, k � 1 as

N(n, k) =
1
n

(n
k

) (
n

k − 1

)
=

1
k

(
n

k − 1

) (
n − 1
k − 1

)
,

and N(0, 0) := 1 . Next we note that

(n
k

)2
−

(
n

k − 1

) (
n

k + 1

)
=

∣∣∣∣∣∣
( n

k

)(
n

k−1

) ( n
k+1

)
( n

k

)
∣∣∣∣∣∣ = N(n + 1, k + 1).

Finally, we need the fact that Narayana numbers have a combinatorial meaning, i.e.

they count certain finite sets (see below). Therefore we get
( n

k

)2 −
(

n
k−1

) ( n
k+1

)
� 0.

There are also other combinatorial proofs of log-concavity of binomial coefficients, as
well as log-concavity of Stirling numbers (of both kinds) etc., but they are all rather
involved and/or tricky. In this paper we present a way to prove various combinatorial
inequalities by a straightforward method of calculus. Inductive and injective proofs of
log-convexity results are described in [9].

2. Calculus proofs of log-concavity and log-convexity properties

Let us first recall briefly calculus proofs of log-concavity of binomial coefficients
and Stirling numbers. Let c(n, k) be the number of permutations of the set [n] :=
{1, 2, . . . , n} with exactly k cycles and S(n, k) the number of partitions of [n] into
exactly k parts (or blocks). The numbers c(n, k) and S(n, k) are called Stirling
numbers of the first and second kind, respectively. The following formulae are well
known (see [11]).

(x + 1)n =
n∑

k=0

(n
k

)
xk, (1)

xn̄ = x(x + 1) . . . (x + n − 1) =
n∑

k=0

c(n, k)xk, (2)

xn =
n∑

k=0

S(n, k)xk, (3)

where xk := x(x−1) . . . (x−k+1) is the k -th falling power and xk̄ = x(x+1) . . . (x+
k − 1) the k -th rising power of x.
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The following Newton’s lemma is a consequence of the Rolle’s theorem from
calculus.

LEMMA 1. Let P(x) =
∑n

k=0 akxk be a real polynomial whose all roots are real
numbers. Then its coefficients are log-concave, i.e. a2

k � ak−1ak+1, k = 1, . . . , n − 1 .
(Moreover, ak

( n
k )

are log-concave).

Now, from (1) and (2) we see that (x + 1)n and xn̄ have only real roots and by
Lemma 1. we conclude that the sequences

( n
k

)
and c(n, k) are log-concave.

The case of the sequence S(n, k) is a bit more involved. We claim that the
polynomial

Pn(x) =
n∑

k=0

S(n, k)xk (4)

has all real roots (in fact non-positive and different). Namely, P0(x) = 1 and from the
basic recursion

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k)

it follows at once that
Pn(x) = x

[
P′

n−1(x) + Pn−1(x)
]
.

The function Qn(x) = Pn(x)ex has the same roots as Pn(x) and it is easy to verify
Qn(x) = xQ′

n(x) . By induction on n and by using the Rolle’s theorem it follows easily
that Qn and hence Pn have only real and non-positive roots.

So, we have proved by calculus the following.

THEOREM 1. The sequences
( n

k

)
k�0

, (c(n, k))k�0 , (S(n, k))k�0 are log-concave.
Hence they are also unimodal.

It is also well known that the peak of the sequence
( n

k

)
is at k = �n/2� , while

the peak for the other two sequences is much harder to determine. It is known that
S(n, k) ’s reach their peak for k ≈ n/ log n , if n is large enough. (An inductive proof
of Theorem 1. is given in [9].)

