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NORM BOUNDS ON THE SUM OF BLOCK DIAGONAL MATRICES

CHI-KWONG LI AND ROY MATHIAS

(communicated by G. P. H. Styan)

Abstract. We bound the norm of the sum of block diagonal matrices whose block structures may
not be compatible, and use the result to bound the norm of banded positive semidefinite matrices.
We consider the extension of the result to other norms.

1. Introduction

Let A, B ∈ Mn(F) , where F = R or C . We have

‖A + B‖ � ‖A‖ + ‖B‖, (1.1)

where ‖ · ‖ denotes the ( l2 ) operator norm. If A = A1 ⊕ A2 and B = B1 ⊕ B2 with
A1, B1 ∈ Mp(F) for some 1 � p < n , then

‖A + B‖ = max{‖A1 + B1‖, ‖A2 + B2‖} � max{‖A1‖ + ‖B1‖, ‖A2‖ + ‖B2‖}. (1.2)

However, if A and B have incompatible block structures, can one improve the estimate
(1.1) by using the norms of the individual blocks of A and B ? The purpose of this
note is to answer this question and to discuss applications. In fact, inequality (1.2) also
holds for other norms such as the numerical radius and Schur multiplier norms, and we
discuss results on these norms.

2. Main results

PROPOSITION 2.1. Let A, B ∈ Mn(F) be of the form A = A1 ⊕ · · · ⊕ Ar and
B = B1⊕· · ·⊕Bs , where Ai ∈ Mmi , and Bj ∈ Mnj . Set DA = ‖A1‖Im1 ⊕· · ·⊕‖Ar‖Imr

and DB = ‖B1‖In1 ⊕ · · · ⊕ ‖Bs‖Ins . Then

‖A + B‖ � ‖DA + DB‖ = max{(DA + DB)ii : i = 1, . . . , n}.
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Using the notation in Proposition 2.1, we say that Ai and Bj overlap if

1 +
j−1∑
k=1

nk � 1 +
i−1∑
k=1

mk �
j∑

k=1

nk

or

1 +
i−1∑
k=1

mk � 1 +
j−1∑
k=1

nk �
i∑

k=1

mk.

Imagining the blocks of A and B gives a better idea of what we mean by overlapping.
Proposition 2.1 simply says:

‖A + B‖ � max{‖Ai‖ + ‖Bj‖ : Ai and Bj overlap}. (2.1)

The key to the proof is the observation [4, Lemma 3.5.12] that for any matrix X

‖X‖ � t ⇔
(

tI X
X∗ tI

)
� 0, (2.2)

where the second inequality is in the positive semidefinite sense.

Proof. (of Proposition 2.1) Let A and B satisfy the hypotheses of the proposi-
tion. By (2.2), we have

0 �
(

DA A
A∗ DA

)
, 0 �

(
DB B
B∗ DB

)
,

and hence

0 �
(

DA + DB (A + B)
(A + B)∗ DA + DB

)
�

( ‖DA + DB‖I (A + B)
(A + B)∗ ‖DA + DB‖I

)
.

By (2.2) again, we have
‖DA + DB‖ � ‖A + B‖,

as desired. �

This result can be extended to more that two matrices using exactly the same proof.
We have not presented the general result nor the general proof as the necessary notation
would obscure the simplicity of the proof. Despite its simplicity Proposition 2.1 yields
eigenvalue bounds that are not immediately obvious. The following corollary solves a
problem posed by Parlett in the American Mathematical Monthly [8].

COROLLARY 2.2. Suppose A is a positive semidefinite matrix with diagonal
entries d1, . . . , dn , such that the (i, j) entries are zero for all |i − j| > r for some
positive integer r . Then the eigenvalues lie in the interval [0, d] where

d = max{di + · · · + di+r : i = 1, . . . , n − r}. (2.3)



NORM BOUNDS ON THE SUM OF BLOCK DIAGONAL MATRICES 217

Proof. Let A = LL∗ be a Cholesky factorization of A . Since A is positive
semidefinite it is sufficient to show that ‖A‖ � d . Then

‖A‖ = ‖LL∗‖ = ‖L∗L‖.
Let L∗ have columns v1, . . . , vn . Then

L∗L =
n∑

i=1

viv
∗
i .

