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EULER–MACLAURIN FORMULAE

LJ. DEDIĆ, M. MATIĆ AND J. PEČARIĆ

(communicated by D. Hinton)

Abstract. A number of inequalities, for functions whose derivatives are either functions of
bounded variation or Lipschitzian functions or functions in Lp -spaces, is proved by applying
the Euler-Maclaurin formulae. The results are applied to obtain some error estimates for the
Maclaurin quadrature rules.

1. Introduction

Some of the most elementary quadrature rules are the Simpson rule based on the
Simpson formula [3, p. 45]

∫ b

a
f (t)dt =

b − a
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− (b − a)5

2880
f (4)(ξ), (1.1)

where a � ξ � b, and the Maclaurin rule based on the Maclaurin formula [10, p. 88 ]

∫ b

a
f (t)dt =

b − a
8

[
3f

(
5a + b

6

)
+ 2f

(
a + b

2

)
+ 3f

(
a + 5b

6

)]

+
7(b − a)5

51 840
f (4)(η), (1.2)

where a � η � b. Formulae (1.1) and (1.2) are valid for any function f with
continuous fourth derivative f (4) on [a, b] . In the recent paper [4] the following two
identities, named the extended Euler formulae, have been proved:

f (x) =
1

b − a

∫ b

a
f (t)dt + Tn(x) + R1

n(x) (1.3)

and

f (x) =
1

b − a

∫ b

a
f (t)dt + Tn−1(x) + R2

n(x), (1.4)
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where n � 1, T0(x) = 0 and

Tn(x) =
n∑

k=1

(b − a)k−1

k!
Bk

(
x − a
b − a

)[
f (k−1)(b) − f (k−1)(a)

]
, (1.5)

while

R1
n(x) = − (b − a)n−1

n!

∫
[a,b]

B∗
n

(
x − t
b − a

)
df (n−1)(t)

and

R2
n(x) = − (b − a)n−1

n!

∫
[a,b]

[
B∗

n

(
x − t
b − a

)
− Bn

(
x − a
b − a

)]
df (n−1)(t).

Here, as in the rest of the paper, we write
∫

[a,b] g(t)dϕ(t) to denote the Riemann-Stieltjes

integral with respect to a function ϕ : [a, b] → R of bounded variation, and
∫ b

a g(t)dt
for the Riemann integral. The identities (1.3) and (1.4) extend the well known formula
for the expansion of an arbitrary function in Bernoulli polynomials [11, p. 17] . They
hold for every function f : [a, b] → R such that f (n−1) is a continuous function of
bounded variation on [a, b], for some n � 1, and for every x ∈ [a, b] . The functions
Bk(t) are the Bernoulli polynomials, Bk = Bk(0) are the Bernoulli numbers, and B∗

k (t),
k � 0, are periodic functions of period 1 , related to the Bernoulli polynomials as

B∗
k (t) = Bk(t), 0 � t < 1, and B∗

k (t + 1) = B∗
k (t), t ∈ R.

The Bernoulli polynomials Bk(t), k � 0 are uniquely determined by the following
identities

B′
k(t) = kBk−1(t), k � 1; B0(t) = 1 (1.6)

and
Bk(t + 1) − Bk(t) = ktk−1, k � 0. (1.7)

For some further details on the Bernoulli polynomials and the Bernoulli numbers see
for example [1] or [ 2] . We have

B0(t) = 1, B1(t) = t − 1
2
, B2(t) = t2 − t +

1
6
, B3(t) = t3 − 3

2
t2 +

1
2
t, (1.8)

so that B∗
0(t) = 1 and B∗

1(t) is a discontinuous function with a jump of −1 at each
integer. From (1.7) it follows that Bk(1) = Bk(0) = Bk for k � 2 , so that B∗

k (t) are
continuous functions for k � 2. Moreover, using (1.6) we get

B∗′
k (t) = kB∗

k−1(t), k � 1 (1.9)

for every t ∈ R when k � 3 , and for every t ∈ R \ Z when k = 1, 2.
Recently, a number of results related to the Simpson formula (1.1) have been

obtained (see [5] , [6–9] and [13] ). The aim of this paper is to establish generalizations
of Maclaurin formula (1.2) and give various error estimates for the quadrature rules
based on such generalizations.
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In Section 2 we use the extended Euler formulae (1.3) and (1.4) to obtain two new
integral identities. We call these new identities the Euler-Maclaurin formulae, since
they generalize Maclaurin formula (1.2).

In Section 3 we prove a number of inequalities related to the Euler-Maclaurin
formulae, for functions whose derivatives are either functions of bounded variation or
Lipschitzian functions or functions from the Lp -spaces.

Finally, in Section 4, we consider the repeated Euler-Maclaurin quadrature rule and
the repeated modified Euler-Maclaurin quadrature rule based on the Euler-Maclaurin
formulae. We give some error estimates for these quadrature rules applied to functions
of various classes.

2. Euler-Maclaurin formulae

For k � 1 define the functions Gk(t) and Fk(t) as

Gk(t) = 3B∗
k

(
1
6
− t

)
+ 2B∗

k

(
1
2
− t

)
+ 3B∗

k

(
5
6
− t

)
, t ∈ R

and
Fk(t) = Gk(t) − B̃k, k � 1

where

B̃k = Gk(0) = 3Bk

(
1
6

)
+ 2Bk

(
1
2

)
+ 3Bk

(
5
6

)
, k � 1.

Specially, we have B̃1 = B̃2 = B̃3 = 0. Obviously, Gk(t) and Fk(t) are periodic
functions of period 1 and continuous for k � 2 . Thus, it is enough to know the
behavior of these functions on the interval [0, 1] . We shall investigate this behavior in
the next section.

Let f : [a, b] → R be such that f (n−1) exists on [a, b] for some n � 1. We
introduce the following notation

D(a, b) =
b − a

8

[
3f

(
5a + b

6

)
+ 2f

(
a + b

2

)
+ 3f

(
a + 5b

6

)]
.

Further, we define T̃0(a, b) = 0 and, for 1 � m � n,

T̃m(a, b) =
b − a

8

[
3Tm

(
5a + b

6

)
+ 2Tm

(
a + b

2

)
+ 3Tm

(
a + 5b

6

)]
,

where Tm(x) is given by (1.5). It is easy to see that T̃1(a, b) = T̃2(a, b) = T̃3(a, b) = 0
and for m � 4

T̃m(a, b) =
1
8

m∑
k=4

(b − a)k

k!
B̃k

[
f (k−1)(b) − f (k−1)(a)

]
. (2.1)

In the next theorem we establish two formulae which play the key role in this paper.
We call them the Euler-Maclaurin formulae.
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THEOREM 1. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation on [a, b], for some n � 1. Then∫ b

a
f (t)dt = D(a, b) − T̃n(a, b) + R̃1

n(a, b), (2.2)

and ∫ b

a
f (t)dt = D(a, b) − T̃n−1(a, b) + R̃2

n(a, b), (2.3)

where

R̃1
n(a, b) =

(b − a)n

8n!

∫
[a,b]

Gn

(
t − a
b − a

)
df (n−1)(t),

and

R̃2
n(a, b) =

(b − a)n

8n!

∫
[a,b]

Fn

(
t − a
b − a

)
df (n−1)(t).

Proof. Put

x =
5a + b

6
,

a + b
2

,
a + 5b

6
in formula (1.3) to get three new formulae. Then multiply these new formulae by

3(b − a)
8

,
2(b − a)

8
,

3(b − a)
8

respectively, and add. The result is formula (2.2). Formula (2.3) is obtained from (1.4)
by the same procedure. �

REMARK 1. Suppose that f : [a, b] → R is such that f (n) exists and is integrable
on [a, b], for some n � 1. In this case (2.2) holds with

R̃1
n(a, b) =

(b − a)n

8n!

