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ON THE HYERS–ULAM–RASSIAS STABILITY OF

A GENERAL CUBIC FUNCTIONAL EQUATION

KIL-WOUNG JUN AND HARK-MAHN KIM

(communicated by Th. Rassias)

Abstract. In this paper, we solve the generalized Hyers-Ulam-Rassias stability problem for a
cubic functional equation f (x + 2y) + f (x− 2y) + 6f (x) = 4f (x + y) + 4f (x− y) in the spirit
of Hyers, Ulam, Rassias and Gǎvruta.

1. Introduction

In 1940, S. M. Ulam [21] raised a question concerning the stability of group
homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(·, ·) . Given
ε > 0 , does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the
inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1 , then there exists a homomorphism
H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1 ?

In other words, we are looking for situations when the homomorphisms are stable,
i.e., if a mapping is almost a homomorphism, then there exists a true homomorphism
near it. The case of approximately additive functions was solved by D. H. Hyers [8] and
generalized by Th. M. Rassias [18]. During the last decades, the stability problems of
several functional equations have been extensively investigated by a number of authors
[2, 10, 15]. The terminology generalized Hyers-Ulam-Rassias stability originates from
these historical backgrounds. These terminologies are also applied to the case of other
functional equations. For more detailed definitions of such terminologies, we can refer
to [9, 11, 19].

The functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y) (1.1)

is related to a symmetric biadditive function ([1], [16]). It is natural that the equation
(1.1) is called a quadratic functional equation. In particular, every solution of the
quadratic equation (1.1) is said to be a quadratic function. It is well known that a
function f between real vector spaces is quadratic if and only if there exists a unique
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symmetric biadditive function B such that f (x) = B(x, x) for all x (see [1], [16]). The
biadditive function B is given by

B(x, y) =
1
4
(f (x + y) − f (x − y)). (1.2)

A stability problem for the quadratic functional equation (1.1) was solved by a lot
of authors [3, 4, 7, 14]. K. W. Jun and Y. H. Lee [13] proved the Hyers-Ulam-Rassias
stability of the pexiderized quadratic equation (1.1).

Now, we investigate the following functional equations, which are quite different
from (1.1),

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 12f (x), (1.3)
f (x + y + z) + f (x + y − z) + 2f (x) + 2f (y) (1.4)

= 2f (x + y) + f (x + z) + f (x − z) + f (y + z) + f (y − z),
f (x + 2y) + f (x − 2y) + 6f (x) = 4f (x + y) + 4f (x − y). (1.5)

Since the function f (x) = cx3 on real field is a solution of the each functional
equation, each equation is naturally called a cubic functional equation and in particular
every solution of the cubic functional equation (1.3) is said to be a cubic function.
Let both E1 and E2 be real vector spaces. The author [17] proved that a function
f : E1 → E2 satisfies the functional equation (1.3) if and only if there exists a function
B : E1 ×E1 ×E1 → E2 such that f (x) = B(x, x, x) for all x ∈ E1, and B is symmetric
for each fixed one variable and additive for each fixed two variables. The function B is
given by

B(x, y, z)=
1
24

[f (x+y+z)+f (x−y−z)−f (x+y−z)−f (x−y+z)] (1.6)

for all x, y, z ∈ E1 .
Also he showed that a function f : E1 → E2 satisfies the functional equation (1.4)

if and only if there exist functions B : E1 ×E1×E1 → E2 , A : E1 → E2 and a constant
c in E2 such that f (x) = B(x, x, x) + A(x) + c for all x ∈ E1, where B is symmetric
for each fixed one variable and additive for each fixed two variables and A is additive.

In this paper, we establish the Hyers-Ulam-Rassias stability problem for the equa-
tion (1.5) under the approximately cubic (quadratic or additive) condition.

2. General solution of Eq. (1.5)

Let R+ denote the set of all nonnegative real numbers and let both E1 and E2 be
real vector spaces throughout this paper.

THEOREM 2.1. A function f : E1 → E2 satisfies the functional equation (1.5)
if and only if there exist functions B : E1 × E1 × E1 → E2 , Q : E1 × E1 → E2 ,
A : E1 → E2 and a constant c in E2 such that f (x) = B(x, x, x) + Q(x, x) + A(x) + c
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for all x ∈ E1, where B is symmetric for each fixed one variable and is additive for
fixed two variables, Q is symmetric biadditive and A is additive.

