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ON THE HYERS-ULAM-RASSIAS STABILITY OF
A GENERAL CUBIC FUNCTIONAL EQUATION

KIL-WOUNG JUN AND HARK-MAHN KiM

(communicated by Th. Rassias)

Abstract. In this paper, we solve the generalized Hyers-Ulam-Rassias stability problem for a
cubic functional equation f (x + 2y) +f (x — 2y) + 6f (x) = 4f (x +y) + 4f (x — y) in the spirit
of Hyers, Ulam, Rassias and Gavruta.

1. Introduction

In 1940, S. M. Ulam [21] raised a question concerning the stability of group
homomorphisms:

Let Gy be a group and let G, be a metric group with the metric d(-,-). Given
€ > 0, does there exist a & > 0 such that if a function h : G — G; satisfies the
inequality d(h(xy), h(x)h(y)) < 6 forall x,y € Gy, then there exists a homomorphism
H: G, — Gy with d(h(x),H(x)) < € forall x € G, ?

In other words, we are looking for situations when the homomorphisms are stable,
i.e., if a mapping is almost a homomorphism, then there exists a true homomorphism
near it. The case of approximately additive functions was solved by D. H. Hyers [8] and
generalized by Th. M. Rassias [18]. During the last decades, the stability problems of
several functional equations have been extensively investigated by a number of authors
[2, 10, 15]. The terminology generalized Hyers-Ulam-Rassias stability originates from
these historical backgrounds. These terminologies are also applied to the case of other
functional equations. For more detailed definitions of such terminologies, we can refer
to [9, 11, 19].

The functional equation

flx+y) +f(x—y) =2f(x) +2f () (1.1)

is related to a symmetric biadditive function ([1], [16]). It is natural that the equation
(1.1) is called a quadratic functional equation. In particular, every solution of the
quadratic equation (1.1) is said to be a quadratic function. It is well known that a
function f between real vector spaces is quadratic if and only if there exists a unique
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symmetric biadditive function B such that f (x) = B(x, x) forall x (see [1], [16]). The
biadditive function B is given by

B(x,y) = 3 (+2) (=) (1.2

A stability problem for the quadratic functional equation (1.1) was solved by a lot
of authors [3, 4, 7, 14]. K. W. Jun and Y. H. Lee [13] proved the Hyers-Ulam-Rassias
stability of the pexiderized quadratic equation (1.1).

Now, we investigate the following functional equations, which are quite different
from (1.1),

FQ@x+y)+f(2x—y) =2f (x +y) +2f (x —y) + 12f (x), (1.3)

fx+y+2) +fx+y—2) +2f(x) +2f () (1.4)
=2f(x+y)+f(x+2) +f(x—2) +f(y+2) +f—2),

Fx+2y) +f(x = 2y) +6f (x) = 4f (x +y) +4f (x — y). (L5)

Since the function f(x) = cx® on real field is a solution of the each functional

equation, each equation is naturally called a cubic functional equation and in particular
every solution of the cubic functional equation (1.3) is said to be a cubic function.
Let both E; and E, be real vector spaces. The author [17] proved that a function
f : E1 — E; satisfies the functional equation (1.3) if and only if there exists a function
B:E; X E; X E;y — E; suchthat f (x) = B(x,x,x) forall x € E;, and B is symmetric
for each fixed one variable and additive for each fixed two variables. The function B is
given by

Bx,y, =55/ -+ + (=0~ (ehy—d)~f imvtd)] (16)

forall x, y, z€ E;.

Also he showed that a function f : E; — E; satisfies the functional equation (1.4)
if and only if there exist functions B : E} X Ey X E} — E,, A : E; — E; and a constant
¢ in E; such that f (x) = B(x,x,x) + A(x) 4+ ¢ forall x € E;, where B is symmetric
for each fixed one variable and additive for each fixed two variables and A is additive.

In this paper, we establish the Hyers-Ulam-Rassias stability problem for the equa-
tion (1.5) under the approximately cubic (quadratic or additive) condition.