∫ b

a
Gn

(
t − a
b − a

)
f (n)(t)dt,

while (2.3) holds with

R̃2
n(a, b) =

(b − a)n

8n!

∫ b

a
Fn

(
t − a
b − a

)
f (n)(t)dt.

By direct calculation

F1(t) = G1(t) =

⎧⎪⎪⎨
⎪⎪⎩

−8t, 0 � t � 1/6
−8t + 3, 1/6 < t � 1/2
−8t + 5, 1/2 < t � 5/6
−8t + 8, 5/6 < t � 1

, (2.4)

F2(t) = G2(t) =

⎧⎪⎪⎨
⎪⎪⎩

8t2, 0 � t � 1/6
8t2 − 6t + 1, 1/6 � t � 1/2
8t2 − 10t + 3, 1/2 � t � 5/6
8t2 − 16t + 8, 5/6 � t � 1

(2.5)
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and

F3(t) = G3(t) =

⎧⎪⎪⎨
⎪⎪⎩

−8t3, 0 � t � 1/6
−8t3 + 9t2 − 3t + 1/4, 1/6 � t � 1/2
−8t3 + 15t2 − 9t + 7/4, 1/2 � t � 5/6
−8t3 + 24t2 − 24t + 8, 5/6 � t � 1

. (2.6)

Applying (2.2) with n = 1, 2, 3 we get the identities∫ b

a
f (t)dt − D(a, b) =

b − a
8

∫
[a,b]

G1

(
t − a
b − a

)
df (t)

=
(b − a)2

16

∫
[a,b]

G2

(
t − a
b − a

)
df ′(t)

=
(b − a)3

48

∫
[a,b]

G3

(
t − a
b − a

)
df ′′(t).

The same identities are obtained from (2.3) with n = 1, 2, 3, since T̃0(a, b) =
T̃1(a, b) = T̃2(a, b) = 0 and Fk(t) = Gk(t) for k = 1, 2, 3, while (2.3) with n = 4
yields the identity∫ b

a
f (t)dt − D(a, b) =

(b − a)4

192

∫
[a,b]

F4

(
t − a
b − a

)
df ′′′(t).

3. Some inequalities related to Euler-Maclaurin formulae

In this section we use the Euler-Maclaurin formulae established in Theorem 1 to
prove a number of inequalities for various classes of functions. First, we need some
properties of the functions Gk(t) and Fk(t) defined in the previous section. As we
noted earlier, it is enough to know the behavior of these functions on the interval [0, 1] .

The Bernoulli polynomials are symmetric with respect to 1
2 , that is [1, 23.1.8]

Bk(1 − t) = (−1)kBk(t), 0 � t � 1, k � 1. (3.1)

Setting t = 1
6 in (3.1) we get

Bk

(
5
6

)
= (−1)kBk

(
1
6

)

Also, we have

Bk(1) = Bk(0) = Bk, k � 2, B1(1) = −B1(0) =
1
2

and
B2j−1 = 0, j � 2.

This implies

B̃2k−1 = 3B2k−1

(
1
6

)
+ 2B2k−1

(
1
2

)
+ 3B2k−1

(
5
6

)
= 0 (3.2)



252 LJ. DEDIĆ, M. MATIĆ AND J. PEČARIĆ

for k � 1, and

B̃2k = 3B2k

(
1
6

)
+ 2B2k

(
1
2

)
+ 3B2k

(
5
6

)
= 2B2k

(
1
2

)
+ 6B2k

(
5
6

)
.

Also, we have [1, 23.1]

B2k

(
1
2

)
= − (1 − 21−2k

)
B2k, B2k

(
1
3

)
= −1

2

(
1 − 31−2k

)
B2k,

and

B2k

(
1
6

)
=

1
2

(
1 − 21−2k

) (
1 − 31−2k

)
B2k,

which gives the formula

B̃2k =
(
1 − 21−2k

) (
1 − 32−2k

)
B2k, (3.3)

for k � 1. Now, by (3.2) we have

F2k−1(t) = G2k−1(t) (3.4)

and
F2k(t) = G2k(t) − B̃2k, (3.5)

for k � 1. Further, the points 0 and 1 are the zeros of Fn(t), that is

Fn(0) = Fn(1) = 0, n � 1.

As we shall see below, 0 and 1 are the only zeros of Fn(t) for n = 2k, k � 2, while
for n = 2k − 1, k � 2 we have

F2k−1

(
1
2

)
= G2k−1

(
1
2

)
= 0.

We shall see that 0 , 1
2 and 1 are the only zeros of F2k−1(t) = G2k−1(t), for k � 2.

Also, note that for n = 2k, k � 1 we have

G2k (0) = G2k (1) = B̃2k =
(
1 − 21−2k

) (
1 − 32−2k

)
B2k

and

G2k

(
1
2

)
= 2B2k + 6B2k

(
1
3

)
= − (1 − 32−2k

)
B2k,

while

F2k

(
1
2

)
= G2k

(
1
2

)
− B̃2k = − (2 − 21−2k

) (
1 − 32−2k

)
B2k. (3.6)

LEMMA 1. For k � 2 we have

Gk(1 − t) = (−1)kGk(t), 0 � t � 1,

and
Fk(1 − t) = (−1)kFk(t), 0 � t � 1.
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Proof. As we noted in Introduction, the functions B∗
k (t) are periodic with period

1 and continuous for k � 2 . Therefore, for k � 2 and 0 � t � 1 we have

B∗
k

(
1
6
− t

)
=

{
Bk
(

1
6 − t

)
, 0 � t � 1/6

Bk
(

7
6 − t

)
, 1/6 � t � 1,

and, using (3.1),

B∗
k

(
5
6

+ t

)
=

{
Bk
(

5
6 + t

)
, 0 � t � 1/6

Bk
(− 1

6 + t
)
, 1/6 � t � 1

=

{
(−1)kBk

(
1
6 − t

)
, 0 � t � 1/6

(−1)kBk

(
7
6 − t

)
, 1/6 � t � 1.

Comparing the above equalities, we see that

B∗
k

(
5
6

+ t

)
= (−1)kB∗

k

(
1
6
− t

)
, 0 � t � 1.

By a similar observation we get

B∗
k

(
1
6

+ t

)
= (−1)kB∗

k

(
5
6
− t

)
, 0 � t � 1.

Using these identities, we get

Gk (1 − t) = 3B∗
k

(
−5

6
+ t

)
+ 2B∗

k

(
−1

2
+ t

)
+ 3B∗

k

(
−1

6
+ t

)

= 3B∗
k

(
1
6

+ t

)
+ 2B∗

k

(
1
2

+ t

)
+ 3B∗

k

(
5
6

+ t

)

= (−1)k

[
3B∗

k

(
1
6
− t

)
+ 2B∗

k

(
1
2
− t

)
+ 3B∗

k

(
5
6
− t

)]
= (−1)kGk(t),

which proves the first identity. Further, we have B̃k = (−1)kB̃k , since (3.2) holds, so
that

Fk (1 − t) = Gk (1 − t) − B̃k = (−1)k
[
Gk(t) − B̃k

]
= (−1)kFk (t) ,

which proves the second identity. �

Note that the identities established in Lemma 1 are valid for k = 1 , too, except at
the points 1/6 , 1/2 and 5/6 of discontinuity of F1(t) = G1(t) .

LEMMA 2. For k � 2 the function G2k−1(t) has no zeros in the interval
(
0, 1

2

)
.