By the banded structure of A the vector vi has zero entries except possibly in the
positions j ≡ max{1, i− r}, j + 1, . . . , i . Thus, viv∗i is a block diagonal matrix, and its
norm is

‖vi‖2 = v∗i vi = di.

For each matrix viv∗i , define Dviv∗i as in Proposition 2.1. The j th diagonal entry of∑n
i=1 Dviv∗i is di + · · ·+dmin{i+r,n} . The extended version of Proposition 2.1 now yields

‖A‖ � d . �
A correlation matrix A necessarily has entries of modulus at most 1. By Gersh-

gorin’s Theorem (see [4, Theorem 6.1.1]), if S is a banded correlation matrix, with (i, j)
entry equal to zero for |i − j| > r , then all the eigenvalues of A lie in [0, 2r − 1] , and
hence ‖A‖ � 2r−1 . The specialization of Corollary 2.2 says that in fact, ‖A‖ � r+1 .

COROLLARY 2.3. Suppose A is a correlation matrix such that the (i, j) entries
are zero for all |i − j| > r for some positive integer r , then the eigenvalues lie in the
interval [0, r + 1] .

The bound in Corollary 2.2 is tight, and hence so is that in Corollary 2.3: Given
any pair r , n with r < n , and any nonnegative numbers d1, . . . , dn we can construct a
positive semidefinite matrix A with aij = 0 for |i− j| > r , diagonal entries d1, . . . , dn ,
and largest eigenvalue equal to the quantity d in (2.3). Let i � n − r be such that

di + · · · + di+r = d , and let D = diag(d1/2
1 , . . . , d1/2

n ) . The bound in Corollary 2.2 is
tight for the matrix

A = D(Ii−1 ⊕ Jr+1 ⊕ In−(r+i))D,

where Jk is the k × k matrix of ones. Note that the principal submatrix of A in rows
and columns i, i + 1, . . . , i + r has rank 1, and hence its trace, which is di + · · ·+ di+r ,
is an eigenvalue.

For a given banded matrix A ∈ Mn(F) , one may consider its LU factorization,
and use an argument like that in Corollary 2.2 to estimate the norm of A . However,
unless the matrix A admits an easy LU factorization, the procedure and the statement
of the result will not be as clean as that for positive semidefinite matrices.

3. Block matrix norms

In this section, we consider the extension of Proposition 2.1 to other types of norms
on Mn(F) . Note that the key to the proof of Proposition 2.1 was the characterization
(2.2) of the operator norm in terms of the positive semidefiniteness of a block matrix.
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There are other norms that can be characterized in this way and so one can prove
analogs of Proposition 2.1 for these norms. To simplify the notation we shall restrict
our attention to square matrices.

The numerical radius of A ∈ Mn is defined by

ω(A) = max{|x∗Ax| : x ∈ Fn, x∗x = 1}.
Ando [1] has shown that ω(A) � t if and only if there is a Hermitian matrix Z such
that (

tI + Z A
A∗ tI − Z

)
� 0

in the positive semidefinite sense. The Hadamard operator norm of a matrix A is
defined by

‖A‖H ≡ max{‖A ◦ B‖ : ‖B‖ � 1}
where ◦ denotes Hadamard or entrywise multiplication. Haagerup (unpublished)
showed1 that ‖A‖H � t if and only if there are matrices Hermitian P and Q with
pii = qii = 0 , i = 1, . . . , n , such that(

tI + P A
A∗ tI + Q

)
� 0.

One may also consider the norm of Hadamard multiplication with respect to the numer-
ical radius:

‖A‖H,ω ≡ max{w(A ◦ B) : w(B) � 1}.
Ando and Okubo [2] have shown that ‖A‖H,ω � t if and only if there is a Hermitian
matrix P with pii = 0 , i = 1, . . . , n , such that(

tI + P A
A∗ tI + P

)
� 0.

See [6] for a unified approach to the proofs of both these representations and for
references to other proofs.