Now we turn to a different kind of combinatorial entities. Recall that a Dyck path
is a path in the coordinate (x, y) -plane from (0, 0) to (2n, 0) with steps (1, 1) and
(1,−1) never falling below the x -axis. Denote the set of all such paths by Dn . A peak
of a path P ∈ Dn is a place at which the step (1, 1) is directly followed by the step
(1,−1) . Denote by Dn,k ⊆ Dn the set of all Dyck paths of length 2n with exactly k
peaks. Note that 1 � k � n . The following facts are also well known (see [11]).

|Dn| =
1

n + 1

(
2n
n

)
= Cn

|Dn,k| = N(n, k),

where Cn is n -th Catalan number. The Catalan numbers are log-convex. The Narayana
numbers are log-concave in k for fixed n . Both these facts can easily be proved
algebraically, but there are also combinatorial proofs,aswell as calculus proofs. We omit
here these proofs, sincewewant to emphasize the followingmore intricate combinatorial
quantities, related to the above just introduced.
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A Motzkin path is a path in the coordinate (x, y) -plane from (0, 0) to (n, 0) with
steps (1, 1) , (1, 0) and (1,−1) never falling below the x -axis. Let Mn be the set of
all such paths and let Mn = |Mn| . The number Mn is called the n -th Motzkin number.

Some basic properties of Motzkin numbers are as follows ([11], [6]).

THEOREM 2. (a) Mn =
∑

k�0

( n
2k

)
Ck, Cn+1 =

∑
k�0

( n
k

)
Mk;

(b) Mn+1 = Mn +
∑n−1

k=0 MkMn−k−1;
(c) The generating function of (Mn)n�0 is given by

M(x) =
∑
n�0

Mnx
n =

1 − x −√
1 − 2x − 3x2

2x2
;

(d) (n + 2)Mn = (2n + 1)Mn−1 + 3(n − 1)Mn−2;

(e) Mn ∼
√

3
4π 3n+1n−3/2.

The log-convexity of the sequence of Motzkin numbers was first established alge-
braically in [1], and shortly afterwards combinatorial proof appeared in [4]. We shall
prove now by calculus that (Mn)n�0 is a log-convex sequence and some consequences
of this property.

THEOREM 3.
(a) The sequence (Mn)n�0 is log-convex;
(b) Mn � 3Mn−1 , for all n � 1 ;
(c) There exists x = limn→∞ Mn

Mn−1
, and x = 3 .

Proof. (a) Let us start from the short recursion in Theorem 2.(d):

Mn =
2n + 1
n + 2

Mn−1 +
3(n − 1)
n + 2

Mn−2.

Divide this recursion by Mn−1 and denote xn := Mn
Mn−1

. Then we obtain the following
recursion:

xn =
2n + 1
n + 2

+
3(n − 1)
n + 2

1
xn−1

(5)

with initial condition x1 = 1 . The log-convexity M2
n � Mn−1Mn+1 is equivalent to

xn � xn+1 . To prove that (xn)n�0 is an increasing sequence, we shall prove a much
stronger claim. To this end, define the following function f : [2,∞) → R . For
x ∈ [2, 3] , define f (x) = 2 . For x � 3 , let (by simulating (5))

f (x) =
2x + 1
x + 2

+
3(x − 1)
x + 2

1
f (x − 1)

. (6)

Note that f (n) = xn . We shall prove that f is an increasing function, and consequently
that (xn)n�0 is an increasing sequence. Note first that the function f is continuous ( f
is, in fact, a dynamical system), and on every open interval (n, n + 1) , where n � 2
is an integer, f is a rational function, with no poles on it. Therefore, f is smooth on
every open interval (n, n + 1) , for n � 2 . Note that, for example, f (x) = 7x−1

2(x+2) for



CALCULUS PROOFS OF SOME COMBINATORIAL INEQUALITIES 201

x ∈ [3, 4] , f (x) = 20x2−9x−14
7x2+6x−16 for x ∈ [4, 5] , etc. It is trivial to check that f (x) � 2 ,

for all x � 2 . Suppose inductively that f is an increasing function on a segment [3, n] .
For n = 4 it is (almost evidently) true. Let n � 4 , and take a point x ∈ (n, n + 1) . By
taking the derivative f ′(x) of (6), and plugging in once more the term for f ′(x − 1) ,
we have:

f ′(x) =
3

[(x + 2)f (x − 1)]2

[
f 2(x−1)+3f (x−1)−3

(x − 1)(x + 2)
(x + 1)2f (x − 2)

[f (x−2)+3]

+3
(x2 − 1)(x2 − 4)

[(x + 1)f (x − 2)]2
f ′(x − 2)

]

By inductive hypothesis, f is an increasing function on [3, n] and hence f (x−1) �
f (x − 2) � 2 and f ′(x − 2) � 0 . So, it is enough to prove that f ′(x) � 0 . However,
this follows from the following.