The sign of this function is determined by

(−1)k−1G2k−1(t) > 0, 0 < t <
1
2
.
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Proof. For k = 2, G3(t) is given by (2.6) and it is easy to see that

−G3(t) > 0, 0 < t <
1
2
.

Thus, our assertion is true for k = 2 . Now, assume that k � 3 . Then 2k − 1 � 5 and
G2k−1(t) is continuous and twice differentiable function. Using (1.9) we get

G′
2k−1(t) = −(2k − 1)G2k−2(t)

and
G′′

2k−1(t) = (2k − 1)(2k − 2)G2k−3(t).

We know that 0 and 1
2 are the zeros of G2k−1(t) . Let us suppose that some α,

0 < α < 1
2 , is also a zero of G2k−1(t) . Then inside each of the intervals (0,α) and(

α, 1
2

)
the derivative G′

2k−1(t) must have at least one zero, say β1, 0 < β1 < α and
β2, α < β2 < 1

2 . Therefore, the second derivative G′′
2k−1(t) must have at least one zero

inside the interval (β1, β2) . Thus, from the assumption that G2k−1(t) has a zero inside
the interval

(
0, 1

2

)
, it follows that (2k− 1)(2k− 2)G2k−3(t) also has a zero inside this

interval. From this it follows that G3(t) would have a zero inside the interval
(
0, 1

2

)
,

which is not true. Thus, G2k−1(t) can not have a zero inside the interval
(
0, 1

2

)
. To

determine the sign of G2k−1(t), note that

G2k−1

(
1
6

)
= −B2k−1

(
1
3

)
.

We have [1, 23.1.14]

(−1)kB2k−1(t) > 0, 0 < t <
1
2
,

which implies

(−1)k−1G2k−1

(
1
6

)
= (−1)kB2k−1

(
1
3

)
> 0.

Consequently, we have

(−1)k−1G2k−1(t) > 0, 0 < t <
1
2
. �

COROLLARY 1. For k � 2 the functions (−1)kF2k(t) and (−1)kG2k(t) are
strictly increasing on the interval

(
0, 1

2

)
, and strictly decreasing on the interval

(
1
2 , 1
)
.

Further, for k � 2, we have

max
t∈[0,1]

|F2k(t)| =
(
2 − 21−2k

) (
1 − 32−2k

) |B2k| ,

and
max
t∈[0,1]

|G2k(t)| =
(
1 − 32−2k

) |B2k| .
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Proof. Using (1.9) we get[
(−1)kF2k(t)

]′
=
[
(−1)kG2k(t)

]′
= 2k(−1)k−1G2k−1(t)

and (−1)k−1G2k−1(t) > 0 for 0 < t < 1
2 , by Lemma 2. Thus, (−1)kF2k(t) and

(−1)kG2k(t) are strictly increasing on the interval
(
0, 1

2

)
. Also, by Lemma 1, we have

F2k(1−t) = F2k(t), 0 � t � 1 and G2k(1−t) = G2k(t), 0 � t � 1, which implies that
(−1)kF2k(t) and (−1)kG2k(t) are strictly decreasing on the interval

(
1
2 , 1
)
. Further,

F2k(0) = F2k(1) = 0 , which implies that |F2k(t)| achieves its maximum at t = 1
2 , that

is

max
t∈[0,1]

|F2k(t)| =
∣∣∣∣F2k

(
1
2

)∣∣∣∣ =
(
2 − 21−2k

) (
1 − 32−2k

) |B2k| .
Also

max
t∈[0,1]

|G2k(t)| = max

{
|G2k (0)| ,

∣∣∣∣G2k

(
1
2

)∣∣∣∣
}

=
∣∣∣∣G2k

(
1
2

)∣∣∣∣
=
(
1 − 32−2k

) |B2k| ,
which completes the proof. �

COROLLARY 2. For k � 2, we have∫ 1

0
|F2k−1(t)| dt =

∫ 1

0
|G2k−1(t)| dt =

1
k

(
2 − 21−2k

) (
1 − 32−2k

) |B2k| .

Also, we have ∫ 1

0
|F2k(t)| dt =

∣∣B̃2k

∣∣ = (1 − 21−2k
) (

1 − 32−2k
)
B2k

and ∫ 1

0
|G2k(t)| dt � 2

∣∣B̃2k

∣∣ = 2
(
1 − 21−2k

) (
1 − 32−2k

)
B2k.

Proof. Using (1.9) it is easy to see that

G′
m(t) = −mGm−1(t), m � 3. (3.7)

Now, using Lemma 1, Lemma 2 and (3.7) we get∫ 1

0
|G2k−1(t)| dt = 2

∣∣∣∣∣
∫ 1

2

0
G2k−1(t)dt

∣∣∣∣∣
= 2

∣∣∣∣− 1
2k

G2k(t)|
1
2
0

∣∣∣∣
=

1
k

∣∣∣∣G2k

(
1
2

)
− G2k (0)

∣∣∣∣
=

1
k

(
2 − 21−2k

) (
1 − 32−2k

) |B2k| ,
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which proves the first assertion. By Corollary 1, F2k(t) does not change its sign on the
interval (0, 1) . Therefore, using (3.5) and (3.7), we get

∫ 1

0
|F2k(t)| dt =

∣∣∣∣∣
∫ 1

0
F2k(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

[
G2k(t) − B̃2k

]
dt

∣∣∣∣∣
=
∣∣∣∣− 1

2k + 1
G2k+1(t)|10 − B̃2k

∣∣∣∣ =
∣∣B̃2k

∣∣ ,
which proves the second assertion. Finally, we use (3.5) again and the triangle inequality
to obtain∫ 1

0
|G2k(t)| dt =

∫ 1

0

∣∣F2k(t) + B̃2k

∣∣ dt �
∫ 1

0
|F2k(t)| dt +

∣∣B̃2k

∣∣ = 2
∣∣B̃2k

∣∣ ,
which proves the third assertion. �

THEOREM 2. Let f : [a, b] → R be such that f (n−1) is an L -Lipschitzian function
on [a, b] for some n � 1. Then∣∣∣∣∣

∫ b

a
f (t)dt − D(a, b) + T̃n−1(a, b)

∣∣∣∣∣ � (b − a)n+1

8n!

∫ 1

0
|Fn(t)| dt · L (3.8)

and ∣∣∣∣∣
∫ b

a
f (t)dt − D(a, b) + T̃n(a, b)

∣∣∣∣∣ � (b − a)n+1

8n!

∫ 1

0
|Gn(t)| dt · L. (3.9)

Proof. For any integrable function Φ : [a, b] → R we have∣∣∣∣∣
∫

[a,b]
Φ(t)df (n−1)(t)

∣∣∣∣∣ �
∫ b

a
|Φ(t)| dt · L, (3.10)

since f (n−1) is L -Lipschitzian function. Applying (3.10) with Φ(t) = Fn

(
t−a
b−a

)
, we

get ∣∣∣∣∣ (b − a)n

8n!

∫
[a,b]

Fn

(
t − a
b − a

)
df (n−1)(t)

∣∣∣∣∣
� (b − a)n

8n!

∫ b

a

∣∣∣∣Fn

(
t − a
b − a

)∣∣∣∣ dt · L

=
(b − a)n+1

8n!

∫ 1

0
|Fn(t)| dt · L.

Applying the above inequality, we get inequality (3.8) from identity (2.3). Similarly,

we can apply inequality (3.10) with Φ(t) = Gn

(
t−a
b−a

)
, and then use identity (2.2), to

obtain inequality (3.9). �
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COROLLARY 3. Let f : [a, b] → R be given function.
If f is L -Lipschitzian on [a, b], then∣∣∣∣∣

∫ b

a
f (t)dt − D(a, b)

∣∣∣∣∣ � 25
288

(b − a)2 · L.

