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SOME INEQUALITIES FOR GRAPHS

DERIVABLE FROM HÖLDER’S INEQUALITY

D. G. HOFFMAN AND P. D. JOHNSON JR. ∗

(communicated by R. Mohapatra)

Abstract. Inequalities are derived as advertised in the title. For instance, it is shown that for a
finite simple graph G , 4m � n(J1 + t1) , where m is the number of edges of G , n is the
number of vertices, J1 is the average (over the edges) of the sizes of the “joint neighborhoods”
of adjacent vertices, and t1 is the average (over the edges) of the numbers of triangles in which
the edges appear; with equality if and only if G is regular.

Throughout, G is a finite graph or multigraph with vertex set V and edge set E ,
n = |V| and m = |E| . For e ∈ E , let u(e) , v(e) denote the vertices at the two ends of
e (so u(e) = v(e) iff e is a loop). For w ∈ V , led d(w) denote the degree of w in
G (the number of edge ends coming into w ; or, the number of non-loops incident to w
plus twice the number of loops at w ). It is elementary that

∑
w∈V d(w) = 2m . If the

degrees of the vertices of G are all the same, G is regular. Let N(w) denote the set of
neighbors of w in G , i.e., N(w) = {x ∈ V ; for some e ∈ E, {x, w} = {u(e), v(e)}} .
It is elementary that |N(w)| = d(w) for all w ∈ V if and only if G is simple, i.e., G
contains no loops of multiple edges.

For e ∈ E let J(e) = |N(u(e)) ∪ N(v(e))| , the size of the “joint neighborhood”
of the vertices at the ends of e , and t(e) = |N(u(e)) ∩ N(v(e))| ; if G is simple,
t(e) is the number of triangles in G in which e appears. Note that J(e) + t(e) =
|N(u(e))| + |N(v(e))| , which is equal to d(u(e)) + d(v(e)) if G is simple.

For 0 < q < ∞ we define dq(G) = dq =
(1

n

∑
v∈V d(v)q

) 1
q
, and if E �= ∅ ,

Jq(G) = Jq =
( 1

m

∑
e∈E J(e)q

) 1
q
, tq(G) = tq =

( 1
m

∑
e∈E t(e)q

) 1
q
, and eq(G) =

eq =
( 1

2m

∑
e∈E(d(u(e))q + d(v(e))q

) 1
q
.

Also d∞(G) = d∞ = max[d(v); v ∈ V] and J∞ , t∞ are defined analogously.
(Assuming E �= ∅ , e∞ = d∞ .)

Note that d1 =
2m
n

, the “average degree” of vertices in G , also commonlydenoted

d of d(G) . Also, d∞ is elsewhere commonly denoted �(G) , or � .
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LEMMA. If a1, . . . , ak � 0 and 1 < p < ∞ , then
∑k

j=1 ap
j � k1−p(

∑k
j=1 aj)p ,

with equality if and only if a1 = · · · = ak .

Proof. This is a standard application of Hölder’s inequality:
∑k

j=1 aj �
(
∑k

j=1 1)
p−1

p (
∑k

j=1 ap
j )

1
p , which, when rearranged, gives the result. The equality con-

dition is the equality condition in Hölder’s inequality, applied to this special case. �

COROLLARY 1. If a1, . . . , ak � 0 and 0 < r < q < ∞ then
(1

k

∑k
j=1 ar

j

) 1
r �

(1
k

∑k
j=1 aq

j

) 1
q
, with equality if and only if a1 = · · · = ak .

Proof. Apply the Lemma to ar
1, . . . , a

r
k with p = q/r . �

[Of course, Corollary 1 is just a very special case of the well-known fact that for a

measurable function f on a probability measure space (X,μ), ||f ||p = (
∫

X |f |pdμ)
1
p is

a non-decreasing function of p . This is not the last time in this note when we will get
where we want to go by the most elementary, least general route we can find.]

CORORLLARY 2. If 0 < r < q � ∞ and E �= ∅ then
(a) dr � dq with equality if and only if G is regular;
(b) Jr � Jq with equality if and only if J is constant, on E ;
(c) tr � tq with equality if and only if t is constant, on E ; and
(d) if G has no isolated vertices, then er � eq with equality if and only if G is regular.

When q < ∞ , the proof is straightforward from Corollary 1. The case q = ∞
is straightforward. The requirement that G has no isolated vertices, i.e. vertices with
degree zero, in (d) , ensures that every vertex’s degree appears at least once in the list
[d(u(e)), d(v(e)); e ∈ E] , which is necessary to infer regularity from equality. In fact,
the inequality er � eq holds whether G has isolates or not.

THEOREM 1. Suppose E �= ∅ . For all q > 0 , eq � d1 , with equality if and only
if G is regular.

Proof. The case q = ∞ is trivial, so assume 0 < q < ∞ . We have

2meq
q =

∑
e∈E

(
d(u(e))q + d(v(e))q

)

=
∑
w∈V

(d(w)q+1

� n−q(
∑
w∈V

d(w))q+1 (by the Lemma)

= n−q(2m)q+1

from which eq � d1 follows, since d1 = 2m/n . The condition for equality follows
from the Lemma. �
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COROLLARY 3. Suppose E �= ∅ . If q > 0 and 0 < r < 1 then eq � dr with
equality if and only if G is regular.

This result follows immediately from Corollary 2(a) and Theorem 1.

THEOREM 2. Suppose G is simple, and E �= ∅ . Then d1 � J1 + t1
2

, with equality

if and only if G is regular.

Proof.

m(J1 + t1) =
∑
e∈E

(
J(e) + t(e)

)
=

∑
e∈E

(
d(u(e)) + d(u(e))

)
(G is simple)

= 2me1 � 2md1,

with equality if and only if G is regular, by Theorem 1, with q = 1 . �
COROLLARY 4. Suppose G is simple, E �= ∅ , 1 � q , r � ∞ , and q + r > 2 .

Then d1 � Jq + tr
2

with equality if and only if G is regular and t is constant on E .

Proof. The inequality follows from Theorem 2 and Corollary 2, and the equality
condition likewise, when r > 1 . If r = 1 and q > 1 , equality implies regularity
and the constancy of J . But since J(e) + t(e) = d(u(e)) + d(v(e)) for each e ∈ E ,
when G is simple, as previously noted, if follows that when G is regular and simple
the constancy of J is equivalent to the constancy of t . �

The inequality d1 � J1 + t1
2

of Theorem 2 can be rewritten as m � n(J1 + t1)
4

,

and in this form can be seen as a generalization of the well-known inequality of Mantel

(see[5]), that for G triangle-free, m � n2

4
. (Of course, Mantel’s inequality, together

with the condition for equality, that G = Kn
2 , n

2
, is a special case of Turán’s Theorem.

See [5].) Theorem 2 and Corollary 4 sharpen two previous generalizations of Mantel’s
inequality, in [1] and [2]. The result in [2] is the special case of Corollary 4 in which
{q, r} = {1,∞} . In [2] the inequality was just the start of an inquiry into graph
structure; still, we wonder how we managed not to notice the inequality of Theorem 2.

Theorem 1 is also a consequence of the main result of [3]. We are not treating it as
such here because we feel that in the area of inequalities, there is a place for minimalism,
for proofs more elementary and/or accessible than others.

The graphs for which equality holds in Corollary 4 form an interesting class. They
might be called the nearly strongly regular graphs. All they lack to be strongly regular
is the existence of an integer μ such that |N(u) ∩ N(v)| = μ for all u, v ∈ V with u
and v not adjacent. The study of the structure of these graphs is begun in [1],[2], and
[4].
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