Proof. We first assume that f is a solution of the functional equation (1.5). If we
put g(x) = f (x) − f (0) , we get g is also a solution of (1.5) and g(0) = 0 . So we
may assume without loss of generality that f is a solution of (1.5) and f (0) = 0 . Let
f e(x) = f (x)+f (−x)

2 , f o(x) = f (x)−f (−x)
2 for all x ∈ E1 . Then f e(0) = 0 = f o(0) , f e is

even and f o is odd. Since f is a solution of (1.5), f e and f o also satisfy the equation
(1.5). Replacing f by f o , y by y+ z in (1.5) and then y by y− z in (1.5), separately,
and then adding the resulting two relations, we have

f o(x+2y+2z)+f o(x+2y−2z)+f o(x−2y+2z)+f o(x−2y−2z)+12f o(x) (2.1)
= 4f o(x+y+z)+4f o(x+y−z)+4f o(x−y+z)+4f o(x−y−z).

Also, by virtue of (1.5), expanding the left hand side of (2.1), we can rewrite (2.1) in
the form

f o(x+y+z)+f o(x+y−z)+f o(x−y+z)+f o(x−y−z)+4f o(x) (2.2)
= 2f o(x+y)+2f o(x−y)+2f o(x+z)+2f o(x−z).

Exchanging x with y in (2.2) and then adding the resulting relation to (2.2), we have

f o(x + y + z) + f o(x + y − z) + 2f o(x) + 2f o(y) (2.3)
= 2f o(x + y) + f o(x + z) + f o(x − z) + f o(y + z) + f o(y − z)

for all x, y ∈ E1. Hence, by Theorem 2.3 [17], f o(x) = B(x, x, x) + A(x) + c for all
x ∈ E1, where c = f (0) , B is symmetric for each fixed one variable and is additive
for fixed two variables, and A is additive.

In turn, since f e satisfies the equation (1.5), we obtain

f e(2x + y) + f e(2x − y) + 6f e(y) = 4f e(x + y) + 4f e(x − y). (2.4)

Replacing x and y by x + y and x − y in (2.4), respectively, we have

f e(3x + y) + f e(x + 3y) + 6f e(x − y) = 16f e(x) + 16f e(y). (2.5)

Putting x + y instead of y in (2.4), one obtains

f e(3x + y) + f e(x − y) + 6f e(x + y) = 4f e(2x + y) + 4f e(y). (2.6)

Interchange x and y in (2.6) to get the relation

f e(x + 3y) + f e(x − y) + 6f e(x + y) = 4f e(2y + x) + 4f e(x). (2.7)

Adding (2.7) to (2.6) and using (2.5), we lead to

12f e(x) + 12f e(y) − 4f e(x − y) + 12f e(x + y) = 4f e(2x + y) + 4f e(2y + x). (2.8)

Replacing y by −y in (2.8) and then adding the resulting relation to (2.8) together
with (2.4), we have

f e(x + y) + f e(x − y) = 2f e(x) + 2f e(y) (2.9)



292 KIL-WOUNG JUN AND HARK-MAHN KIM

for all x, y ∈ E1. Therefore, f e(x) = Q(x, x), where Q is a symmetric biadditive
function. As a result, f (x) = f e(x) + f o(x) = B(x, x, x) + Q(x, x) + A(x) + c for all
x ∈ E1.

Conversely, if there exist functions B : E1 × E1 × E1 → E2, Q : E1 × E1 → E2,
A : E1 → E2 and a constant c such that f (x) = B(x, x, x) + Q(x, x) + A(x) + c for all
x ∈ E1, where A is additive, Q is symmetric biadditive, and B is symmetric for fixed
one variable and is additive for fixed two variables, then it is obvious that f satisfies
the equation (1.5).

3. Stability of Eq. (1.5)

We now investigate the Hyers-Ulam-Rassias stability problem for the equation
(1.5). Thus we find the condition that there exists a true cubic function near a ap-
proximately cubic function. From now on, let X be a real vector space and let Y be
a real Banach space unless we give any specific reference. Let R+ denote the set of
all nonnegative real numbers and N the set of all positive integers. In the following
theorem, the Hyers-Ulam-Rassias stability of (1.5) is proved under the approximately
cubic condition.