Let N(·) be a norm on matrices of any size. We say that N(·) is an S -norm if for
each positive integer n , there exists a real subspace Sn ⊂ Mn(F)×Mn(F) of complex
Hermitian or real symmetric matrix pairs (depending on F = C or R ) so that A ∈ Mn

satisfies N(A) � t if and only if there exists (P, Q) ∈ Sn satisfying(
tI + P A

A∗ tI + Q

)
� 0.

The norms we have mentioned are all S -norms. For the operator norm take

Sn = {(0n, 0n)},
for the numerical radius take

Sn = {(Z,−Z) : Z ∈ Hn},
1Actually, Haagerup, Ando and Okubo [2], and Mathias [6] stated their results in a slightly different

form, but it is easy to show that their results are indeed equivalent to the results that we assert in this paragraph.
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for ‖ · ‖H take
Sn = {(P, Q) : pii = qii = 0, i = 1, . . . , n}

and for ‖ · ‖H,ω take

Sn = {(P, P) : pii = 0, i = 1, . . . , n}.
In each case the family {Sn}∞n=1 has the following direct sum property:

(P1, Q1) ∈ Sn1 , (P2, Q2) ∈ Sn2 =⇒ (P1 ⊕ P2, Q1 ⊕ Q2) ∈ Sn1+n2 .

For simplicity, we say that the S -normhas the direct sum property if the above property
is satisfied. We have the following generalization of Proposition 2.1.

PROPOSITION 3.1. Let N(·) be an S -norm with the direct sum property. Suppose
A, B ∈ Mn(F) are of the form A = A1 ⊕ · · · ⊕ Ar and B = B1 ⊕ · · · ⊕ Bs , where
Ai ∈ Mmi , and Bj ∈ Mnj . Let ai = N(Ai) and bj = N(Bj) . Set DA = a1Im1⊕· · ·⊕arImr

and DB = b1In1 ⊕ · · · ⊕ bsIns . Then

N(A + B) � N(DA + DB) = max{N(Ai) + N(Bj) : Ai and Bj overlap}. (3.1)

Proof. Since N(·) is an S -norm, there are pairs (Pi, Qi) ∈ Smi and (Rj, Sj) ∈
Snj such that

(
aiI + Pi Ai

A∗
i aiI + Qi

)
� 0, and

(
bjI + Rj Bj

B∗
j bjI + Sj

)
� 0.

Taking a direct sum and performing a block permutation we have(
DA + P A

A∗ DA + Q

)
� 0, and

(
DB + R B

B∗ DB + S

)
� 0, (3.2)

where

P = P1 ⊕ · · · ⊕ Pr, Q = Q1 ⊕ · · · ⊕ Qr, R = R1 ⊕ · · · ⊕ Rs, S = S1 ⊕ · · · ⊕ Ss.

By the direct sum property (P, Q) and (R, S) are both in Sn , and since Sn is a
subspace, (P + R, Q + S) is also in Sn . Adding (3.2) we have(

(DA + DB) + (P + R) (A + B)
(A + B)∗ (DA + DB) + (Q + S)

)
� 0.

Let
d ≡ N(DA + DB) = max{N(Ai) + N(Bj) : Ai and Bj overlap}.

Then DA + DB � dI so(
dI + (P + R) (A + B)

(A + B)∗ dI + (Q + S)

)
� 0.

We have seen that (P + R, Q + S) ∈ Sn , so, since N(·) is an S -norm, we have the
desired bound N(A + B) � d . �
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4. Further results and questions

A class of norms on Mn(F) , which is used frequently, is the class of unitarily
invariant norms, i.e., those norms N(·) satisfying N(UAV) = N(A) for all A, B, U, V ∈
Mn(F) such that U∗U = V∗V = I . This class of norms includes the Ky Fan k -norms
and the Schatten p -norms. The operator norm ‖ · ‖ is in the intersection of these
two classes of norms. See [3, Example 7.4.54] for further discussion and a simple
characterization of these norms. We shall, as far as possible, generalize Proposition
2.1 to unitarily invariant norms. To do this, we need the following lemma which is [4,
Theorem 3.5.15] (with p = 1 ).

LEMMA 4.1. Let N(·) be a unitarily invariant norm. If C, D1, D2 ∈ Mn(F) are
such that (

D1 C
C∗ D2

)
� 0 (4.1)

then
N2(C) � N(D1)N(D2).