If f ′ is L -Lipschitzian on [a, b], then∣∣∣∣∣
∫ b

a
f (t)dt − D(a, b)

∣∣∣∣∣ � 1
192

(b − a)3 · L.

If f ′′ is L -Lipschitzian on [a, b], then∣∣∣∣∣
∫ b

a
f (t)dt − D(a, b)

∣∣∣∣∣ � 1
1728

(b − a)4 · L.

If f ′′′ is L -Lipschitzian on [a, b], then∣∣∣∣∣
∫ b

a
f (t)dt − D(a, b)

∣∣∣∣∣ � 7
51 840

(b − a)5 · L.

Proof. Using (2.4) and (2.5) we get∫ 1

0
|F1(t)| dt =

25
36

and
∫ 1

0
|F2(t)| dt =

1
12

.

Therefore, applying (3.8) with n = 1, 2, we get the first and the second inequality.
Using Corollary 2, we get∫ 1

0
|F3(t)| dt =

1
36

and
∫ 1

0
|F4(t)| dt =

7
270

.

Now, the third and the fourth inequalities follow from (3.8) with n = 3, 4 . �

REMARK 2. Let us note that for a function f which is L -Lipschitzian on [a, b]
the following inequality holds [6] (see also [9] ):∣∣∣∣∣

∫ b

a
f (t)dt − b−a

3

[
f (a)+f (b)

2
+ 2f

(
a+b
2

)]∣∣∣∣∣ � 5
36

(b − a)2L.

This inequality is related to the Simpson quadrature formula and gives the error estimate
for a function f which is L -Lipschitzian on [a, b] . We can compare this with the first
inequality in Corollary 3:∣∣∣∣∣
∫ b

a
f (t)dt − b−a

8

[
3f

(
5a+b

6

)
+ 2f

(
a+b
2

)
+ 3f

(
a+5b

6

)]∣∣∣∣∣ � 25
288

(b − a)2L.
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We see that, for this class of functions, we will have better error estimate for the
Maclaurin quadrature rule than for the Simpson rule.

REMARK 3. Suppose that f : [a, b] → R is such that f (n) exists and is bounded
on [a, b], for some n � 1 In this case we have for all t, s ∈ [a, b]∣∣∣f (n−1)(t) − f (n−1)(s)

∣∣∣ � ‖f (n)‖∞ · |t − s| ,

which means that f (n−1) is ‖f (n)‖∞ -Lipschitzian function on [a, b] . Therefore, the
inequalities established in Theorem 2 hold with L = ‖f (n)‖∞. Consequently, under
appropriate assumptions on f , the inequalities from Corollary 3 hold with L = ‖f ′‖∞,
‖f ′′‖∞, ‖f ′′′‖∞, ‖f (4)‖∞, respectively.

THEOREM 3. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation on [a, b] for some n � 1. Then∣∣∣∣∣

∫ b

a
f (t)dt − D(a, b) + T̃n−1(a, b)

∣∣∣∣∣ � (b − a)n

8n!
max
t∈[0,1]

|Fn(t)| · Vb
a (f (n−1)) (3.11)

and ∣∣∣∣∣
∫ b

a
f (t)dt − D(a, b) + T̃n(a, b)

∣∣∣∣∣ � (b − a)n

8n!
max
t∈[0,1]

|Gn(t)| · Vb
a (f

(n−1)), (3.12)

where Vb
a (f

(n−1)) is the total variation of f (n−1) on [a, b].

Proof. If Φ : [a, b] → R is bounded on [a, b] and the Riemann-Stieltjes integral∫
[a,b] Φ(t)df (n−1)(t) exists, then∣∣∣∣∣

∫
[a,b]

Φ(t)df (n−1)(t)

∣∣∣∣∣ � max
t∈[a,b]

|Φ(t)| · Vb
a (f (n−1)). (3.13)

We apply estimate (3.13) to Φ(t) = Fn

(
t−a
b−a

)
to obtain

∣∣∣∣∣ (b − a)n

8n!

∫
[a,b]

Fn

(
t − a
b − a

)
df (n−1)(t)

∣∣∣∣∣
� (b − a)n

8n!
max
t∈[a,b]

∣∣∣∣Fn

(
t − a
b − a

)∣∣∣∣ · Vb
a (f

(n−1))

=
(b − a)n

8n!
max
t∈[0,1]

|Fn (t)| · Vb
a (f

(n−1)).

Now, we use the above inequality and identity (2.3) to obtain (3.11). In the same

manner, we apply estimate (3.13) to Φ(t) = Gn

(
t−a
b−a

)
, and then use identity (2.2), to

obtain inequality (3.12). �
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COROLLARY 4. Let f : [a, b] → R be given function.
If f is a continuous function of bounded variation on [a, b], then∣∣∣∣∣

∫ b

a
f (t)dt − D(a, b)

∣∣∣∣∣ � 5
24

(b − a) · Vb
a (f ).

If f ′ is a continuous function of bounded variation on [a, b], then∣∣∣∣∣
∫ b

a
f (t)dt − D(a, b)

∣∣∣∣∣ � 1
72

(b − a)2 · Vb
a (f

′).

If f ′′ is a continuous function of bounded variation on [a, b], then∣∣∣∣∣
∫ b

a
f (t)dt − D(a, b)

∣∣∣∣∣ � 1
768

(b − a)3 · Vb
a (f

′′).

If f ′′′ is a continuous function of bounded variation on [a, b], then∣∣∣∣∣
∫ b

a
f (t)dt − D(a, b)

∣∣∣∣∣ � 1
3456

(b − a)4 · Vb
a (f

′′′).

Proof. From explicit expressions (2.4), (2.5) and (2.6), we get

max
t∈[0,1]

|F1(t)| = −F1

(
5
6

)
=

5
3
,

max
t∈[0,1]

|F2(t)| = F2

(
1
6

)
=

2
9

and

max
t∈[0,1]

|F3(t)| = −F3

(
1
4

)
=

1
16

.

Therefore, applying (3.11) with n = 1, 2, 3, we get the first three inequalities. Further,
using Corollary 1, we get

max
t∈[0,1]

|F4(t)| =
1
18

.

Now, the fourth inequality follows from (3.11) with n = 4. �

REMARK 4. In [7] (see also [9] ) the following inequality has been proved:∣∣∣∣∣
∫ b

a
f (t)dt − b − a

3

[
f (a) + f (b)

2
+ 2f

(
a + b

2

)]∣∣∣∣∣ � 1
3
(b − a)Vb

a (f ).

This inequality is related to the Simpson quadrature formula and gives the error estimate
for a function f of bounded variation on [a, b] . We can compare this with the first
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inequality in Corollary 3:

∣∣∣∣∣
∫ b

a
f (t)dt − b − a

8

[
3f

(
5a + b

6

)
+ 2f

(
a + b

2

)
+ 3f

(
a + 5b

6

)]∣∣∣∣∣
� 5

24
(b − a)Vb

a (f ).

We see that, for this class of functions, we will have better error estimate for the
Maclaurin quadrature rule than for the Simpson rule.

REMARK 5. Suppose that f : [a, b] → R is such that f (n) ∈ L1[a, b] for some
n � 1 In this case f (n−1) is a continuous function of bounded variation on [a, b] and
we have

Vb
a (f

(n−1)) =
∫ b

a

∣∣∣f (n)(t)
∣∣∣ dt = ‖f (n)‖1,

Therefore, the inequalities established in Theorem 3 hold with ‖f (n)‖1 in place of
Vb

a (f
(n−1)) . However, a similar observation can be made for the results of Corollary 4.