THEOREM 3.1. Let φ : X2 → R+ be a function such that

∞∑
i=0

φ(3ix, 3ix)
27i

converges and

lim
n→∞

φ(3nx, 3ny)
27n

= 0

for all x, y ∈ X \ {0}. Suppose that a function f : X → Y satisfies

‖f (x + 2y) + f (x − 2y) + 6f (x) − 4f (x + y) − 4f (x − y)‖ � φ(x, y), (3.1)
‖f (2x) + 8f (−x)‖ � δ (3.2)

for all x, y ∈ X \ {0} and for some δ � 0 . Then there exists a unique cubic function
T : X → Y which satisfies the equation (1.5) and the inequality

‖f (x) − T(x)‖ �
∞∑
i=1

[1
2

( 1
27i

−(−1)i−1

37i

)
φ(3i−1x, 3i−1x) (3.3)

+
1
2

( 1
27i

+
(−1)i−1

37i

)
φ(−3i−1x,−3i−1x)

]
+

2δ+2‖f (0)‖
13

for all x ∈ X . The function T is given by

T(x) = lim
n→∞

f (3nx)
27n

(3.4)
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for all x ∈ X.

Proof. If we replace x, y by 2x, x in (3.1), we have

‖f (4x) + 6f (2x) − 4f (3x) − 4f (x)‖ � φ(2x, x) + ‖f (0)‖ (3.5)

for all x ∈ X \ {0}. Replacing x, y and z by x in (3.1), we get

‖f (3x) + f (−x) + 6f (x) − 4f (2x)‖ � φ(x, x) + 4‖f (0)‖ (3.6)

for all x ∈ X \ {0}. Applying (3.2) to (3.5) and using (3.6), we have

‖f (x) + f (−x)‖ � 1
84

[φ(2x, x) + 4φ(x, x) + 19δ + 17‖f (0)‖] (3.7)

for all x ∈ X \ {0} . Utilizing (3.2) and (3.6), we obtain

‖f (3x) + 6f (x) + 33f (−x)‖ � φ(x, x) + 4δ + 4‖f (0)‖. (3.8)

By substituting −x for x in (3.8), we have

‖f (−3x) + 6f (−x) + 33f (x)‖ � φ(−x,−x) + 4δ + 4‖f (0)‖. (3.9)

We use induction on n ∈ N to prove our next relation:∥∥∥∥f (x)+
1
2

((−1)n−1

39n
− 1

27n

)
f (3nx)+

1
2

( (−1)n−1

39n
+

1
27n

)
f (−3nx)

∥∥∥∥ (3.10)

�
n∑

i=1

[1
2

( 1
27i

− (−1)i−1

39i

)
φ(3i−1x, 3i−1x)+

1
2

( 1
27i

+
(−1)i−1

39i

)
φ(−3i−1x,−3i−1x)

]

+
n∑

i=1

4δ+4‖f (0)‖
27i

for all x ∈ X \ {0}. By (3.8) and (3.9), we get

‖f (x)− 2
351

f (3x)+
11
351

f (−3x)‖ (3.11)

� 2
351

‖−f (3x)−6f (x)−33f (−x)‖+ 11
351

‖f (−3x)+6f (−x)+33f (x)‖

� 2
351

φ(x, x)+
11
351

φ(−x,−x)+
4δ+4‖f (0)‖

27
,

which proves the validity of the inequality (3.10) for n = 1. By using (3.8), (3.9), and
the following relation:

f (x)+
1
2

( (−1)n

39n+1
− 1

27n+1

)
f (3n+1x)+

1
2

( (−1)n

39n+1
+

1
27n+1

)
f (−3n+1x) (3.12)

= f (x)+
1
2

((−1)n−1

39n
− 1

27n

)
f (3nx)+

1
2

( (−1)n−1

39n
+

1
27n

)
f (−3nx)

+
1
2

( (−1)n

39n+1
− 1

27n+1

)
[f (3n+1x)+6f (3nx)+33f (−3nx)]

