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A REMARK ON BARRLUND’S LP METHOD

LAJOS LÁSZLÓ

(communicated by R. Mathias)

Abstract. In possession of Friedland’s theorem [3] on normal completion, Barrlund’s linear
programming method [1] can be adopted for sharpening the upper bound for the distance of a
triangular matrix from the set of normal matrices.

1. Introduction

Denote by Mn the set of n -th order complex matrices, and let Tn ⊂ Mn and
Nn ⊂ Mn be the sets of triangular and normal matrices, resp. In [5] we guessed that
for A ∈ Tn

ν2
F(A) ≡ ‖A −Nn‖2

F �
(

1 − 1
n

)
dep2

F(A) (1)

holds, where ‖.‖F stands for the Frobenius norm, and

depF(A) = {‖A‖2
F −

n∑
i=1

|λi|2}1/2

is the departure from normality by Henrici defined for A ∈ Mn with eigenvalues
{λi}n

i=1 . By now, (1) is a theorem, due to the positive answer for the normal completion
(NC) problem, see the next section for a short discussion.

However, A. Barrlund, when investigating [1] inequality (1), found that “for the
dimensions n = 3 , 5, 6, 7 and presumably also other problem dimensions it is possible
to derive sharper bounds.” With the notation

A ∈ Tn : ν2
F(A) � (1−xn) dep2

F(A) (1′)
he proved xn = 1

n and xn = 1
n

n−7/4
n−1 for n even and odd, resp., and he also proved the

sharper bounds x3 = 3
8 , x5 = 71

342 , x6 = 217
1184 and x7 = 9393

64921 .
His results raise the problem of finding a formula for xn with xn > 1

n for n � 3 .

Our result is a rational formula for x(k)
n with the superscript indicating the number

of additional restrictions involved in the linear program. The simplest case is x(1)
n =

n/[n(n − 1) + 2] with x(1)
n = 1

n−1 + O
(

1
n3

)
. However, more is true: for n large, the

ratio 1
n can be replaced by c1

n with c1 ≈ 1.27 .
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2. The main result

For A ∈ Tn define the partition by diagonals to be the decomposition

A = A0 + A1 + · · · + An−1

where the (i, j) element of Ak ∈ Tn is zero for all j �= i+ k (k = 0, 1, . . . , n−1) . With
this let the “scaled” departure be defined as

sdepF(A) =

(
n−1∑
k=1

k
k + 1

‖Ak‖2
F

)1/2

,

for which an analogous to (1) inequality was guessed [5]:

ν2
F(A) � sdep2

F(A). (2)

REMARK 1. L. Elsner formulated the conjecture on normal completion: “any
A ∈ Tn can be completed to B ∈ Nn with B− A strict lower triangular.” Recently, Sh.
Friedland proved it, therefore it became the NC Theorem [3].

Its immediate consequence is that

(NC) =⇒ (2) =⇒ (1),

where the first was shown in [6], the second one follows from

sdep2
F(A) �

(
1 − 1

n

)
dep2

F(A), A ∈ Tn,

and the immediate implication (NC) =⇒ (1) was observed in [2] (note that all these
were established when NC was yet a conjecture).

Hence, both (1) and the stronger, scaled version (2) are theorems by now, whereas
(2) will be a fundamental tool to improve (1). First we formulate a preparing lemma to
defining the constraints for our LP problem.

LEMMA. Let A ∈ Tn . For any i = 1, . . . , n − 1 we have

ν2
F(A) � dep2

F(A) −
[(n−1)/i]∑

j=1

1
j + 1

‖Aji‖2
F.

(Note that the subscript ji of A is the product of j and i .)

Proof. We distinguish between three cases.
Case 1. For i = 1 the statement is equivalent to (2).
Case 2. For i =

[
n+1

2

]
, . . . , n − 1 the statement has the form

ν2
F(A) � dep2

F(A) − 1
2
‖Ai‖2

F.
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Since A0 + Ai is a direct sum of 2 × 2 matrices, this follows from

ν2
F(C) =

1
2
dep2

F(C), C ∈ T2.

Case 3. For i = 2, . . . ,
[

n−1
2

]
, A0 + Ai is no more irreducible, however, the elements

a1,i+1, . . . , an−i,n of Ai can be placed into the first superdiagonal by permuting the rows
and corresponding columns according to the index vector

(1, i + 1, 2i + 1, . . . , 2, i + 2, 2i + 2, . . . , 3, i + 3, 2i + 3, . . . ).