THEOREM 4. Assume (p, q) is a pair of conjugate exponents, that is 1 < p, q <
∞, 1

p + 1
q = 1 or p = ∞, q = 1. Let f : [a, b] → R be such that f (n) ∈ Lp[a, b] for

some n � 1. Then we have

∣∣∣∣∣
∫ b

a
f (t)dt − D(a, b) + T̃n−1(a, b)

∣∣∣∣∣ � K(n, p)(b − a)n+ 1
q · ‖f (n)‖p, (3.14)

and

∣∣∣∣∣
∫ b

a
f (t)dt − D(a, b) + T̃n(a, b)

∣∣∣∣∣ � K∗(n, p)(b − a)n+ 1
q · ‖f (n)‖p, (3.15)

where

K(n, p) =
1

8n!

[∫ 1

0
|Fn(t)|q dt

] 1
q

,

and

K∗(n, p) =
1

8n!

[∫ 1

0
|Gn(t)|q dt

] 1
q

.
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Proof. Applying the Hölder inequality we have∣∣∣∣∣ (b − a)n

3(n!)

∫ b

a
Fn

(
t − a
b − a

)
f (n)(t)dt

∣∣∣∣∣
� (b − a)n

8n!

[∫ b

a

∣∣∣∣Fn

(
t − a
b − a

)∣∣∣∣
q

dt

] 1
q

·
∥∥∥f (n)

∥∥∥
p

=
(b − a)n+ 1

q

8n!

[∫ 1

0
|Fn(t)|q dt

] 1
q

·
∥∥∥f (n)

∥∥∥
p

= K(n, p)(b − a)n+ 1
q · ‖f (n)‖p

Using the above inequality, by Remark 1, from (2.3) we get estimate (3.14). In the
same manner, from (2.2) we get estimate (3.15). �

REMARK 6. For p = ∞ we have

K(n,∞) =
1

8n!

∫ 1

0
|Fn(t)| dt and K∗(n,∞) =

1
8n!

∫ 1

0
|Gn(t)| dt.

The results established in Theorem 4 for p = ∞ coincide with the results of Theorem 2
with L = ‖f (n)‖∞. Moreover, by Remark 3 and Corollary 3, we have∣∣∣∣∣

∫ b

a
f (t)dt − D(a, b)

∣∣∣∣∣ � K(n,∞) (b − a)n+1 · ‖f (n)‖∞, n = 1, 2, 3, 4,

where

K(1,∞) =
25
288

, K(2,∞) =
1

192
, K(3,∞) =

1
1728

, K(4,∞) =
7

51840
.

REMARK 7. Let us define for p = 1

K(n, 1) =
1

8n!
max
t∈[0,1]

|Fn(t)| and K∗(n, 1) =
1

8n!
max
t∈[0,1]

|Gn(t)| .

Then, usingRemark 5 andTheorem3,we can extend the results established in Theorem4
to the pair p = 1, q = ∞. This means that if we set 1

q = 0, then (3.14) and (3.15)
hold for p = 1 . Also, by Remark 5 and Corollary 4, we have∣∣∣∣∣

∫ b

a
f (t)dt − D(a, b)

∣∣∣∣∣ � K(n, 1) (b − a)n · ‖f (n)‖1, n = 1, 2, 3, 4,

where

K(1, 1) =
5
24

, K(2, 1) =
1
72

, K(3, 1) =
1

768
, K(4, 1) =

1
3456

.
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REMARK 8. Note that K∗(1, p) = K(1, p), for 1 < p � ∞, since G1(t) = F1(t).
Also, for 1 < p � ∞ we can easily calculate K(1, p). We get

K(1, p) =
1
8

[
3q+1 + 4q+1 + 5q+1

4(q + 1)3q+1

] 1
q

, 1 < p � ∞.

In the limit case when p → 1, that is when q → ∞, we have

lim
q→∞

1
8

[
3q+1 + 4q+1 + 5q+1

4(q + 1)3q+1

] 1
q

=
5
24

= K(1, 1).

So, from (3.14) with n = 1 we get the following inequality∣∣∣∣∣
∫ b

a
f (t)dt − b − a

8

[
3f

(
5a + b

6

)
+ 2f

(
a + b

2

)
+ 3f

(
a + 5b

6

)]∣∣∣∣∣
� 1

8

[
3q+1 + 4q+1 + 5q+1

4(q + 1)3q+1

] 1
q

(b − a)1+ 1
q · ‖f ′‖p.

This can be compared with the similar inequality proved in [8] (see also [9] ), related
to the Simpson rule,∣∣∣∣∣

∫ b

a
f (t)dt − b − a

3

[
f (a) + f (b)

2
+ 2f

(
a + b

2

)]∣∣∣∣∣
� 1

6

[
2q+1 + 1
3(q + 1)

] 1
q

(b − a)1+ 1
q · ‖f ′‖p.

Denote

C(1, p) =
1
6

[
2q+1 + 1
3(q + 1)

] 1
q

, 1 < p � ∞.

We have

C(1, p)
K(1, p)

=
[

4q+1 + 8q+1

3q+1 + 4q+1 + 5q+1

] 1
q

=

[
1 +

(
1
2

)q+1

(
3
8

)q+1
+
(

5
8

)q+1
+
(

1
2

)q+1

] 1
q

> 1,

since (
3
8

)q+1

+
(

5
8

)q+1

<
3
8

+
5
8

= 1.

We see that, for this class of functions, we will have better error estimate for the
Maclaurin quadrature rule than for the Simpson rule.
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At the end of this section we use formula (2.2) to obtain Grüss type inequality
related to Euler-Maclaurin formula. To do this we need the following two technical
lemmata proved in the recent paper [5] :

LEMMA 3. Let F, G : [a, b] → R be two integrable functions. If

m � F(t) � M, a � t � b

and ∫ b

a
G(t)dt = 0,

then ∣∣∣∣∣ 1
b − a

∫ b

a
F(t)G(t)dt

∣∣∣∣∣ � M − m
2

√
1

b − a

∫ b

a
G2(t)dt. (3.16)

REMARK 9. The result stated in the lemma above is a slight generalization of
the following result due to H. Hadwiger and E. Heil (see [12, p. 544] ): Let F, G be
two integrable functions on [0, 1] such that 0 � F(x) � 1, for all x ∈ [0, 1] , and∫ 1

0 G(x)dx = 0. Then

∫ 1

0
G2(x)dx � 4

(∫ 1

0
F(x)G(x)dx

)2

.

LEMMA 4. (i) Let k � 1 and γ ∈ R . Then∫ 1

0
B∗

k (γ − t)dt = 0.

(ii) Let k � 1 and γ , δ ∈ R . Then∫ 1

0
B∗

k (γ − t)B∗
k (δ − t)dt =

(k!)2

(2k)!
(−1)k−1B∗

2k(δ − γ ).

(iii) Let k � 1 and γ ∈ R . Then∫ 1

0
[B∗

k (γ − t)]2 dt =
(k!)2

(2k)!
|B2k| .

THEOREM 5. Suppose that f : [a, b] → R is such that f (n) exists and is integrable
on [a, b] , for some n � 1 . Assume that

mn � f (n)(t) � Mn, a � t � b,

for some constants mn and Mn. Then∣∣∣∣∣
∫ b

a
f (t)dt − D(a, b) + T̃n(a, b)

∣∣∣∣∣
� 1

16
(b − a)n+1(Mn − mn)

√
(1 + 7 · 32−2n)

|B2n|
(2n)!

. (3.17)
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Proof. By Remark 1 we can rewrite R̃1
n(a, b) as

R̃1
n(a, b) =

(b − a)n+1

8n!
· 1
b − a

∫ b

a
F(t)G(t)dt,

where

F(t) = f (n)(t), G(t) = Gn

(
t − a
b − a

)
, a � t � b.