The last term in square brackets is clearly positive, by the induction hypothesis.
We claim that the rest is positive, too. This claim is equivalent with

[f 2(x − 1) + 3f (x − 1)]f (x − 2)
f (x − 2) + 3

� 3
(x − 1)(x + 2)

(x + 1)2
.

But this inequality is true, since by inductive hypothesis f (x− 1) � f (x− 2) � 2 , and
hence the left hand side is at least equal to f 2(x − 2) � 4 , while the right hand side
has the maximum (for x � 3 ) equal to 3 . Hence f ′(x) > 0 for all x ∈ (n, n + 1) .
So, the function f is strictly increasing on (n, n + 1) , and then, by continuity, also on
[3, n + 1] . In particular, f (n + 1) = xn+1 � xn = f (n) . This completes the step of
induction.

(b) and (c) follow now simultaneously, because by (a), the sequence (xn)n�0 is
increasing and from (5) it follows easily by induction on n that 2 � xn � 7/2 , i.e.
(xn) is bounded. �

Closely related combinatorial structures to Motzkin paths are the so called sec-
ondary structures. A secondary structure is a simple planar graph on vertex set [n]
with two kinds of edges: segments [i, i + 1] , for 1 � i � n − 1 and arcs in the upper
half-plane which connect some i, j , where i < j and j − i > l , for some fixed integer
l � −1 , such that the arcs are totally disjoint. Such a structure is called a secondary
structure of size n and rank l . The importance for the study of these structures comes
from biology. They are crucial in understanding the role of RNA in the cell metabo-
lism and in decoding the hereditary information contained in DNA. Biologists call the
vertices of a secondary structure bases, the segments they call p-bonds (p stands for
phosphorus) and arcs they call h-bonds (h stands for hydrogen). Let S (l)(n) be the
set of all secondary structures of rank l on n vertices and S(l)(n) = |S (l)(n)| the
secondary structure numbers of rank l . In a sense, the Motzkin numbers are secondary
structure numbers of rank 0 , and the Catalan numbers are secondary structure numbers
of the (degenerate) rank −1 . In these cases the corresponding graphs are not simple,
but the other requirements on secondary structures remain.

Now we shall apply our method of calculus to prove that in the case l = 1 the
behavior of the numbers S(1)(n) is also log-convex. So, we have:
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THEOREM 4. The sequence
(
S(1)(n)

)
n�0

is log-convex.

Proof. As for the Motzkin numbers, it turns out that for S(1)(n) the following short
recursion holds (see [6] and [5]):

(n + 2)S(1)(n) = (2n + 1)S(1)(n − 1) + (n − 1)S(1)(n − 2)

+(2n − 5)S(1)(n − 3) − (n − 4)S(1)(n − 4) (7)

with initial conditions S(1)(0) = S(1)(1) = S(1)(2) = 1, S(1)(3) = 2 . By dividing this
recursion with S(1)(n − 1) and denoting

xn =
S(1)(n)

S(1)(n − 1)
,

we get

xn =
1

n + 2

[
2n + 1 +

n − 1
xn−1

+
2n − 5

xn−1xn−2
− n − 4

xn−1xn−2xn−3

]
, (8)

with initial conditions x3 = x4 = x5 = 2 (note that x1 = x2 = 1 ).
The log-convexity of S(1)(n) ’s is equivalent with the fact that (xn) is an increasing

sequence.
Now define the function f : [2,∞) → R by simulating (8) as:

f (x) =

{
2, if x ∈ [2, 5],

1
x+2

[
2x + 1 + x−1

f (x−1) + 2x−5
f (x−1)f (x−2) − x−4

f (x−1)f (x−2)f (x−3)

]
, if x � 5.

