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ANDERSSON’S INEQUALITY

A. M. FINK

(communicated by R. N. Mohapatra)

Abstract. Andersson’s Inequality gives a lower obund for the integral of a product of convex
functions in terms of the averages of each factor. We show that this result holds for a wider class
of functions and for some signed measures.

1. Introduction

Andersson [1] or [2, pages 256] showed that if Fi are convex increasing functions
with Fi(0) = 0 then

1∫
0

[F1(x) . . . Fn(x)]dx � 2n
n + 1

⎛
⎝ 1∫

0

F1(x)dx

⎞
⎠ . . .

⎛
⎝ 1∫

0

Fn(x)dx

⎞
⎠ . (1)

The condition that Fi(0) = 0 is crucial since for F1(x) = 1 + x2 and F2(x) =
1 + x3 , the reverse inequality holds. On the other hand one wonders if the measure
needs to be Lebesgue measure or if the functions need to be convex. In fact we will
show that neither is required. We will proceed in two steps. The first is to show that the
convexity of the functions may be replaced by the condition that Fi(x)

x is increasing. We
will modify Andersson’s proof and then in the second step we will replace Lebesgue
measure by more general measures. This requires a different sort of proof.

2. Modifications of Andersson’s proof

Wesuppose that Fi are in the class M1 where M1 = {f |f ∈ C1, f (0) = 0, and f (t)
t

is increasing on [0, 1]} . Note that if f (0) = 0 and f is increasing and convex (as

in Andersson’s Theorem) then f ∈ M1 . Indeed, in this case f (t)
t = 1

t

t∫
0

f ′(s)ds =

1∫
0

f ′(tu)du is increasing.
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On the other hand f (t) = t2

1+t is in M1 but is not convex.
For f ∈ M1 we define

f ∗(x) = 2x

1∫
0

f (t)dt = 2xdf . (1)

The basic result is the following lemma.

LEMMA 1. Let f ∈ M1 and g be increasing, then

1∫
0

f gdx �
1∫

0

f ∗gdx (2)

with equality if g is a constant or f is linear.

Proof. Define ϕ(x) by

ϕ(x) =

x∫
0

[f ∗(t) − f (t)]dt.

Then ϕ(0) = ϕ(1) = 0 by choice of f ∗ so that ϕ′ must have a zero in (0, 1) . Now

ϕ′(x) = f ∗(x) − f (x) has a zero at 0 and ϕ′(x) = x
[
2d − f (x)

x

]
. The expression in

the brackets is decreasing so it changes sign exactly once in (0, 1) and is positive near
0. It follows that ϕ � 0 on (0, 1) . Note that ϕ ≡ 0 requires f to be linear.

To complete the proof we write

1∫
0

g(f − f ∗)dx =

1∫
0

g(−ϕ′) =

1∫
0

ϕdg � 0

with equality when ϕ(dg) ≡ 0 .

THEOREM 1. Let f i ∈ M1 for i = 1, . . . , n , then

1∫
0

n∏
1

f i(x)dx �
1∫

0

n∏
1

f ∗
i (x)dx =

2n

n + 1

n∏
1

1∫
0

f i(x)dx. (3)

Equality holds if all of the f i are linear.

Proof. We let g =
n−1∏

1
f i and apply the lemma to get

1∫
0

n∏
1

f i(x)dx �
1∫

0

n−1∏
1

f i(x)f ∗
n (x)dx



ANDERSSON’S INEQUALITY 243

=

1∫
0

[
n−2∏

1

f i(x)f ∗
n (x)

]
f n−1(x)dx �

1∫
0

n−1∏
1

f i(x)f ∗
n−1(x)f

∗
n (x)dx � . . .

�
1∫

0

n∏
1

f ∗
i (x)dx =

n∏
1

di

1∫
0

2(x)ndx.

3. Extended version

We now replace Lebesguemeasure by a (signed) measure dσ forwhich we assume

x∫
a

(t − a)dσ(t) � 0,

b∫
x

(t − a)dσ(t) � 0 on (a, b) with (4)

b∫
a

(t − a)dσ(t) > 0. (5)

Correspondingly,we define M2 = {f |f ∈ C1, f (a) = 0, and f (t)
t−a is increasing on

(a, b)} . For f ∈ M2 define

df =

b∫
a

f dσ/

b∫
a

(x − a)dσ(x) (6)

and
f ∗(x) = df (x − a). (7)

We attempt to argue as in Lemma 1. For this purpose we have an introductory
lemma.