Using Lemma 4 (i) we get∫ b

a
G(t)dt = (b − a)

∫ 1

0

[
3B∗

k

(
1
6
− t

)
+ 2B∗

k

(
1
2
− t

)
+ 3B∗

k

(
5
6
− t

)]
ds = 0.

Also, using Lemma 4 (ii) and (iii) we get

1
b − a

∫ b

a
G2(t)dt =

∫ 1

0

[
3B∗

k

(
1
6
− t

)
+ 2B∗

k

(
1
2
− t

)
+ 3B∗

k

(
5
6
− t

)]2

ds

= 22
(n!)2

(2n)!
|B2n| + 42

(n!)2

(2n)!
(−1)n−1B2n

(
1
3

)

= (1 + 7 · 32−2n)
(n!)2

(2n)!
|B2n| .

Now, we apply the inequality (3.16) to obtain the estimate

∣∣R̃1
n(a, b)

∣∣ � (b − a)n+1

8n!
· Mn − mn

2

√
1

b − a

∫ b

a
G2(t)dt

=
1
16

(b − a)n+1(Mn − mn)

√
(1 + 7 · 32−2n)

|B2n|
(2n)!

,

which proves our assertion. �

REMARK 10. In [5] the following inequality, related to the Euler-Simpson for-
mula, has been proved:∣∣∣∣∣

∫ b

a
f (t)dt − b − a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− SS

n(a, b)

∣∣∣∣∣
� Γn :=

1
6
(b − a)n+1(Mn − mn)

√
(1 + 23−2n)

|B2n|
(2n)!

,

where SS
1(a, b) = SS

2(a, b) = SS
3(a, b) = 0 and

SS
n(a, b) =

1
3

[ n
2 ]∑

j=2

(b − a)2j

(2j)!
(1 − 22−2j)B2j

[
f (2j−1)(b) − f (2j−1)(a)

]
,
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for n � 4 . It should be noted that the above inequality for n = 1, 2, 3 has been proved
earlier in [13] . On the other side, from the discussion given at the beginning of this
section we know that T̃1(a, b) = T̃2(a, b) = T̃3(a, b) = 0 and

T̃n(a, b) =
1
8

[ n
2 ]∑

j=2

(b − a)2j

(2j)!
(
1 − 21−2k

) (
1 − 32−2k

)
B2k

[
f (2j−1)(b) − f (2j−1)(a)

]
,

for n � 4 . The inequality (3.17) can be rewritten as∣∣∣∣∣
∫ b

a
f (t)dt − b−a

8

[
3f

(
5a+b

6

)
+ 2f

(
a+b
2

)
+ 3f

(
a+5b

6

)]
− T̃n(a, b)

∣∣∣∣∣
� Γ̃n :=

1
16

(b − a)n+1(Mn − mn)

√
(1 + 7 · 32−2n)

|B2n|
(2n)!

.

Note that
Γn

Γ̃n
=

8
3

√
1 + 23−2n

1 + 7 · 32−2n
�
√

8
3
, for all n � 1.

This shows that the quadrature rule based on the Euler-Maclaurin formula will have a
better Grüss type error estimate than the quadrature rule based on the Euler-Simpson
formula.

4. Error estimates for Euler-Maclaurin quadrature formulae

Let us divide the interval [a, b] into ν subintervals of equal length h = 1
ν (b− a) .

Assume that f : [a, b] → R is such that f (n−1) is a continuous function of bounded
variation on [a, b], for some n � 1. We consider the repeated Euler-Maclaurin formula∫ b

a
f (t)dt = Dν(f ) − σn−1(f ) + ρn(f ) (4.1)

and the repeated modified Euler-Maclaurin formula∫ b

a
f (t)dt = Dν(f ) − σn(f ) + ρ̃n(f ), (4.2)

where ρn(f ) and ρ̃n(f ) are the remainders, Dν(f ) is given by

Dν(f ) =
ν∑

i=1

D (a + (i − 1) h, a + ih) ,

where D (a + (i − 1) h, a + ih) is equal to

h
8

[
3f

(
a +

(
i − 5

6

)
h

)
+ 2f

(
a +

(
i − 1

2

)
h

)
+ 3f

(
a +

(
i − 1

6

)
h

)]
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Further, σm(f ) is given by

σm(f ) =
ν∑

i=1

T̃m (a + (i − 1)h, a + ih) , m � 0.

We see that
σ0(f ) = σ1(f ) = σ2(f ) = σ3(f ) = 0, (4.3)

while for m � 4, we have

σm(f ) =
ν∑

i=1

1
8

[m
2 ]∑

j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(a + ih) − f (2j−1)(a + (i − 1)h)

]

=
1
8

[m
2 ]∑

j=2

h2j

(2j)!
B̃2j

ν∑
i=1

[
f (2j−1)(a + ih) − f (2j−1)(a + (i − 1)h)

]

=
1
8

[m
2 ]∑

j=2

h2j

(2j)!
(
1 − 21−2j

) (
1 − 32−2j

)
B2j

[
f (2j−1)(b) − f (2j−1)(a)

]
. (4.4)

The remainders ρn(f ) and ρ̃n(f ) can be written as

ρn(f ) =
ν∑

i=1

ρn(f ; i), and ρ̃n(f ) =
ν∑

i=1

ρ̃n(f ; i), (4.5)

where, for i = 1, . . . , ν,

ρn(f ; i) =
∫ a+ih

a+(i−1)h
f (t)dt − D (a + (i − 1) h, a + ih) + T̃n−1 (a + (i − 1)h, a + ih)

and

ρ̃n(f ; i) =
∫ a+ih

a+(i−1)h
f (t)dt − D (a + (i − 1) h, a + ih) + T̃n (a + (i − 1)h, a + ih) .

We shall apply the results from the preceding section to obtain some estimates for the
remainders ρn(f ) and ρ̃n(f ). Before doing this, note that for n = 2k − 1, k � 3, we
have

σ2k−2(f ) = σ2k−1(f )

=
1
8

k−1∑
j=2

h2j

(2j)!
(
1 − 21−2j

) (
1 − 32−2j

)
B2j

[
f (2j−1)(b) − f (2j−1)(a)

]
.

Thus
ρ2k−1(f ) = ρ̃2k−1(f ),
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so that (4.1) and (4.2) coincide in this case. This shows that (4.2) can be interesting
only when n = 2k, k � 2. In this case we have

ρ̃2k(f ) = ρ2k(f ) + σ2k(f ) − σ2k−1(f )

= ρ2k(f ) +
h2k

8(2k)!
(
1 − 21−2j

) (
1 − 32−2j

)
B2j

[
f (2k−1)(b) − f (2k−1)(a)

]
.

In fact we have
ρ̃2k−2(f ) = ρ2k(f ), k � 3.

Therefore, for k � 3 we can approximate
∫ b

a f (t)dt by

I2k(f ; ν) = Dν(f )− 1
8

k−1∑
j=2

h2j

(2j)!
(
1 − 21−2j

) (
1 − 32−2j

)
B2j

[
f (2j−1)(b) − f (2j−1)(a)

]
,

using either (4.1) with n = 2k − 1 or (4.2) with n = 2k − 2 . If we apply (4.1), we
must assume that f (2k−2) is a continuous function of bounded variation on [a, b] . For
(4.2), it is enough to assume that f (2k−3) is a continuous function of bounded variation
on [a, b] .

THEOREM 6. Let f : [a, b] → R be such that f (n−1) is an L -Lipschitzian function
on [a, b] for some n � 1. Then we have

|ρn(f )| � νhn+1

8n!

∫ 1

0
|Fn(t)| dt · L

and

|ρ̃n(f )| � νhn+1

8n!