2. General solution of Eq. (1.5)

Let R* denote the set of all nonnegative real numbers and let both E; and E, be
real vector spaces throughout this paper.

THEOREM 2.1. A function f : E\ — E, satisfies the functional equation (1.5)
if and only if there exist functions B : Ey X E; X Ey — E;, Q : E\ X E; — E,
A: Ey — E; and a constant ¢ in E; such that f (x) = B(x,x,x) + O(x,x) + A(x) + ¢
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forall x € Ey, where B is symmetric for each fixed one variable and is additive for
fixed two variables, Q is symmetric biadditive and A is additive.

Proof. We first assume that f is a solution of the functional equation (1.5). If we
put g(x) = f(x) —f(0), we get g is also a solution of (1.5) and g(0) = 0. So we
may assume without loss of generality that f is a solution of (1.5) and f(0) = 0. Let
folx) = LD Fp () = L9 forall x € Ey . Then £,(0) = 0 = £,(0), f. is
even and f, is odd. Since f is a solution of (1.5), f. and f, also satisfy the equation
(1.5). Replacing f by f,, y by y+z in (1.5) and then y by y — z in (1.5), separately,
and then adding the resulting two relations, we have

Fo(x42y+22)+f o (x42y—22) +f o (x—2y+22)+f, (x—2y—22)+12f,(x)  (2.1)
= 4fu (-x+y+Z)+4fo (x+y_Z) +4fo (x_y+Z)+4fu (-x_y_Z)~
Also, by virtue of (1.5), expanding the left hand side of (2.1), we can rewrite (2.1) in
the form
Folxy+2)+fo(x+y—2)+fo (x—y+2) +fo (x—y—2) +4fo (x) (2.2)
= 2 o (x+3)+2f o (x=y) +2o (x+2) +2f o (x—2).

Exchanging x with y in (2.2) and then adding the resulting relation to (2.2), we have

fo(x+y+2) +folx+y—2) +2fo(x) +2f,(y) (2.3)

=2o(x +y) +folx +2) +folx =2) + oy +2) +foly = 2)
for all x, y € E;. Hence, by Theorem 2.3 [17], f,(x) = B(x,x,x) + A(x) + ¢ for all
x € E;, where ¢ = f(0), B is symmetric for each fixed one variable and is additive

for fixed two variables, and A is additive.
In turn, since f, satisfies the equation (1.5), we obtain

fe(2x 4+ ) +fe(2x = y) + 6f(y) = 4fe(x + ) + dfelx — ). (2.4)
Replacing x and y by x +y and x — y in (2.4), respectively, we have
fe(Bx4y) +felx +3y) + 6fe(x — y) = 16fe(x) + 16fc(y). (2:5)
Putting x + y instead of y in (2.4), one obtains
FeBx+y) +felx —y) +6fe(x +y) = 4fe(2x +y) + 47 (). (2.6)
Interchange x and y in (2.6) to get the relation
fe(x+3y) +fe(x —y) + 6fe(x +y) = 4fe(2y +x) + 4fe(x). (2.7)

Adding (2.7) to (2.6) and using (2.5), we lead to

12fe(x) +12fe(y) = 4fe(x — y) + 12fe(x + y) = 4 (2x +y) + 4f.(2y + x). (2.8)

Replacing y by —y in (2.8) and then adding the resulting relation to (2.8) together
with (2.4), we have

fe(x+y) +fe(x_y) :2fe(x)+2fe(y) (29)
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for all x, y € E;. Therefore, f.(x) = Q(x,x), where Q is a symmetric biadditive
function. As a result, f(x) = f.(x) + fo(x) = B(x,x,x) + Q(x,x) + A(x) + ¢ for all
x e E.

Conversely, if there exist functions B : E; X E; X E; — E», Q: Ey X E; — E;,
A : E; — E; and a constant ¢ such that f (x) = B(x,x,x) + Q(x,x) + A(x) + ¢ for all
x € E;, where A is additive, Q is symmetric biadditive, and B is symmetric for fixed
one variable and is additive for fixed two variables, then it is obvious that f satisfies
the equation (1.5).