+
1
2

( (−1)n

39n+1
+

1
27n+1

)
[f (−3n+1x)+6f (−3nx)+33f (3nx)],
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we can easily verify the relation (3.10) for n + 1 .
It follows from (3.10) and (3.7) that∥∥∥∥ f (3nx)

27n
−f (x)

∥∥∥∥ (3.13)

�
n∑

i=1

[1
2

( 1
27i

− (−1)i−1

39i

)
φ(3i−1x, 3i−1x)+

1
2

( 1
27i

+
(−1)i−1

39i

)
φ(−3i−1x,−3i−1x)

]

+
n∑

i=1

4δ+4‖f (0)‖
27i

+
1

168

( 1
27n

+
(−1)n−1

39n

)
[
φ(2 · 3nx, 3nx)+4φ(3nx, 3nx)+19δ+17‖f (0)‖

]

for all x ∈ X \ {0}.
In order to prove convergence of the sequence { f (3nx)

27n }, we show that the sequence
is a Cauchy sequence in Y. By (3.13), we obtain that for n > m > 0 ,∥∥∥∥ f (3nx)

27n
− f (3mx)

27m

∥∥∥∥ =
1

27m

∥∥∥∥ f (3n−m3mx)
27n−m

−f (3mx)
∥∥∥∥ (3.14)

� 1
27m

n−m∑
i=1

[1
2

( 1
27i

− (−1)i−1

39i

)
φ(3m+i−1x, 3m+i−1x)

+
1
2

( 1
27i

+
(−1)i−1

39i

)
φ(−3m+i−1x,−3m+i−1x)

]

+
n−m∑
i=1

4δ+2‖f (0)‖
27m+i

+
1

27m

1
168

( 1
27n−m

+
(−1)n−m−1

39n−m

)
[
φ(2 · 3nx, 3nx)+4φ(3nx, 3nx)+19δ+17‖f (0)‖

]
.

Since the right hand side of the inequality (3.14) tends to 0 as m tends to infinity, the

sequence { f (3nx)
27n } is a Cauchy sequence. Therefore, we may define

T(x) = lim
n→∞ 3−3nf (3nx)

for all x ∈ X. By letting n → ∞ in (3.13), we arrive at the formula (3.3).
To show that T satisfies the equation (1.5), replace x, y by 3nx, 3ny , respectively,

in (3.1) and divide by 27n, then it follows that

27−n‖f (3n(x + 2y)) + f (3n(x − 2y)) + 6f (3nx)
−4f (3n(x + y)) − 4f (3n(x − y))‖ � 27−nφ(3nx, 3ny).

Taking the limit as n → ∞, we find that T satisfies (1.5) for all x, y ∈ X. Obviously,
it follows from (3.2) and (3.7) that T(x) + T(−x) = 0, and T(2x) + 8T(−x) = 0.
These facts and Theorem 2.1 imply that T is a cubic function.

To prove the uniqueness of the cubic function T subject to (3.3), let us assume
that there exists a cubic function S : X → Y which satisfies (1.5) and the inequality
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(3.3). Obviously, we have S(3nx) = 27nS(x) and T(3nx) = 27nT(x) for all x ∈ X and
n ∈ N. Hence it follows from (3.3) that

‖S(x)−T(x)‖ = 27−n‖S(3nx)−T(3nx)‖
� 27−n(‖S(3nx)+f (0)−f (3nx)‖+‖f (3nx)−f (0)−T(3nx)‖)

� 2
27n

∞∑
i=1

[1
2

( 1
27i

−(−1)i−1

39i

)
φ(3n+i−1x, 3n+i−1x)

+
1
2

( 1
27i

+
(−1)i−1

39i

)
φ(−3n+i−1x,−3n+i−1x)

]
+

4δ+4‖f (0)‖
27n13

for all x ∈ X. By letting n → ∞ in the preceding inequality, we immediately find the
uniqueness of T. This completes the proof of the theorem.

From the main Theorem 3.1, we obtain the following corollary concerning the
stability of the equation (1.5).