∫ 1

0
|Gn(t)| dt · L.

Specially

|ρ1(f )| � 25
288

νh2L, |ρ2(f )| � 1
192

νh3L,

and

|ρ3(f )| � 1
1728

νh4L, |ρ4(f )| � 7
51840

νh5L.

Proof. Applying (3.8) and (3.9) we get for i = 1, . . . , ν,

|ρn(f ; i)| � hn+1

8n!

∫ 1

0
|Fn(t)| dt · L

and

|ρ̃n(f ; i)| � hn+1

8n!

∫ 1

0
|Gn(t)| dt · L.

Using the above estimates and the triangle inequality, we get from (4.5)

|ρn(f )| �
ν∑

i=1

|ρn(f ; i)| � νhn+1

8n!

∫ 1

0
|Fn(t)| dt · L
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and

|ρ̃n(f )| �
ν∑

i=1

|ρ̃n(f ; i)| � νhn+1

8n!

∫ 1

0
|Gn(t)| dt · L.

The last assertion follows from Corollary 3. �

REMARK 11. Instead of the assumption that f (n−1) is an L -Lipschitzian function
on [a, b],we can use the stronger assumption that f (n) exists and is bounded on [a, b],
for some n � 1. In this case Theorem 6 applies with L replaced by

∥∥f (n)
∥∥
∞ (see

Remark 3).

THEOREM 7. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation on [a, b] for some n � 1. Then we have

|ρn(f )| � hn

8n!
max
t∈[0,1]

|Fn(t)| · Vb
a (f

(n−1))

and

|ρ̃n(f )| � hn

8n!
max
t∈[0,1]

|Gn(t)| · Vb
a (f

(n−1)).

Specially

|ρ1(f )| � 5
24

hVb
a (f ), |ρ2(f )| � 1

72
h2Vb

a (f
′)

and

|ρ3(f )| � 1
768

h3Vb
a (f ′′), |ρ4(f )| � 1

3456
h4Vb

a (f ′′′).

Proof. Applying (3.11) and (3.12) we get for i = 1, . . . , ν, respectively,

|ρn(f ; i)| � hn

8n!
max
t∈[0,1]

|Fn(t)| · Va+ih
a+(i−1)h(f

(n−1))

and

|ρ̃n(f ; i)| � hn

8n!
max
t∈[0,1]

|Gn(t)| · Va+ih
a+(i−1)h(f

(n−1)).

Using the above estimates and the triangle inequality, we get from (4.5)

|ρn(f )| �
ν∑

i=1

|ρn(f ; i)|

� hn

8n!
max
t∈[0,1]

|Fn(t)| ·
ν∑

i=1

Va+ih
a+(i−1)h(f

(n−1))

=
hn

8n!
max
t∈[0,1]

|Fn(t)| · Vb
a (f

(n−1)),

which proves the first inequality. The second inequality is proved similarily. The last
assertion follows from Corollary 4. �
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REMARK 12. If f : [a, b] → R is such that f (n) ∈ L1[a, b] for some n � 1, then
f (n−1) is a continuous function of bounded variation on [a, b] and Vb

a (f
(n−1)) = ‖f (n)‖1.

Therefore, Theorem 7 applies with ‖f (n)‖1 in place of Vb
a (f

(n−1)) (see Remark 5).

THEOREM 8. Assume (p, q) is a pair of conjugate exponents, that is 1 < p, q <
∞, 1

p + 1
q = 1 or p = ∞, q = 1. Let f : [a, b] → R be such that f (n) ∈ Lp[a, b]

for some n � 1. Then we have

|ρn(f )| � νK(n, p)hn+ 1
q · ‖f (n)‖p

and
|ρ̃n(f )| � νK∗(n, p)hn+ 1

q · ‖f (n)‖p,

where K(n, p) and K∗(n, p) are defined as in Theorem 4.

Proof. For i = 1, . . . , ν consider the function gi(t) = f (n)(t), t ∈ [a + (i − 1)h ,
a + ih] . Obviously we have

‖gi‖p � ‖f (n)‖p,

where the norm ‖gi‖p is taken over the interval [a + (i − 1)h, a + ih] , while the norm
‖f (n)‖p is taken over the interval [a, b] . Applying (3.14) and (3.15) and using the above
inequality, we get for i = 1, . . . , ν

|ρn(f ; i)| � K(n, p)hn+ 1
q · ‖gi‖p � K(n, p)hn+ 1

q · ‖f (n)‖p

and
|ρ̃n(f ; i)| � K∗(n, p)hn+ 1

q · ‖gi‖p � K∗(n, p)hn+ 1
q · ‖f (n)‖p.

The result follows from (4.5) by the triangle inequality. �

THEOREM 9. Suppose that f : [a, b] → R is such that f (n) exists and is integrable
on [a, b] , for some n � 1 . Assume that

mn � f (n)(t) � Mn, a � t � b,

for some constants mn and Mn. Then

|ρ̃n(f )| � ν
16

(b − a)n+1(Mn − mn)

√
(1 + 7 · 32−2n)

|B2n|
(2n)!

.

Proof. Applying (3.17) we get

|ρ̃n(f ; i)| � 1
16

(b − a)n+1(Mn − mn)

√
(1 + 7 · 32−2n)

|B2n|
(2n)!

,

for all i = 1, . . . , ν . The result follows from (4.5) using the triangle inequality. �
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In the following discussion we assume that f : [a, b] → R has a continuous
derivative of order n , for some n � 1 . In this case we can use (2.3) and the second
formula from Remark 1 to obtain, for i = 1, . . . , ν,

ρn(f ; i) =
hn

8n!

∫ a+ih

a+(i−1)h
Fn

(
t − a − (i − 1)h

h

)
f (n)(t)dt

=
hn+1

8n!

∫ 1

0
Fn(s)f (n)(a + (i − 1)h + hs)ds.

Therefore, by (4.5) we get

ρn(f ) =
hn+1

8n!

∫ 1

0
Fn(s)Φn(s)ds, (4.6)

where

Φn(s) =
ν∑

i=1

f (n)(a + (i − 1)h + hs), 0 � s � 1. (4.7)

Similarly, we get

ρ̃n(f ) =
hn+1

8n!

∫ 1

0
Gn(s)Φn(s)ds.

Obviously, Φn(s) is a continuous function on [0, 1] and

∫ 1

0
Φn(s)ds = h−1

ν∑
i=1

[
f (n−1)(a + ih) − f (n−1)(a + (i − 1)h)

]

= h−1
[
f (n−1)(b) − f (n−1)(a)

]
. (4.8)

From the discussion given at the beginning of this section it follows that it is the
most interesting to consider the repeated Euler-Maclaurin formula (4.1) for n = 2k,
k � 2, which can be rewritten as∫ b

a
f (t)dt = I2k(f ; ν) + ρ2k(f ), (4.9)

where

I2k(f ; ν) = Dν(f )− 1
8

k−1∑
j=2

h2j

(2j)!
(
1 − 21−2j

) (
1 − 32−2j

)
B2j

[
f (2j−1)(b) − f (2j−1)(a)

]
.

We assume the sum on the right hand side in the above equality to be zero when k = 2 .

THEOREM 10. If f : [a, b] → R is such that f (2k) is continuous on [a, b] , for
some k � 2 , then there exists a point η ∈ [a, b] such that

ρ2k(f ) = −ν h2k+1

8(2k)!
(
1 − 21−2j

) (
1 − 32−2j

)
B2jf

(2k)(η). (4.10)
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Proof. Using (4.6) we can rewrite ρ2k(f ) as

ρ2k(f ) = (−1)k h2k+1

8(2k)!
Jk, (4.11)

where

Jk =
∫ 1

0
(−1)kF2k(s)Φ2k(s)ds. (4.12)

If
m = min

t∈[a,b]
f (2k)(t), M = max

t∈[a,b]
f (2k)(t),

then from (4.7) we get

νm � Φ2k(s) � νM, 0 � s � 1.