At the same time, the elements of A2i get into the second superdiagonal (the former
A2 ), and so on.

Let Π−1AΠ = B + R be the new matrix, where Π is the permutation mentioned,
B is blockdiagonal with upper triangular blocks of order

([ n−j
i

]
+ 1
)i
j=1

, and R be
the rest. Let N ∈ Nn be blockdiagonal with the same structure as B such that
‖B − N‖2

F � sdep2
F(B) , then

ν2
F(A) = ν2

F(B + R) � ‖B + R − N‖2
F � sdep2

F(B) + ‖R‖2
F

= dep2
F(B) −

[(n−1)/i]∑
j=1

1
j + 1

‖Bj‖2
F + ‖R‖2

F = dep2
F(A) −

[(n−1)/i]∑
j=1

1
j + 1

‖Aji‖2
F,

where we applied (2) for B ∈ Tn , used ‖A‖2
F = ‖B‖2

F + ‖R‖2
F , and observed that the

nonzero elements of Bj and Aji coincide for all j . The Lemma is proved.

COROLLARY. Let A ∈ Tn . For any i = 1, . . . , n − 1 we have

ν2
F(A) � dep2

F(A) − 1
2
‖Ai‖2

F.

Now we are ready to define the variables for the LP problem. For n � 3 and
A ∈ Tn with unknown entries let

xi =
‖Ai‖2

F

dep2
F(A)

, 1 � i � n − 1, and xn =
dep2

F(A) − ν2
F(A)

dep2
F(A)

.

We obviously have xi � 0 , i = 1, . . . , n and
∑n−1

i=1 xi = 1 . From (2) we get the
fundamental inequality xn �

∑n−1
i=1

1
i+1xi , herewith the initial set of constraints will be

Pinit =

{
x ∈ Rn

∣∣∣ xi � 0, i = 1, 2, . . . , n,

n−1∑
i=1

xi = 1,

n−1∑
i=1

xi

i + 1
� xn

}
.

Barrlund’s bright idea was observing that theminimumvalue of xn subject to constraints
like this satisfies (1’).

Additional constraints can be obtained from the above Corollary, which takes in
the new variables the form 1

2xi � xn, 1 � i � n − 1 . Thus the following theorem will
make use of the set

P(k) =
{

x ∈ Rn
∣∣∣ 1

2
xn−i � xn, 1 � i � k

}
, 1 � k � n − 1.
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Observe that, the subscripts are reversed so that they correspond to the degree of
difficulty. Also note that for the sake of simplicity we use here only n (instead of the
possible O(n2) ) variables, in order to be able to obtain a formula – not merely numbers.

THEOREM. Let n, k be natural numbers with k � [cn] , where

c = 1 − 1/
√

e ≈ 0.3935,

then the optimal solution x(k)
n of the linear programming problem

min {xn | x ∈ Pinit ∩ P(k)}
is

x(k)
n =

(
n + k − 2(n − k)s(k)

n

)−1
,

where s(k)
n =

∑k
i=1 1/(n − i + 1) .

Proof. We calculate a feasible solution by assuming

xn−i = 2xn, i = 1, . . . , k and xn−i = 0, i = k + 2, . . . , n − 1.

The equality constraint gives in turn xn−k−1 = 1− 2kxn . Substituting these values into
the fundamental inequality (now assumed to be active, i. e. equality) and denoting xn

by x(k)
n we find the formula of the theorem.
The nonnegativity – in fact: the positivity – of x(k)

n follows from the obvious
identity

n + k − 2(n − k)s(k)
n = n − k + 2

k∑
i=1

k − i + 1
n − i + 1

. (3)

As regards xn−k−1 � 0 , this is equivalent with 1/x(k)
n � 2k , or s(k)

n � 1
2 , which is

fulfilled e. g. for k � [cn] with the given c , owing to

s(k)
n �

∫ n

n−k

dx
x

= ln
n

n − k
� ln

1
1 − c

=
1
2
.