(9)
Clearly, for any integer n � 3 , f (n) = xn , and f is continuous, and, in fact,

piecewise rational and smooth on any open interval (n, n + 1) for n � 2 . The basic
idea is, as in the proof of Theorem 3.(a), to show that f is an increasing and bounded
function, and hence (xn) is an increasing sequence. In next few lemmas we proceed
with details.

LEMMA 2. For all x � 2 , we have 2 � f (x) � 3 , while for x � 53 we have even
stronger bounds:

2.5 � f (x) � 2.67 .

Proof. We prove inductively that 2 � f (x) � 3 for x ∈ [2, n] . For n � 11 it can
be checked directly. Let n � 11 and x ∈ (n, n + 1] . Then

f (x) � 1
x + 2

[
2x + 1 +

x − 1
f (x − 1)

+
2x − 5

f (x − 1)f (x − 2)

]

� 1
x + 2

[
2x + 1 +

x − 1
2

+
2x − 5

4

]
=

12x− 3
4x + 8

� 3.

On the other hand,

f (x) � 1
x + 2

[
2x + 1 +

x − 1
3

+
2x − 5

9
− x − 4

8

]
=

175x + 44
72x + 144

� 2,
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for all x � 8 . So, 2 � f (x) � 3 on (n, n + 1] and the first claim is proved.
The stronger bounds also follow by induction. By direct computation, (using

Mathematica) one can check that they hold on the interval [53, 56] . Suppose 2.5 �
f (x) � 2.67 on some interval [53, n] , where n � 56 and take x ∈ [n, n + 1] . From
(8) we get

f (x) � 1
x + 2

[
2x + 1 +

x − 1
2.5

+
2x − 5
2.52

− x − 4
2.673

]
=

2.6675x + 0.010148
x + 2

� 2.67,

for all x � 0 . On the other hand,

f (x) � 1
x + 2

[
2x + 1 +

x − 1
2.67

+
2x − 5
2.672

− x − 4
2.53

]
=

2.59108x + 0.0181
x + 2

,

and this is greater than 2.5 for x � 53 (since the right hand side is equal to 2.5 for
x = 52.918 ). So, Lemma 2. is proved. �

LEMMA 3. The function f is increasing.

Proof. Suppose again inductively on n ∈ N that f increases on (5, n] . We shall
prove that f increases on (n, n+1) . One can check directly (using, e.g. Mathematica)
that f increases on (5, n0] , as far as n0 = 61 . Namely, the function f on interval
(n, n+1) is a rational function whose both numerator and denominator are polynomials
with integer coefficients of degree n−4 . The derivative of f is also a rational function,
and its denominator is always positive. So, we need to show that the numerators of the
derivative of f are positive on every interval (n, n + 1) , for n � n0 − 1 . An advanced
computer algebra system, such as Mathematica, gives us readily explicit expressions
for f (x) and f ′(x) on any given interval (n, n + 1) . Let us denote f ′(x) = Nn(x)

Dn(x) on
interval (n, n + 1) . If we can find some k ∈ N , k � n , such that all coefficients of
Nn(x + k) are nonnegative, we are done, since then f ′(x) can not change its sign on
the considered interval. It turns out that k = 2 works for all intervals (n, n + 1) with
n � 60 . Hence, f ′(x) � 0 for x ∈ (n, n + 1) , n � 60 and f (x) is increasing on
[5, 61] . It is important to note here that all performed computations include only integer
quantities, and no round-off errors occur.

Take x ∈ (n, n + 1) for n � n0 . Then f ′(x) > 0 for x ∈ (i, i + 1), i =
5, . . . , n − 1 , and also f (x) � f (x − 1) , for 4 � x � n .

Denote for short f i = f (x − i) , i � 1 . Then (9) can be written as

(x + 2)f 1f 2f 3f (x) = (2x + 1)f 1f 2f 3 + (x − 1)f 2f 3 + (2x − 5)f 3 − (x − 4).