On the other side, from Corollary 1 it follows that

(−1)kF2k(s) � 0, 0 � s � 1,

which implies

νm
∫ 1

0
(−1)kF2k(s)ds � Jk � νM

∫ 1

0
(−1)kF2k(s)ds.

We have already calculated in the proof of Corollary 2 that
∫ 1

0 F2k(s)ds = −B̃2k, so
that we have

νm(−1)k−1B̃2k � Jk � νM(−1)k−1B̃2k.

By the continuity of f (2k)(s) on [a, b] , it follows that there must exist a point η ∈ [a, b]
such that

Jk = ν(−1)k−1B̃2kf
(2k)(η).

Combining this with (4.11) we get (4.10). �

REMARK 13. The repeated Euler-Maclaurin formula (4.9) is a generalization of
Maclaurin formula (1.2). Namely, for k = 2 and ν = 1 formula (4.10) reduces to

ρ4(f ) =
7(b − a)5

51840
f (4)(η)

i.e. to (1.2).

REMARK 14. In [11, p. 222] the following repeated Euler-Simpson formula has
been considered: ∫ b

a
f (t)dt = IS,2k(f ; ν) + ρS,2k(f ),
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where

IS,2k(f , ν) =
h
6

ν∑
i=1

[f (a + (i − 1)h) + 4f (a + (i − 1/2)h) + f (a + ih)]

+
1
3

k−1∑
j=2

h2j

(2j)!
(1 − 22−2j)B2j

[
f (2j−1)(b) − f (2j−1)(a)

]
.

It has been proved that, under the assumptions of Theorem 10, there exists a point
ξ ∈ [a, b] such that [11, p. 225]

ρS,2k(f ) = ν
h2k+1

3(2k)!
(1 − 22−2k)B2kf

(2k)(ξ).

We can compare the remainders ρS,2k(f ) and ρ2k(f ). From the above expression and
(4.10) we get

ρ2k(f )
ρS,2k(f )

= −3
(
1 − 21−2k

) (
1 − 32−2k

)
8(1 − 22−2k)

· f (2k)(η)
f (2k)(ξ)

.

Therefore, if f (2k) does not change its sign on [a, b] , then ρ2k(f ) and ρS,2k(f ) have
opposite signs. Also note that for the numerical coefficients

K = ν
h2k+1

8(2k)!
(
1 − 21−2k

)
(1 − 32−2k)B2k

and

KS = ν
h2k+1

3(2k)!
(1 − 22−2k)B2k

we have
3
8

<
K
KS

=
3
(
1 − 21−2k

)
(1 − 32−2k)

8(1 − 22−2k)
� 7

18
, k � 2.

Therefore, if f (2k) changes very slowly, then the approximate equality
∫ b

a f (t)dt ≈
I2k(f ; ν) will be more accurate than the approximate equality

∫ b
a f (t)dt ≈ IS,2k(f ; ν) .

THEOREM 11. If f : [a, b] → R is such that f (2k) is a continuous function on
[a, b] , for some k � 2 , and does not change its sign on [a, b] , then there exists a point
θ ∈ [0, 1] such that

ρ2k(f ) = −θ h2k

8(2k)!
(
2 − 21−2k

) (
1 − 32−2k

)
B2k

[
f (2k−1)(b) − f (2k−1)(a)

]
. (4.13)

Proof. Suppose that f (2k)(t) � 0, a � t � b. Then from (4.7) we get

Φ2k(s) � 0, 0 � s � 1.

From Corollary 1 it follows that

0 � (−1)kF2k(s) � (−1)kF2k

(
1
2

)
, 0 � s � 1.
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Therefore, if Jk is given by (4.12), then

0 � Jk � (−1)kF2k

(
1
2

)∫ 1

0
Φ2k(s)ds.

Using (3.6) and (4.8), we get

0 � Jk � (−1)k−1
(
2 − 21−2k

) (
1 − 32−2k

)
B2kh

−1
[
f (2k−1)(b) − f (2k−1)(a)

]
,

which means that there must exist a point θ ∈ [0, 1] such that

Jk = θ(−1)k−1
(
2 − 21−2k

) (
1 − 32−2k

)
B2kh

−1
[
f (2k−1)(b) − f (2k−1)(a)

]
.

Combining this with (4.11) we get (4.13). The argument is the same when f (2k)(t) � 0,
a � t � b, since in that case we get

(−1)k−1
(
2 − 21−2k

) (
1 − 32−2k

)
B2kh

−1
[
f (2k−1)(b) − f (2k−1)(a)

]
� Jk � 0. �

REMARK 15. If we approximate
∫ b

a f (t)dt by I2k(f ; ν), then the next approxi-
mation will be I2k+2(f ; ν) . The difference

Δ2k(f ; ν) = I2k+2(f ; ν) − I2k(f ; ν)

is equal to the last term in I2k+2(f ; ν), that is

Δ2k(f ; ν) = − h2k

8(2k)!
B̃2k

[
f (2k−1)(b) − f (2k−1)(a)

]

= − h2k

8(2k)!
(
1 − 21−2k

)
(1 − 32−2k)B2k

[
f (2k−1)(b) − f (2k−1)(a)

]
.

We see that, under the assumptions of Theorem 11, ρ2k(f ) and Δ2k(f ; ν) are of the
same sign. Moreover, we have

ρ2k(f ) =
θ
(
2 − 21−2k

)
1 − 21−2k

Δ2k(f ; ν)

which gives the following estimate for the remainder ρ2k(f ) :

|ρ2k(f )| � 3 |Δ2k(f ; ν)| .

THEOREM 12. Suppose that f : [a, b] → R is such that f (2k+2) is continuous on
[a, b] , for some k � 2. If for each x ∈ [a, b] either

f (2k)(x) � 0 and f (2k+2)(x) � 0

or
f (2k)(x) � 0 and f (2k+2)(x) � 0,

then the remainder ρ2k(f ) has the same sign as the first neglected term Δ2k(f ; ν) and

|ρ2k(f )| � |Δ2k(f ; ν)| .
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Proof. We have
Δ2k(f ; ν) + ρ2k+2(f ) = ρ2k(f ),

that is
Δ2k(f ; ν) = ρ2k(f ) − ρ2k+2(f ). (4.14)

By (4.6) we have

ρ2k(f ) =
h2k+1

8(2k)!

∫ 1

0
F2k(s)Φ2k(s)ds

and

−ρ2k+2(f ) =
h2k+3

8(2k + 2)!

∫ 1

0
[−F2k+2(s)]Φ2k+2(s)ds.

Under the assumptions made on f , we see that for all s ∈ [a, b] either

Φ2k(s) � 0 and Φ2k+2(s) � 0

or
Φ2k(s) � 0 and Φ2k+2(s) � 0.

Also, from Corollary 1 it follows that for all s ∈ [a, b]

(−1)kF2k(s) � 0 and (−1)k[−F2k+2(s)] � 0.

We conclude that ρ2k(f ) has the same sign as −ρ2k+2(f ) . Therefore, because of (4.14),
Δ2k(f ; ν) must have the same sign as ρ2k(f ) and −ρ2k+2(f ) . Moreover, it follows that

|ρ2k(f )| � |Δ2k(f ; ν)| and |−ρ2k+2(f )| � |Δ2k(f ; ν)| . �
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Department of mathematics

University of Split
Teslina 12

21000 Split
Croatia

e-mail: ljuban@pmfst.hr

M. Matić
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