COROLLARY 3.2. Let X and Y be a real normed space and a Banach space,
respectively, and let ε � 0 , p < 3 be real numbers. Suppose that a function f : X → Y
satisfies

‖f (x+2y)+f (x−2y)+6f (x)−4f (x+y)−4f (x−y)‖ � ε(‖x‖p+‖y‖p), (3.15)
‖f (2x)+8f (−x)‖ � δ

for all x, y ∈ X \ {0} and for some δ � 0 . Then there exists a unique cubic function
T : X → Y which satisfies the equation (1.5) and the inequality

‖f (x) − T(x)‖ � 2ε‖x‖p

27 − 3p
+

2δ + 2‖f (0)‖
13

(3.16)

for all x ∈ X . The function T is given by

T(x) = lim
n→∞

f (3nx)
27n

for all x ∈ X. Further, if for each fixed x ∈ X the mapping t �→ f (tx) from R to Y is
continuous, then T(rx) = r3T(x) for all r ∈ R .

Proof. The conclusion follows from Theorem 3.1. The proof of the last assertion
in the above corollary goes through in the same way as that of [4].

The following corollary is an immediate consequence of Theorem 3.1.

COROLLARY 3.3. Let X and Y be a real normed space and a Banach space,
respectively, and let ε � 0 be a real number. Suppose that a function f : X → Y
satisfies

‖f (x + 2y) + f (x − 2y) + 6f (x) − 4f (x + y) − 4f (x − y)‖ � ε, (3.17)
‖f (2x) + 8f (−x)‖ � δ
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for all x, y ∈ X \ {0} and for some δ � 0 . Then there exists a unique cubic function

T : X → Y defined by T(x) = limn→∞
f (3nx)
27n which satisfies the equation (1.5) and the

inequality

‖f (x) − T(x)‖ � ε + 4δ + 4‖f (0)‖
26

(3.18)

for all x ∈ X. Further, if for each fixed x ∈ X the mapping t �→ f (tx) from R to Y is
continuous, then T(rx) = r3T(x) for all r ∈ R.

In the next part, we investigate the Hyers-Ulam-Rassias stability problem for the
equation (1.5) under the approximately quadratic condition.

THEOREM 3.4. Let φ : X2 → R+ be a function such that

∞∑
i=0

φ(3ix, 3ix)
9i

converges and

lim
n→∞

φ(3nx, 3ny)
9n

= 0

for all x, y ∈ X \ {0}. Suppose that a function f : X → Y satisfies

‖f (x+2y)+f (x−2y)+6f (x)−4f (x+y)−4f (x−y)‖ � φ(x, y), (3.19)
‖f (2x)−4f (−x)‖ � δ (3.20)

for all x, y ∈ X \ {0} and for some δ � 0 . Then there exists a unique quadratic
function Q : X → Y which satisfies the equation (1.5) and the inequality

‖f (x) − Q(x)‖ �
∞∑
i=1

[1
2

( 1
9i

− (−1)i−1

21i

)
φ(3i−1x, 3i−1x) (3.21)

+
1
2

( 1
9i

+
(−1)i−1

21i

)
φ(−3i−1x,−3i−1x)

]
+

δ + ‖f (0)‖
2

for all x ∈ X . The function Q is given by

Q(x) = lim
n→∞

f (3nx)
9n

(3.22)

for all x ∈ X .

Proof. Similarly, repeating the process from (3.5) to (3.7), we have

‖f (x) − f (−x)‖ � 1
36

[φ(2x, x) + 4φ(x, x) + 15δ + 17‖f (0)‖] (3.23)

for all x ∈ X \ {0} . Utilizing (3.20) and (3.6), we obtain

‖f (3x) + 6f (x) − 15f (−x)‖ � φ(x, x) + 4δ + 4‖f (0)‖. (3.24)
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By substituting −x for x in (3.24), we have

‖f (−3x) + 6f (−x) − 15f (x)‖ � φ(−x,−x) + 4δ + 4‖f (0)‖. (3.25)

We use induction on n to obtain our next relation:∥∥∥∥f (x)+
1
2

(
− 1

9n
+

(−1)n−1

21n

)
f (3nx)+

1
2

(
− 1

9n
− (−1)n−1

21n

)
f (−3nx)

∥∥∥∥ (3.26)

�
n∑

i=1

[1
2

( 1
9i
− (−1)i−1

21i

)
φ(3i−1x, 3i−1x)