3. Stability of Eq. (1.5)

We now investigate the Hyers-Ulam-Rassias stability problem for the equation
(1.5). Thus we find the condition that there exists a true cubic function near a ap-
proximately cubic function. From now on, let X be a real vector space and let ¥ be
a real Banach space unless we give any specific reference. Let R* denote the set of
all nonnegative real numbers and N the set of all positive integers. In the following
theorem, the Hyers-Ulam-Rassias stability of (1.5) is proved under the approximately
cubic condition.

THEOREM 3.1. Let ¢ : X*> — R* be a function such that
i 0 (3'x, 3'x)
; 27
i=0
converges and

fim 0(3"x,3"y)

=0
Nn— 00 27}1

Sorall x,y € X\ {0}. Suppose that a function f : X — Y satisfies
If(r+2y) +f(x=2y) +6f (x) —4f (x +y) =4 (x—y)|| < o(xy), (3.1)
IIf (2x) +8f (—x)|| < O 3.2

SJorall x,y € X\ {0} and for some 8§ > 0. Then there exists a unique cubic function
T : X — Y which satisfies the equation (1.5) and the inequality

oo

—1)i—1 . .
10—l <3 [3 (55 g )95 3 ) (33)
1,1 (=1)! i i 25+2([f (0)]
(gt g )03 e 3| =

forall x € X. The function T is given by

() = fim £

3.4
Jim s (3:4)
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forall x € X.
Proof. If we replace x,y by 2x,x in (3.1), we have
[If (4x) + 6f (2x) — 4f (3x) — 4f (0)[| < 9(2x,x) + [If (0)]| (3.5)
forall x € X \ {0}. Replacing x,y and z by x in (3.1), we get
If (3x) +f (=x) + 6f (x) — 4f (20)| < 9(x, x) + 4/ (0] (3.6)
forall x € X\ {0}. Applying (3.2) to (3.5) and using (3.6), we have
I () +/ (=x)]| < 8—14[¢(2x,X) +49(x,x) + 196 + 17[|f (0) ] (3.7)
forall x € X\ {0}. Utilizing (3.2) and (3.6), we obtain
I (3x) + 6f (x) + 33f (—x)l| < 9(x, %) +45 +4[|£ (0)]]. (3.8)
By substituting —x for x in (3.8), we have
1 (=3%) + 6f (—x) + 33 (0| < O(—x, —x) + 45 + 4[|f (0)]]. (3.9)
We use induction on n € N to prove our next relation:
" Dy (S Do (3.10)
2 39” 271 2 391 27n '
1 i—1 ) ) 1 1 -1 i—1 ) )
ER ot
—~ 45+4|f (0)]
i=1
forall x € X\ {0}. By (3.8) and (3.9), we get
Ir e )—351 /(30 + 332/ (-39 G.11)
EII —f (3x)—=6f (x)=33f (—x )H+ﬁllf( 3x)+6f (—x)+33f (%) |
11 4541l ()|l
3514)( Xt ey (=% =)+ —— =,

which proves the validity of the inequality (3.10) for n = 1. By using (3.8), (3.9), and
the following relation:

1 gntly — l)n 1 n+l
f (x)+ ( 39;1+1 27n+1 ) ( 39n+1 + 27n+1 )f (_3 x) (312)

T (o S PYCTR Y (S P Y O
1

39n 27

(3 = 21 27,1”1 ) [ (3" 1x) +6f (3"x)+33f (—3"x)]
)"

(— 1
39n+1 + 7n+1

Jr
+ VI (=37 1x)+6f (—3"0)+33f (3],

i
i
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we can easily verify the relation (3.10) for n+ 1.
It follows from (3.10) and (3.7) that

f 3}1
27n

(x)H (3.13)

\Z[ (27’ 39)j_1)¢(3i_1x’ 3i_1x)+% (%+ (_319):_1)¢(—3i_1x, —31y)

PO, 1L 1

27 168 27"+ 39n

i=1
[¢(2 37, 3"x) +4¢(3"x, 3"x)+196+17uf(0)||}

forall x € X\ {0}.