LEMMA 2. Let f ∈ M2, f ∗ as in (7) with the measure dσ satisfying (4) and (5).

Then ϕ(u) ≡
b∫
u
[f (t) − f ∗(t)]dσ(t) � 0 on [a, b] .

Proof. Observe that ϕ(b) = 0 and by choice of f ∗,ϕ(a) = 0 . Let x0
+ be the

indicator function of [0,∞) and fix u ∈ (a, b) . Then

ϕ(u) =

b∫
a

(t − u)0
+[f (t) − f ∗(t)]dσ(t).

Using the definition of f ∗ we have

ϕ(u) =

b∫
a

(t − u)0
+f (t)dσ(t) −

b∫
a

(t − u)0
+(t − a)

⎛
⎜⎜⎜⎝

b∫
a

f (x)dσ(x)

b∫
a
(x − a)dσ(x)

⎞
⎟⎟⎟⎠ dσ(t)
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=

b∫
a
(t − u)0

+f (t)dσ(t)
b∫
a
(x − a)dσ(x) −

b∫
a
(t − u)0

+(t − a)dσ(t)
b∫
a

f (x)dσ(x)

b∫
a
(x − a)dσ(x)

.

It is the expression in the numerator that we must show is non-negative. For this
purpose we define g(t) = f (t)

t−a and dλ (x) = (x− a)dσ(x) . Note that g is positive and

increasing while
x∫
a

dλ (t) and
b∫
x

dλ (t) are � 0 by hypothesis. The numerator can be

rewritten as
b∫

a

(t − u)0
+g(t)dλ (t)

b∫
a

dλ (x) −
b∫

a

g(x)dλ (x)

b∫
a

(t − u)0
+dλ (t) (8)

and this expression is what we want to be non-negative, i.e. we want

b∫
a

(t − u)0
+g(t)dλ (t)

b∫
a

dλ (x) �
b∫

a

g(x)dλ (x)

b∫
a

(t − u)0
+dλ (t). (9)

This is in fact Chebyshev’s Inequality for the two increasng functions (t − u)0
+ and

g(t) . By Fink and Jodeit’s Theorem [2, page 273] or [3] the conditions (4) and (5) are
sufficient for (9) to hold.

COROLLARY. Let dσ satisfy (4) and (5), f ∈ M2 and g be a positive increasing
function. Then

b∫
a

g(x)f (x)dσ(x) �
b∫

a

g(x)f ∗(x)dσ(x).

Proof. We have for the function ϕ of Lemma 2 that

b∫
a

g(x)[f (x) − f ∗(x)]dσ(x) =

b∫
a

[g(a) +

x∫
a

dg(t)dt][f (x) − f ∗(x)]dσ(x)

= g(a)ϕ(a) +

b∫
a

[f (x) − f ∗(x)]

⎛
⎝ x∫

a

dg(t)

⎞
⎠ dσ(x)

= g(a)ϕ(a) +

b∫
a

⎛
⎝ b∫

u

[f (x) − f ∗(x)]dσ(x)

⎞
⎠ dg(u)

= g(a)ϕ(a) +

b∫
a

ϕ(u)dg(u).

Each term is non-negative by hypothesis and Lemma 2.
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THEOREM 2. Let f i ∈ M2 and the measure dσ satisfy (4) and (5). Then

b∫
0

n∏
1

f i(x)dσ(x) �

b∫
a
(x − a)ndσ(x)

(
b∫
a
(x − a)dσ(x)

)n

n∏
1

b∫
a

f i(x)dσ(x). (10)

Equality holds if all f i(x) are linear.

Proof. We merely observe that if f and g ∈ M2 then f g is positive and increasing
on [a, b] . We can apply the proof of Theorem 1, this time using the corollary for each

step. The final integral is
b∫
a

n∏
1

f ∗
i (x)dσ(x) which is equal to

b∫
a

n∏
1

df i(x − a)ndσ(x) =

b∫
a
(x − a)ndσ(x)(

n∫
0
(x − a)(dσ(x)

)n

n∏
a

b∫
a

f i(x)dσ(x).

Note that if σ is Lebesque measure we get

1
b − a

b∫
a

n∏
1

f i(x)dx � 2n

n + 1

n∏
1

⎛
⎝ 1

b − a

b∫
a

f i(x)dx

⎞
⎠ (11)

which is Theorem 1 on the interval [a, b] . This is more obviously a result about
averages.
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