+
1
2

( 1
9i

+
(−1)i−1

21i

)
φ(−3i−1x,−3i−1x)

]
+

n∑
i=1

4δ+4‖f (0)‖
9i

for all x ∈ X \ {0} .
It follows from (3.26) and (3.23) that

∥∥∥∥f (x)− f (3nx)
9n

∥∥∥∥ �
n∑

i=1

[1
2

( 1
9i
−(−1)i−1

21i

)
φ(3i−1x, 3i−1x) (3.27)

+
1
2

( 1
9i

+
(−1)i−1

21i

)
φ(−3i−1x,−3i−1x)

]

+
n∑

i=1

4δ+4‖f (0)‖
9i

+
1
72

( 1
9n

+
(−1)n−1

21n

)
[
φ(2 · 3nx, 3nx)+4φ(3nx, 3nx)+15δ+17‖f (0)‖

]

for all x ∈ X \ {0}. Now, using the same argument as that of Theorem 3.1, we obtain

that there exists a unique function Q : X → Y , defined by Q(x) = limn→∞
f (3nx)

9n ,
which satisfies the equation (1.5) and the inequality (3.21). It is clear from (3.20) and
(3.23) that Q(x) − Q(−x) = 0, and Q(2x) − 4Q(−x) = 0. These facts and Theorem
2.1 imply that the function Q is additive. This completes the proof.

From the main theorem 3.4, we obtain the following corollary concerning the
stability of the equation (1.5).

COROLLARY 3.5. Let X and Y be a real normed space and a Banach space,
respectively, and let ε � 0 , p < 2 be real numbers. Suppose that a function f : X → Y
satisfies

‖f (x+2y)+f (x−2y)+6f (x)−4f (x+y)−4f (x−y)‖ � ε(‖x‖p+‖y‖p), (3.28)
‖f (2x)−4f (−x)‖ � δ

for all x, y ∈ X \ {0} and for some δ � 0 . Then there exists a unique quadratic

function Q : X → Y, given by Q(x) = limn→∞
f (3nx)

9n which satisfies the equation (1.5)
and the inequality

‖f (x) − Q(x)‖ � 2ε‖x‖p

9 − 3p
+

δ + ‖f (0)‖
2

(3.29)
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for all x ∈ X. Further, if for each fixed x ∈ X the mapping t �→ f (tx) from R to Y is
continuous, then Q(rx) = r2Q(x) for all r ∈ R .

The proof of the last assertion in the above corollary goes through in the same way
as that of [8, 18].

The following corollary is an immediate consequence of Theorem 3.4.

COROLLARY 3.6. Let X and Y be a real normed space and a Banach space,
respectively, and let ε � 0 be a real number. Suppose that a function f : X → Y
satisfies

‖f (x + 2y) + f (x − 2y) + 6f (x) − 4f (x + y) − 4f (x − y)‖ � ε, (3.30)
‖f (2x) − 4f (−x)‖ � δ

for all x, y ∈ X \ {0} and for some δ � 0 . Then there exists a unique quadratic

function Q : X → Y defined by Q(x) = limn→∞
f (3nx)

9n which satisfies the equation
(1.5) and the inequality

‖f (x) − Q(x)‖ � ε + 4δ + 4‖f (0)‖
8

(3.31)

for all x ∈ X. Further, if for each fixed x ∈ X the mapping t �→ f (tx) from R to Y is
continuous, then Q(rx) = r2Q(x) for all r ∈ R .

In the next part, we investigate the Hyers-Ulam-Rassias stability problem for the
equation (1.5) under the approximately odd condition.