In order to prove convergence of the sequence {f > } we show that the sequence
is a Cauchy sequence in Y. By (3.13), we obtain that for n > m > 0,

£G% @M 133
27n 27m 27m 27n—m

f(3’”x)H (3.14)
LA L (SN

< i m+i m-+i

\27'?12[2(271' 397 )¢(3 x, 3 )

= 45R2|F ()] 1 1 ( 1 (71)"*’"*1)
+Z 27m+i +2’7171@ 2 n—m 39n—m

[¢(2 3, 3"x) 440 (3", 3"x)+ 198 +17|f (0) ||} .

Since the right hand side of the inequality (3.14) tends to 0 as m tends to infinity, the

f
27n

sequence {: } is a Cauchy sequence. Therefore, we may define

T(x) = lim 373" (3"x)
forall x € X. By letting n — oo in (3.13), we arrive at the formula (3.3).
To show that T satisfies the equation (1.5), replace x,y by 3"x, 3"y, respectively,
in (3.1) and divide by 27", then it follows that

277"f (3"(x + 2y)) +f (3"(x — 2y)) + 6f (3"x)
—4f (3"(x+)) — 4 (3"(x — )l <277"9(3"x,3"y).

Taking the limit as n — oo, we find that T satisfies (1.5) for all x,y € X. Obviously,
it follows from (3.2) and (3.7) that T(x) + T(—x) = 0, and T(2x) + 8T(—x) = 0.
These facts and Theorem 2.1 imply that T is a cubic function.

To prove the uniqueness of the cubic function T subject to (3.3), let us assume
that there exists a cubic function S : X — Y which satisfies (1.5) and the inequality
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(3.3). Obviously, we have S(3"x) = 27"S(x) and T(3"x) = 27"T(x) forall x € X and
n € N. Hence it follows from (3.3) that
IS =T = 277"[S(3")-TE"Y)|
277" (1S(3"0) 47 (0)=f "9 |+[If (3"x)=f (0) =T (3" X))
2 <yl (=t ni—1, anti—1
27 2 [E(ﬁ 391 JoEm 3y

i=

L EDTY iy iety] SO

) 27713

N

/A

27 39/

for all x € X. By letting n — oo in the preceding inequality, we immediately find the
uniqueness of 7. This completes the proof of the theorem.

From the main Theorem 3.1, we obtain the following corollary concerning the
stability of the equation (1.5).

COROLLARY 3.2. Let X and Y be a real normed space and a Banach space,
respectively, andlet € > 0, p < 3 be real numbers. Suppose that a functionf : X — Y
satisfies

I (+29)Hf (r—25)+6f (x)—4f (r-49)—4f ()| < e(lxlP+IDIP),  (3.15)
IF 2x)+8F (~2)]| < 8

Sorall x,y € X\ {0} and for some 6 > 0. Then there exists a unique cubic function
T : X — Y which satisfies the equation (1.5) and the inequality

2efldlP 28 + 2|lF (O)]

IF () = T < o ms <

(3.16)

forall x € X. The function T is given by

for all x € X. Further, if for each fixed x € X the mapping t — f (tx) from R to Y is
continuous, then T(rx) = r*T(x) forall r € R.

Proof. The conclusion follows from Theorem 3.1. The proof of the last assertion
in the above corollary goes through in the same way as that of [4].

The following corollary is an immediate consequence of Theorem 3.1.

COROLLARY 3.3. Let X and Y be a real normed space and a Banach space,
respectively, and let € > 0 be a real number. Suppose that a function f : X — Y
satisfies

I (e +2y) +f (x = 2y) + 6f (x) —4f (x +) — 4f (x = y)
[If (2x) + 8f (=)l

, (3.17)

< e
< 0
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Jorall x,y € X\ {0} and for some 6 > 0. Then there exists a unique cubic function
T:X — Y definedby T(x) = lim,_, f(;% which satisfies the equation (1.5) and the

inequality

I () — 7)) < AT (3.18)

Sorall x € X. Further, if for each fixed x € X the mapping t — f (tx) from R to Y is
continuous, then T(rx) = r*T(x) forall r € R.