By taking derivative, we get

f ′(x) =
1

D(x)
[
F(x) + F3(x)f ′

3(x) − F1(x)f ′
1(x) − F2(x)f ′

2(x)
]
,
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where
D(x) = (x + 2)f 1f 2f 3,

F(x) = 2f 1f 2f 3 + f 2f 3 + 2f 3 − 1 − f 1f 2f 3f (x),

F1(x) = [(x + 2)f (x) − (2x + 1)] f 2f 3,

F2(x) = [(x + 2)f 1f (x) − (2x + 1)f 1 − (x − 1)] f 3,

F3(x) = 2x − 5 + (2x + 1)f 1f 2 + (x − 1)f 2 − (x + 2)f 1f 2f (x).

Using (9), let us express D(x), F(x), Fi(x), i = 1, 2, 3 only in terms of f i ’s and x :

D(x) = (x + 2)f 1f 2f 3,

F(x) =
3

x + 2
(f 1f 2f 3 + f 2f 3 + 3f 2 − 2),

F1(x) =
1
f 1

[(f 2f 3 + 2f 3 − 1)x − (f 2f 3 + 5f 3 − 4)] ,

F2(x) =
1
f 2

[(2f 3 − 1)x − (5f 3 − 4)] ,

F3(x) =
1
f 3

(x − 4).

Now plug in derivatives f ′
1 and f ′

2 by the same rule, to obtain

f ′(x) =
1

D(x)

{
F(x) − F1(x)F(x − 1)

D(x − 1)
− F2(x)F(x − 2)

D(x − 2)
+

F1(x)F1(x − 1)
D(x − 1)

f ′
2

+
[
F1(x)F2(x − 1)

D(x − 1)
+

F2(x)F1(x − 2)
D(x − 2)

+ F3(x)
]

f ′
3

+
[
F2(x)F2(x − 2)

D(x − 2)
− F1(x)F3(x − 1)

D(x − 1)

]
f ′
4 −

F2(x)F3(x − 2)
D(x − 2)

f ′
5

}
. (10)

The “coefficients” by f ′
2 and f ′

3 are positive. By further pumping in f ′
5 , the terms

f ′
6 and f ′

7 will appear with positive “coefficients”, while f ′
8 will appear with negative

“coefficient” and a “free” negative term

−F2(x)F3(x − 2)F(x − 5)
D(x − 2)D(x − 5)

also appears. Every further pumping in for f ′
3k+2 contributes positive terms by f ′

3k+3
and f ′

3k+4 , a negative term by f ′
3k+5 and a negative “free” term. If we continue to pump

in long enough, the argument of the negative term will be eventually “trapped” in the
interval (2, 5) , and there f ′ = 0 . So, to prove that f ′(x) > 0 we only have to show
that the “coefficient” of f ′

4 is positive and that “free” term (i.e. the term without any
f ′
i ) is also positive. These two facts we prove in the next lemma.
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LEMMA 4. The “coefficient” of f ′
4 and the “free” term, obtained by pumping in

f ′
5, f

′
8 , . . . in (10) are both positive. More precisely, with previous notations we have:

(a) L4(x) :=
F2(x)F2(x − 2)

D(x − 2)
− F1(x)F3(x−1)

D(x−1) � 0,

for x � n0 ;

(b) L(x) := F(x) − F1(x)F(x − 1)
D(x − 1)

− F2(x)F(x − 2)
D(x − 2)

−F2(x)F3(x − 2)
D(x − 2)

F(x − 5)
D(x − 5)

[
1 +

F(x − 8)
D(x − 8)

+
F(x − 8)
D(x − 8)

F(x − 11)
D(x − 11)

+ . . .

]
� 0,

for x � n0 , where n0 can be taken in the worst case to be n0 = 61 .

Proof. (a) The condition L4(x) � 0 is easily seen to be equivalent to

(x + 1)f 1 [(2f 3 − 1)x − (5f 3 − 4)] [(2f 5 − 1)(x − 2) − (5f 5 − 4)]
−xf 5 [(f 2f 3 + 2f 3 − 1)x − (f 2f 3 + 5f 3 − 4)] (x − 5) � 0.