To show optimality, we determine the dual problem. Denote by yi the dual variable
for the inequality 1

2xn−i � xn , i = 1, . . . , k . Further, let yk+1 and yk+2 denote the dual

variables for the fundamental inequality and the equality
∑n−1

i=1 xi = 1 , resp. Recall
that yk+2 is unrestricted, because it corresponds to an equality; all other dual variables
are nonnegative. Note that the primary objective is now rewritten into max {−xn} .

Then the dual constraint set is calculated to be

D = {y ∈ Rk+2, yi � 0, i = 1, . . . , k + 1,
yi

2
+

yk+1

n − i + 1
+ yk+2 � 0, i = 1, . . . , k,

yk+1

i
+ yk+2 � 0, i = 2, . . . , n − k, −

k+1∑
i=1

yi � −1},

and the dual problem is
min {yk+2 | y ∈ D}.



A REMARK ON BARRLUND’S LP METHOD 227

We give a feasible solution to this problem, too. Since the strongest of the inequalities
yk+1/i+yk+2 � 0 is that with i = n−k , it is reasonable to require yk+1 = −(n−k)yk+2 .
Then (taking again equalities), for i = 1, . . . , k we get yi = −2(k − i + 1)(n − i +
1)−1yk+2 . Finally, substituting the expressions obtained into

∑k+1
i=1 yi = 1 yields

yk+2 = −
{

n − k + 2
k∑

i=1

k − i + 1
n − i + 1

}−1

,

i. e. owing to (3), yk+2 = −x(k)
n . Hence also the dual vector y is feasible. Since

the primal and dual objectives coincide, the duality theorem of the linear programming
guarantees the optimality of both solutions – the proof is complete.

COROLLARY. For A ∈ Mn and k � [cn], c = 1 − 1/
√

e we have

‖A −Nn‖2
F �

(
1 − x(k)

n

)
dep2

F(A).

Proof. The inequality is true for A ∈ Tn by the above. For arbitrary A ∈ Mn apply
the Schur decomposition theorem and observe that the functions νF(A) ≡ ‖A −Nn‖F

and depF (A) are unitarily invariant.

REMARK 2. For n � 34 the assumption k � [cn] can be replaced by the simpler
rational bound k �

[
2n
5

]
, owing to c ≈ 2/5 .

Below we list the values x(k)
n for 3 � n � 9, 1 � k � n − 1 . The arrow means

that the subsequent elements in that row are equal to the last given value, while the
symbol � � in a column indicates the “validity region” for the theorem. (Observe the
doubles and triples in the table, showing the validity of the bound with 2

5 for n small.)

n\k 1 2 3 4

3 � 3
8� →

4 2
7 →

5 5
22 � 10

43� →

6 3
16

15
76 →

7 7
44

21
124 →

8 4
29

14
95 � 84

559� −→

9 9
74

36
277

42
313 −→

We obviously have x(1)
n � x(2)

n � · · · � x(n−1)
n (with equality from some index

on). All these values are better (i. e. larger) than Barrlund’s sharpened bounds, except
for n = 3 , when he also obtained 3/8 . This is not by chance: due to Ikramov [4], the
NC theorem for n = 3 was already for him available.

It is remarkable that for n large the coefficient of 1/n can be increased!
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COROLLARY. For the asymptotic behavior of ν2
F(A) we have

ν2
F(A) �

(
1 − 1

2cn

)
dep2

F(A), A ∈ Mn, n large

with the precise meaning

lim inf
n→∞

(
nx([cn])

n

)
� 1

2c
=

√
e

2(
√

e − 1)
≈ 1.2707.

Proof. For arbitrary ε > 0 , sufficiently large n and k = [cn] we have

s(k)
n =

k∑
i=1

1
n − i + 1

�
∫ n+1

n−k+1

dx
x

= ln
n + 1

n + 1 − k

� ln
n + 1

n + 1 − (c − ε)(n + 1)
= ln

1
1 − c + ε

.

Thus – together with the upper estimate proved in the Theorem – we have

1
2
− ε′ � s([cn])

n � 1
2
,

where ε′ → 0 for ε → 0 . Hence we get

1

nx([cn])
n

=
n + [cn]

n
− 2

n − [cn]
n

s([cn])
n � 1 + c − 2s([cn])

n + 2c s([cn])
n � 2c + 2ε′,

and the proof is complete.
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[5] L. LÁSZLÓ, Upper bounds for the best normal approximation, Sixth ILAS Conference, 1996, Chemnitz.
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