THEOREM 3.7. Let φ : X2 → R
+ be a function such that

∞∑
i=0

φ(3ix, 3ix)
3i

converges and

lim
n→∞

φ(3nx, 3ny)
3n

= 0

for all x, y ∈ X \ {0} . Suppose that a function f : X → Y satisfies

‖f (x+2y)+f (x−2y)+6f (x)−4f (x+y)−4f (x−y)‖ � φ(x, y), (3.32)
‖f (2x)+2f (−x)‖ � δ (3.33)

for all x, y ∈ X \ {0} and for some δ � 0 . Then there exists a unique additive function
A : X → Y which satisfies the equation (1.5) and the inequality

‖f (x)−A(x)‖ (3.34)

�
∞∑
i=1

[1
2

( 1
3i
− (−1)i−1

15i

)
φ(3i−1x, 3i−1x)+

1
2

( 1
3i

+
(−1)i−1

15i

)
φ(−3i−1x,−3i−1x)

]

+2δ+2‖f (0)‖
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for all x ∈ X . The function A is given by

A(x) = lim
n→∞

f (3nx)
3n

(3.35)

for all x ∈ X.

Proof. Similarly, repeating the process from (3.5) to (3.7), we have

‖f (x) + f (−x)‖ � 1
24

[φ(2x, x) + 4φ(x, x) + 13δ + 17‖f (0)‖] (3.36)

for all x ∈ X \ {0} . Utilizing (3.33) and (3.6), we obtain

‖f (3x) + 6f (x) + 9f (−x)‖ � φ(x, x) + 4δ + 4‖f (0)‖. (3.37)

By substituting −x for x in (3.37), we have

‖f (−3x) + 6f (−x) + 9f (x)‖ � φ(−x,−x) + 4δ + 4‖f (0)‖. (3.38)

We use induction on n to obtain our next relation:∥∥∥∥f (x) +
1
2

((−1)n−1

15n
− 1

3n

)
f (3nx) +

1
2

( (−1)n−1

15n
+

1
3n

)
f (−3nx)

∥∥∥∥ (3.39)

�
n∑

i=1

[1
2

( 1
3i

− (−1)i−1

15i

)
φ(3i−1x, 3i−1x)

+
1
2

( 1
3i

+
(−1)i−1

15i

)
φ(−3i−1x,−3i−1x)

]
+

n∑
i=1

4δ + 4‖f (0)‖
3i

for all x ∈ X \ {0} .
It follows from (3.39) and (3.36) that∥∥∥∥f (x)− f (3nx)

3n

∥∥∥∥ (3.40)

�
n∑

i=1

[1
2

( 1
3i
−(−1)i−1

15i

)
φ(3i−1x, 3i−1x)+

1
2

( 1
3i

+
(−1)i−1

15i

)
φ(−3i−1x,−3i−1x)

]

+
n∑

i=1

4δ+4‖f (0)‖
3i

+
1
48

( 1
3n

+
(−1)n−1

15n

)
[
φ(2 · 3nx, 3nx)+4φ(3nx, 3nx)+13δ+17‖f (0)‖

]

for all x ∈ X \ {0}. Now, using the same argument as that of Theorem 3.1, we obtain

that there exists a unique function A : X → Y , defined by A(x) = limn→∞
f (3nx)

3n ,
which satisfies the equation (1.5) and the inequality (3.34). It is clear from (3.33) and
(3.36) that A(x)+A(−x) = 0, and A(2x)+2A(−x) = 0. These facts and Theorem 2.1
imply that the function A is additive. This completes the proof.

From the main Theorem 3.7, we obtain the following corollary concerning the
stability of the equation (1.5).
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COROLLARY 3.8. Let X and Y be a real normed space and a Banach space,
respectively, and let ε � 0 , p < 1 be real numbers. Suppose that a function f : X → Y
satisfies

‖f (x + 2y)+f (x−2y)+6f (x)−4f (x+y)−4f (x−y)‖ � ε(‖x‖p+‖y‖p), (3.41)
‖f (2x)+2f (−x)‖ � δ

for all x, y ∈ X \ {0} and for some δ � 0 . Then there exists a unique additive function

A : X → Y, given by A(x) = limn→∞
f (3nx)

3n which satisfies the equation (1.5) and the
inequality

‖f (x) − A(x)‖ � 2ε‖x‖p

3 − 3p
+ 2δ + 2‖f (0)‖ (3.42)

for all x ∈ X. Further, if for each fixed x ∈ X the mapping t �→ f (tx) from R to Y is
continuous, then A(rx) = rA(x) for all r ∈ R .

The proof of the last assertion in the above corollary goes through in the same way
as that of [8, 18].

The following corollary is an immediate consequence of Theorem 3.7.