PROPOSITION 4.2. Let N(·) be a unitarily invariant norm on Mn(F) . Suppose
A, B ∈ Mn(F) are of the form A = A1⊕· · ·⊕Ar and B = B1⊕· · ·⊕Bs , where Ai ∈ Mmi ,
and Bj ∈ Mnj . Set DA = ‖A1‖Im1 ⊕ · · · ⊕ ‖Ar‖Imr and DB = ‖B1‖In1 ⊕ · · · ⊕ ‖Bs‖Ins .
Then

N(A + B) � N(DA + DB). (4.2)

Proof. Let C = A+B and D1 = D2 = DA +DB . The result follows from Lemma
4.1. �

Note that if N(·) is not the operator norm then N(DA + DB) is not necessarily
equal to max{|(DA + DB)ii| : i = 1, . . . , n} as in Proposition 2.1. In fact, it follows
from [4, Theorem 3.5.18] that a unitarily invariant norm N(·) on Mn(F) satisfies
N(D) = max{|Dii| : i = 1, . . . , n} for any diagonal matrix D if and only if N(·) is the
operator norm.

We presented Proposition 4.2 as a generalization of Proposition 2.1. If one wants
a stronger bound on N(A + B) one can use the fact that the matrix in (4.1) is positive
semidefinite if one takes D1 = (CC∗)1/2 and D2 = (C∗C)1/2 to show that (4.2) is still
true with DA = (A1A∗

1)
1/2 ⊕ · · · ⊕ (ArA∗

r )
1/2 and DB = (B1B∗

1)
1/2 ⊕ · · · ⊕ (BsB∗

s )
1/2 .

A norm N(·) is a unitary similarity invariant norm (or a weakly unitarily invariant
norm) if N(U∗AU) = N(A) for any A, U ∈ Mn(F) with U∗U = I . Evidently, every
unitarily invariant norm is a unitary similarity invariant norm. The numerical radius is
an example of unitary similarity invariant norm, which is not unitarily invariant. One
may wonder whether (4.2) is valid for all unitary similarity invariant norms. It is not:

EXAMPLE 4.3. Define N(·) on M2(F) by

N(A) = max{|3x∗Ax − tr A| : x ∈ F2, x∗x = 1}.
Then (4.2) fails for A = diag (1, 0) and B = diag (0,−1) as N(A + B) = 3 > 1 =
N(DA + DB) .
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It would be interesting to characterize the unitary similarity invariant norms that satisfy
(4.2).

Next, we consider norms N(·) on Mn(F) induced by vector norms ν on Fn , i.e.,

N(A) = max{ν(Ax) : x ∈ Fn, ν(x) � 1}.
The usual operator norm ‖ · ‖ is the norm induced by the l2 norm on Fn . The column
sum norm on Mn(F) defined by

Nc(A) = max
1�j�n

n∑
i=1

|Aij|

is induced by the l1 norm on Fn , and the row sum norm defined by

Nr(A) = max
1�i�n

n∑
j=1

|Aij|

is induced by the l∞ norm on Fn . One readily checks that the conclusion of Proposition
2.1 also holds for these two norms. It would be interesting to extend the result to norms
induced by the lp norms for p 
= 1, 2,∞ .

More generally, one may ask whether Proposition 2.1 can be extended to norms
N(·) on Mn(F) induced by other norms ν on Fn . It is known (e.g., see [7, Theorem
1]) that if N(·) is induced by an absolute norm ν , i.e., ν(x) = ν(Px) for all diagonal
matrix P satisfying P∗P = I , then

N(D) = max{|Dii| : 1 � i � n},
for any diagonal matrix D . It is also known (e.g., see [7, Theorems 5 and 6]) that if
n > 2 and N(·) is induced by a norm ν on Fn that is not a multiple of an lp norm,
then one can find matrices A1 ∈ Mm and B2 ∈ Mn−m for which

N(A1 ⊕ B2) > max{N(A1), N(B2)}.
Taking A = A1 ⊕ 0n−m and B = 0m ⊕ B2 we have

N(A + B) = N(A ⊕ B) > max{N(A1), N(B2)} = N(DA + DB);

so an extension of Proposition 2.1 is impossible.
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