If we leave out the factor (x + 1)f 1 from the first term and the factor xf 5 from the
second term, we obtain even stronger inequality (recall, we are still under inductive
hypothesis, and this implies that f 1 � f 5 ). By grouping terms by powers of x , this
stronger inequality can be written in the form

c24(x)x2 + c14(x)x + c04(x) = [c24(x)x + c14(x)]x + c04(x) � 0,

where
c24(x) = 4f 3f 5 − f 2f 3 − 4f 3 − 2f 5 + 2,

c14(x) = 6f 2f 3 + 17f 5 + 32f 3 − 28f 3f 5 − 19,

c04(x) = 45f 3f 5 − 5f 2f 3 − 36f 5 − 55f 3 + 44.

Now estimate c24(x), c14(x) and c04(x) using the bounds from Lemma 2. We easily
obtain c24(x) � 3.8516, c14(x) � −58.6042 c04(x) � 46.6355 for x � n0 . For
example, since f min = 2.5 , f max = 2.67 for x � n0 , we have then

c24(x) � 4f 2
min − f 2

max − 6f max + 2 = 3.8516.

These bounds then imply c24(x)x+c14(x) � 0 , and hence [c24(x)x+c14(x)]x+c04(x) �
0 , for x � n0 . So, L4(x) � 0 for x � n0 and the claim (a) is proved.

(b) First of all, the function F(x)
D(x) is easily seen to be less than 129

8(x+2)2 (by using
2 � f 1, f 2, f 3 � 3 ). For x � 10 , it follows then that

F(x)
D(x)

� q,

where q = 129
1152 . By using F(x−i)

D(x−i) � q in the brackets of (b), we see that this sum is

less than the sum of the geometric series 1+ q+ q2 + . . . = 1
1−q < 2 . Hence L(x) � 0

will be a consequence of the stronger inequality:

F(x) − F1(x)F(x − 1)
D(x − 1)

− F2(x)F(x − 2)
D(x − 2)

− 2
F2(x)F3(x − 2)

D(x − 2)
F(x − 5)
D(x − 5)

� 0.
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But, since we do not know which one of the quotients F(x−1)
D(x−1) , F(x−2)

D(x−2) and F(x−5)
D(x−5) is

the largest, the last inequality will be a consequence of the three inequalities in the next
Lemma.

LEMMA 5. Keeping the same notations as above, we have

(a) F(x) �
[
F1(x) + F2(x) + 2

F2(x)F3(x − 2)
D(x − 2)

]
F(x − 5)
D(x − 5)

, x � n0,

(b) F(x) �
[
F1(x) + F2(x) + 2

F2(x)F3(x − 2)
D(x − 2)

]
F(x − 2)
D(x − 2)

, x � n0,

(c) F(x) �
[
F1(x) + F2(x) + 2

F2(x)F3(x − 2)
D(x − 2)

]
F(x − 1)
D(x − 1)

, x � n0.

Proof. We shall prove only (a) with substantial details. The other two inequalities
can be proved essentially in the same manner. The inequality (a) is equivalent to

x(x − 3)2f 1f 2f 3f 4f
2
5 f 6f 7f 8A � [xf 3f 4f

2
5 (ax − b) + 2f 1(cx − d)(x − 6)](x + 2)B,

where
A = f 1f 2f 3 + f 2f 3 + 3f 3 − 2,

B = f 6f 7f 8 + f 7f 8 + 3f 8 − 2,

a = f 2
2 f 3 + 2f 1f 3 + 2f 2f 3 − f 1 − f 2,

b = f 2
2 f 3 + 5f 1f 3 + 5f 2f 3 − 4f 1 − 4f 2,

c = 2f 3 − 1,

d = 5f 3 − 4.