COROLLARY 3.9. Let X and Y be a real normed space and a Banach space,
respectively, and let ε � 0 be a real number. Suppose that a function f : X → Y
satisfies

‖f (x + 2y) + f (x − 2y) + 6f (x) − 4f (x + y) − 4f (x − y)‖ � ε, (3.43)
‖f (2x) + 2f (−x)‖ � δ

for all x, y ∈ X \ {0} and for some δ � 0 . Then there exists a unique additive function

A : X → Y defined by A(x) = limn→∞
f (3nx)

3n which satisfies the equation (1.5) and the
inequality

‖f (x) − A(x)‖ � ε
2

+ 2δ + 2‖f (0)‖ (3.44)

for all x ∈ X. Further, if for each fixed x ∈ X the mapping t �→ f (tx) from R to Y is
continuous, then A(rx) = rA(x) for all r ∈ R .

In the last part of this paper, let B be a unital Banach algebra with norm | · | , and
let BB1 and BB2 be left Banach B -modules with norms ‖ · ‖ and || · || , respectively.
A cubic function T : BB1 → BB2 is called B -cubic if

T(ax) = a3T(x), ∀a ∈ B, ∀x ∈ BB1.

COROLLARY 3.10. Let ε � 0 , p < 3 be real numbers. Suppose that a function
f : BB1 → BB2 satisfies

||f (αx+2αy)+f (αx−2αy)+6f (αx)−4α3f (x+y)−4α3f (x−y)|| � ε(‖x‖p+‖y‖p),

||f (2αx)+8α3f (−x)|| � δ
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for all α ∈ B (|α| = 1), for some δ � 0 and for all x, y ∈ BB1 \ {0} , and f (tx)
is continuous in t ∈ R for each fixed x ∈ BB1 . Then there exists a unique B -cubic
function T : BB1 → BB2, defined by (3.4), which satisfies the equation (1.5) and the
inequality (3.16).

Proof. By Corollary 3.2, it follows from the inequality of the statement for α =
1 that there exists a unique cubic function T : BB1 → BB2, defined by T(x) =
limn→∞

f (3nx)
27n , which satisfies the equation (1.5) and the inequality (3.16). Under the

assumption that f (tx) is continuous in t ∈ R for each fixed x ∈ BB1 , by the same
reasoning as the proof of [4], the cubic function T : BB1 → BB2 satisfies

T(tx) = t3T(x), ∀x ∈ BB1, ∀t ∈ R.

That is, T is R -cubic. For each fixed α ∈ B (|α| = 1) , we have T(αx) = α3T(x)
for all x ∈ BB1. The last relation is also true for α = 0. Since T is R -cubic and
T(αx) = α3T(x) for each element α ∈ B(|α| = 1) , for each element a ∈ B (a �= 0)
a = |a| · a

|a| and

T(ax) = T

(
|a| · a

|a|x
)

= |a|3 · T
(

a
|a|x

)
= |a|3 · a3

|a|3 · T(x)

= a3T(x), ∀a ∈ B(a �= 0), ∀x ∈ BB1.

So the unique R -cubic function T : BB1 → BB2 is also B -cubic, as desired. This
completes the proof of the corollary.

Since C is a Banach algebra, the complexBanach spaces E1 and E2 are considered
as Banach modules over C . Thus we have the following corollary.

COROLLARY 3.11. Let E1 and E2 be Banach spaces over the complex field C ,
and let ε � 0 be a real number. Suppose that a function f : E1 → E2 satisfies

‖f (αx+2αy)+f (αx−2αy)+6f (αx)−4α3f (x+y)−4α3f (x−y)‖ � ε,
‖f (2αx)+8α3f (−x)‖ � δ

for all α ∈ C with |α| = 1, for some δ � 0 and for all x, y ∈ E1 \ {0} , and f (tx)
is continuous in t ∈ R for each fixed x ∈ E1 . Then there exists a unique C -cubic
function T : E1 → E2 which satisfies the equation (1.5) and the inequality

‖f (x) − T(x)‖ � ε + 4δ + 4‖f (0)‖
26

for all x ∈ E1 .

Similarly, we obtain the alternative results of Corollary 3.10 and Corollary 3.11
for the approximately quadratic (or additive) case.
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