In the next part, we investigate the Hyers-Ulam-Rassias stability problem for the
equation (1.5) under the approximately quadratic condition.

THEOREM 3.4. Let ¢ : X*> — R* be a function such that
i #(3x,3'x)
, 9i
i=0

converges and

fim 0(3"x,3"y)

n— o0 on

=0

Sorall x,y € X\ {0}. Suppose that a function f : X — Y satisfies

1 (e+-2y) +f (x=29)+6f (x) —=4f (x+y)—4f (x—)| < 0(x,), (3.19)
If (2x)—4f (x| < & (3.20)

Sor all x,y € X\ {0} and for some 6 > 0. Then there exists a unique quadratic
function Q : X — Y which satisfies the equation (1.5) and the inequality

e -owl < X (e - S

i=

9 21

)¢(3f*1x, 31y) (3.21)

1,1 (=1t i i S+ |IF )
+ (g + o 3 [

forall x € X. The function Q is given by

0(x) = tim L8 (3.22)

n— o0 on

forall x € X.

Proof. Similarly, repeating the process from (3.5) to (3.7), we have

If () =f (=x)|| < %W(Zx,x) +49(x,x) + 1556 + 17]|f (0) ] (3.23)

forall x € X\ {0}. Utilizing (3.20) and (3.6), we obtain
IF (3x) + 6f (x) = 15/ (—x)[| < 9(x, %) + 45 + 4[|f (0)]]. (3.24)
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By substituting —x for x in (3.24), we have

I (=3x) + 6f (—x) — 15/ (x)[| < ¢(—x, —x) + 45 + 4[|f (0)]. (3.25)

We use induction on 7 to obtain our next relation:

oSy Sy o
—qyi! o
S Z [ ( YT )¢(3l 537
LA ED g g g 3 0
i=1
forall x € X\ {0}.
It follows from (3.26) and (3.23) that
o] ¢ SRS e
i=1
A o
P Bl Lo oy

i=1
[¢(2 3%, 3"x)+40 (3", 3"x)+156+17uf(0)||}

forall x € X \ {0}. Now, using the same argument as that of Theorem 3.1, we obtain
that there exists a unique function Q : X — Y, defined by Q(x) = lim,_, ! (;Zx>,
which satisfies the equation (1.5) and the inequality (3.21). It is clear from (3.20) and
(3.23) that Q(x) — Q(—x) =0, and Q(2x) — 4Q(—x) = 0. These facts and Theorem

2.1 imply that the function Q is additive. This completes the proof.

From the main theorem 3.4, we obtain the following corollary concerning the
stability of the equation (1.5).

COROLLARY 3.5. Let X and Y be a real normed space and a Banach space,
respectively, andlet € > 0, p < 2 be real numbers. Suppose that a functionf : X — Y
satisfies

I (e42y)4f (x=2y)+6f (x)—4f (x+y)—4f (x—=y)|| < e(llxl"+[y[IP),  (3.28)
If (26)=4f (—x)|| < &
Sor all x,y € X\ {0} and for some 6 > 0. Then there exists a unique quadratic
Sunction Q : X — Y, given by Q(x) = lim,—, A nx> which satisfies the equation (1.5)
and the inequality

2eljxll” 8+ [F(O)]

If () =Ml < 5=, 5 (3.29)



298 KIL-WOUNG JUN AND HARK-MAHN KIM

Sorall x € X. Further, if for each fixed x € X the mapping t — f (tx) from R to Y is
continuous, then Q(rx) = r*Q(x) forall r € R.

The proof of the last assertion in the above corollary goes through in the same way
as that of [8, 18].
The following corollary is an immediate consequence of Theorem 3.4.