By inductive hypothesis it follows that A � B , and so if we prove the stronger inequality
by leaving out A and B in the above inequality, we are done. But this stronger inequality
turns out to be (after grouping terms by powers of x and some manipulations):

c35(x)x3 + c25(x)x2 + c15(x)x + c05(x) � 0,

or, what is the same,

[c35(x)x + c25(x)]x2 + c15(x)x + c05(x) � 0, (11)

where

c35(x) = f 1f 2f 3f 4f
2
5 f 6f 7f 8−f 2

2 f 2
3 f 4f

2
5 −2f 2f

2
3 f 4f

2
5 −2f 1f

2
3 f 4f

2
5 +f 2f 3f 4f

2
5 +f 1f 3f 4f

2
5 −4f 1f 3+2f 1,

c25(x) = −6f 1f 2f 3f 4f
2
5 f 6f 7f 8−f 2

2 f 2
3 f 4f

2
5 +f 2f

2
3 f 4f

2
5 +f 1f

2
3 f 4f

2
5 −2f 2f 3f 4f

2
5 −2f 1f 3f 4f

2
5 +26f 1f 3−1

c15(x) = 9f 1f 2f 3f 4f
2
5 f 6f 7f 8+2f 2

2 f 2
3 f 4f

2
5 +10f 2f

2
3 f 4f

2
5 +10f 1f

2
3 f 4f

2
5 −8f 2f 3f 4f

2
5 −8f 1f 3f 4f

2
5 +8f 1f 3

c05(x) = 96f 1 − 120f 1f 3.

Now we estimate the above functions ci5(x) by the bounds from Lemma 2., f min = 2.5
and f max = 2.67 for x � n0 . We have

c35(x) � f 9
min − f 7

max − 4f 6
max + 2f 5

min − 4f 2
max + 2f min = 1569.9574,
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and similarly c25(x) � −42278.4392 , c15(x) � 38334.7087 and c05(x) � −615.468 .
This altogether then yields [c35(x)x + c25(x)] � 0 for x � n0 , and this in turn implies
(11) for x � n0 . Thus we have proved (a).

As we said earlier, the inequalities (b) and (c) can be proved in the same way, and
we omit their proofs. �

To conclude, by lemmas 4. and 5. and induction hypothesis f ′
i � 0 we have

shown that f ′(x) � 0 for x ∈ (n, n + 1) . By continuity of f it follows that f is
increasing on (5, n + 1) , hence on (5, n + 1] and by induction f is increasing on the
whole interval (2,∞) . This finally proves Theorem 4. �

This proof of Theorem 4., although rather involved (mostly computationally), is
conceptually quite simple, and can be considered as a calculus proof. Once again, our
proofs of Theorems 1., 3. and 4. show the strong interference between “discrete” and
“continuous” mathematics.

We note finally that the proofs of Theorems 3 and 4 we have presented here prove
much stronger claims than actually stated in these theorems. Namely, they show not
only that sequences (xn) given by recursions (5) and (8) are increasing, but also that
their natural continuous “patch-works” are increasing functions, too. Theorems 3 and
4 itself can be proved much simpler in such a way that we interlace the sequences (xn)
given by recursions (5) and (8) with an increasing sequence an , i.e. an � xn � an+1 .

In the case (5), an = 6n
2n+3 for n � 3 , and in the case (8) an = 2nφ2

2n+3 , for n � 6 , where

φ = 1+
√

5
2 is the golden ratio.

This “interlacing” or “sandwiching” method can also be applied to prove the log-
convexity of sequences S(l)(n) for l = 2, 3 and 4 . The details are rather involved and
will appear elsewhere.

We are not aware of any combinatorial proofs of the log-convexity property of the
sequences S(l)(n) .

It can be proved by geometric reasoning that the numbers S(l)(n) of rank l sec-
ondary structures asymptotically behave as

S(l)(n) ∼ Klαn
l n−3/2,

where Kl and αl are constants depending only on l , and αl ∈ [2, 3] and αl ↘ 2 as
l → ∞ . The constant αl is the largest real solution of xl(x − 2)2 = 1 . For instance,
α0 = 3 , α1 = (3 +

√
5)/2 , α2 = 1 +

√
2 , and α3 , α4 , α5 and α6 can be also

explicitly computed (see [6]).