COROLLARY 3.6. Let X and Y be a real normed space and a Banach space,
respectively, and let € > 0 be a real number. Suppose that a function f : X — Y
satisfies

I (e 4 2y) +f (x = 29) + 6f (x) —4f (x + ) = 4f (x = y) , (3.30)

< e
If (2x) =4f (=2l < &

Sor all x,y € X\ {0} and for some 6 > 0. Then there exists a unique quadratic
function Q : X — Y defined by Q(x) = lim,_o0 L (;nx) which satisfies the equation
(1.5) and the inequality

1) — o)) < S AN (331)

forall x € X. Further, if for each fixed x € X the mapping t — f (tx) from R to Y is
continuous, then Q(rx) = r*Q(x) forall r € R.

In the next part, we investigate the Hyers-Ulam-Rassias stability problem for the
equation (1.5) under the approximately odd condition.

THEOREM 3.7. Let ¢ : X*> — R* be a function such that

i(]) x3’

i=

converges and

3" 3}1
lim 0(3"x,3"y)

n— o0 3n

=0

SJorall x,y € X\ {0}. Suppose that a function f : X — Y satisfies

If (e-29) +f (x=2y)+6f (x) —4f (x+y)—4f (x=y)|| <

< o(x,y),  (3.32)
If (2x)+2f (—x)I| < &

(3.33)

Sorall x,y € X\ {0} and for some & > 0. Then there exists a unique additive function
A : X — Y which satisfies the equation (1.5) and the inequality

IF (x)—A )| (3.34)

l‘*

\Z{ (_"7 15 1)¢(3i71x’3i71x)+%(%+(7115)571)¢(—3"*1x,szx)}
Jr25+2|lf( )l
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forall x € X. The function A is given by

A(x) = lim ! (izx) (3.35)
forall x € X.
Proof. Similarly, repeating the process from (3.5) to (3.7), we have
If () +f (=x)]| < %W(%J) +49(x,x) + 136 + 17]/£ (0)|]] (3.36)
forall x € X \ {0}. Utilizing (3.33) and (3.6), we obtain
[1f (3x) + 6f (x) + 9 (=x)|| < ¢(x,x) +45 + 4[f (0)]. (3.37)
By substituting —x for x in (3.37), we have
IF (=3x) + 6f (—x) + 9f (¥)[| < ¢(—x, —x) + 48 + 4[|f (0)]|. (3.38)

We use induction on 7 to obtain our next relation:

P(x) + %((7115):71 = 3—1,,)f(3”x) + %((*115):71 + 3—1")f(3"x)H (3.39)
<S5 G ey

1,1 (=1)~! i i 46 +4[If (0)]]
a3+ s el e lxﬂ*;ﬁ

forall x € X\ {0}.
It follows from (3.39) and (3.36) that

o1

< Z [1 ( 1 (_1)i71)¢(3i71x7 3i—1x)+l(i+(_1)i71)¢(_3i71x7 31y

(3.40)

- 2\3i 15 2\3i 15
" 45+4F ()] 1,1 (=1)t
+Z 3i +E(37+ 157 )

i=1

{¢(2 37y, 3) 149 (3", 3"x)+135+17\[f(0)||}

forall x € X \ {0}. Now, using the same argument as that of Theorem 3.1, we obtain

that there exists a unique function A : X — Y, defined by A(x) = lim,_ ! (§’:X>,
which satisfies the equation (1.5) and the inequality (3.34). It is clear from (3.33) and
(3.36) that A(x)+A(—x) = 0, and A(2x)+2A(—x) = 0. These facts and Theorem 2.1

imply that the function A is additive. This completes the proof.

From the main Theorem 3.7, we obtain the following corollary concerning the
stability of the equation (1.5).
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COROLLARY 3.8. Let X and Y be a real normed space and a Banach space,
respectively, andlet € > 0, p < 1 be real numbers. Suppose that a functionf : X — Y
satisfies

If (x + 2y)+f (x=2y)+6f (x) —4f (x+y)—4f (x=y)[| < e(llxl"+y["),  (3:41)
If 2x)+2f (x| < &
Sorall x,y € X\ {0} and for some & > 0. Then there exists a unique additive function

A: X — Y, given by A(x) = lim,_, fg:X) which satisfies the equation (1.5) and the
inequality

2¢]|x]1”

If () = AN < 5755 +28 +2[F (0)l] (3.42)

forall x € X. Further, if for each fixed x € X the mapping t — f (tx) from R to Y is
continuous, then A(rx) = rA(x) forall r € R.