By taking the quotient x(l)
n = S(l)(n)

S(l)(n−1) , we see that

x(l)
n =

S(l)(n)
S(l)(n − 1)

∼ αl

(
1 − 1

n

)3/2

:= a(l)
n .

Clearly, the sequence
(
a(l)

n

)
n�1

increasingly tends to αl as n → ∞ . This suggests

that
(
x(l)
n

)
n�1

should be interlaced with
(
a(l)

n

)
n�1

, at least asymptotically.
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These and many other properties of general secondary structures will appear else-
where [6]. More on the biological background of secondary structures the reader can
find in [14] and [8].

Our “calculus method” can be applied to many other combinatorial quantities as
well. For example, it can be proved in this way (see [6]) that big Schröder numbers rn

are log-convex. Recall that rn is the number of lattice paths from (0, 0) to (n, n) with
steps (1, 0) , (0, 1) and (1, 1) that never rise above the line y = x .

As our final example, let us consider the sequence Pn(t) of the values of Legendre
polynomials in some fixed real t � 1 . We start from Bonnet’s recurrence (see [13]):

Pn(t) =
2n − 1

n
tPn−1(t) − n − 1

n
Pn−2(t), n � 2, (12)

with P0(t) = 1 , P1(t) = t . Dividing this by Pn−1(t) and denoting the quotient Pn(t)
Pn−1(t)

by xn(t) , we get the following recursion for xn(t) :

xn(t) = t
2n − 1

n
− n − 1

n
1

xn−1(t)
(13)

with initial condition x1(t) = t . The log-convexity of the sequence Pn(t) will follow
if we show that the sequence xn(t) is increasing.

To this end we define the function f t(x) : [0,∞) → R by

f t(x) =

{
t, if x ∈ [0, 1],
t 2x−1

x − x−1
x

1
f t(x−1) , if x � 1

(14)

It is easy to show by induction on n that f t is continuous and piecewise rational function
on any interval [1, n] . By the same method it easily follows that f t is bounded, i.e.
1 � f t(x) � 2t for all x � 1 . It is clear that f t(n) = xn(t) , for any integer n � 1 .

THEOREM 5. The sequence Pn(t) of the values of Legendre polynomials is log-
convex for any fixed real t � 1 .

Proof. The claim will follow if we show that f t(x) is an increasing function
on [1,∞) . From piecewise rationality and boundedness of f t it follows that f t is
differentiable on every open interval (n, n + 1) . Suppose that f t is increasing on [1, n]
and take x ∈ (n, n + 1) . From (14) we have

f ′
t (x) = t

1
x2

− 1
x2

1
f t(x − 1)

+
(

1 − 1
x

)
f ′
t (x − 1)

f 2
t (x − 1)

=
1

x2f t(x − 1)
[tf t(x − 1) − 1] +

(
1 − 1

x

)
f ′
t (x − 1)

f 2
t (x − 1)

The second term is positive by the induction hypothesis, and the first term is positive
because tf t(x − 1) − 1 � f t(x − 1) − 1 � 0 , for all x � 1 . So, the function f t(x) is
increasing on the interval (n, n + 1) , and then, by continuity, also on [1, n + 1] . This
completes the step of induction. �
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As a consequence, we get the log-convexity for the sequence of central Delannoy
numbers. Recall that the n -th central Delannoy number counts the number of lattice
paths in (x, y) coordinate plane from (0, 0) to (n, n) with steps (1, 0) , (0, 1) and
(1, 1) . (Such paths are also known as king’s paths.)

THEOREM 6.
(a) The sequence D(n) of Delannoy numbers is log-convex.
(b) There exists x = limn→∞

D(n)
D(n−1) , and x = 3 + 2

√
2 .

Proof. (a) First note that the n -th central Delannoy number is the value of the n -th
Legendre polynomial at t = 3 , D(n) = Pn(3) . This follows easily from the explicit
expression for the generating function of the sequence D(n) , D(x) = 1√

1−6x+x2
. Now

apply Theorem 5.
(b) By (a) we know that xn(3) is increasing (and clearly bounded), and then by

passing to limit in (13) for t = 3 , the claim follows. �
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