The proof of the last assertion in the above corollary goes through in the same way
as that of [8, 18].
The following corollary is an immediate consequence of Theorem 3.7.

COROLLARY 3.9. Let X and Y be a real normed space and a Banach space,
respectively, and let € > 0 be a real number. Suppose that a function f : X — Y
satisfies

I (e 4 2y) +f (x = 29) + 6f (x) —4f (x + ) = 4f (x = y)]

< g (343)
IF (2x) +2f ()| < &

Sorall x,y € X\ {0} and for some & > 0. Then there exists a unique additive function
A:X — Y defined by A(x) = lim,,—, o f(g# which satisfies the equation (1.5) and the
inequality

If () =AM < ; +26 4+ 2[[F (0] (3.44)

forall x € X. Further, if for each fixed x € X the mapping t — f (tx) from R to Y is
continuous, then A(rx) = rA(x) forall r € R.

In the last part of this paper, let B be a unital Banach algebra with norm | - |, and
let 3B, and B, be left Banach B-modules with norms || - || and || - ||, respectively.
A cubic function T : gB; — B, is called B-cubic if

T(ax) = a’T(x), Va € B,Vx € 3B,.

COROLLARY 3.10. Let € > 0, p < 3 be real numbers. Suppose that a function
f 8B — B, satisfies
[If (ox+-20y) +f (otx—20ty) +6f (o) —4oc’f (xy) —4e’f (x=y)l| < el +IylI"),
If (2ox)+80°f (—x)[| < &
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forall a € B (|a| = 1), for some § > 0 and for all x,y € gB; \ {0}, and f (tx)
is continuous in t € R for each fixed x € gB;. Then there exists a unique B-cubic
SJunction T : gB) — By, defined by (3.4), which satisfies the equation (1.5) and the
inequality (3.16).

Proof. By Corollary 3.2, it follows from the inequality of the statement for o¢ =
1 that there exists a unique cubic function T : gB; — gB,, defined by T(x) =
lim,, oo L ;372*'), which satisfies the equation (1.5) and the inequality (3.16). Under the
assumption that f (zx) is continuous in # € R for each fixed x € zB;, by the same

reasoning as the proof of [4], the cubic function T : 3B, — gB, satisfies

T(tx) = £T(x), Vx € B,V eR.

Thatis, T is R-cubic. For each fixed o € B (|| = 1), we have T(ax) = o*T(x)
for all x € gB,. The last relation is also true for ¢ = 0. Since T is R -cubic and
T(ax) = oT(x) for each element o € B(|t| = 1), for each element a € B (a # 0)

a=la| 7 and
ld]

3
a a a
T(ax)=T <a| . ax) = |af-T (g)() = |af - PR T(x)
= a'T(x), Va € B(a # 0),Vx € gB;.

So the unique R-cubic function T : 3B — pB, is also B-cubic, as desired. This
completes the proof of the corollary.

Since C is aBanach algebra, the complex Banach spaces E;| and E; are considered
as Banach modules over C. Thus we have the following corollary.

COROLLARY 3.11. Let E| and E, be Banach spaces over the complex field C,
and let € > 0 be a real number. Suppose that a function f : Ey — E, satisfies

I (ox-+20y) +f (ox—20ty) +6f (0x) —40r’f (x-+y) —4o’f (x—y)]|
If (20x)+8c’f (—x)

< §,
< 6

Sforall o € C with || = 1, for some 6 > 0 and for all x,y € Ey \ {0}, and f (tx)
is continuous in t € R for each fixed x € E;. Then there exists a unique C-cubic
function T : E\ — E, which satisfies the equation (1.5) and the inequality

e+468 +4[f (0)]|
I () - T0) < 22

forall x € E|.

Similarly, we obtain the alternative results of Corollary 3.10 and Corollary 3.11
for the approximately quadratic (or additive) case.
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