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A MONOTONE OPERATOR FUNCTION VIA
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(communicated by J. Pečarić)

Abstract. We strengthen a recent monotonicity theorem on an operator inequality with negative
powers, and this is done by using means of positive operators.

1. Introduction

In what follows, H means a complex Hilbert space. A bounded linear operator T
on H is said to be positive (in symbol: T � 0 ), if (Tx, x) � 0 for any x ∈ H . Also
an operator T is strictly positive (in symbol: T > 0 ), if T is positive and invertible.

As in [7-8], we introduce first a mean of operators [12]. The set containing all
positive operators in H is denoted by �+(H) . A binary operation m on the class of
positive operators (A, B) �→ AmB is called a mean if the following requirements are
fulfilled:

(a) A � C, B � D , imply AmB � CmD ;
(b) A � 0, B � 0, C � 0 , imply C(AmB)C � (CAC)m(CBC) ;
(c) If An ↓ A , Bn ↓ B , and An, Bn, A, B are all positive operators, then

(AnmBn) ↓ (AmB) ;
(d) ImI � I , where I is the identity operator on H .
An immediate consequence of the definition is that m is upper semicontinuous

and satisfies
A � C and B � D imply AmB � CmD

and the transformer inequality

T∗(AmB)T � (T∗AT)m(T∗BT)

for all T . We note that if T is invertible, then this inequality is replaced by the equality
as following

T∗(AmB)T = (T∗AT)m(T∗BT).
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By the main result in [13] there is a unique mean m corresponding to the operator
monotone function xs for 0 � s � 1 ,

1msx = xs.

In particular, the mean m = m 1
2

is called the geometric mean as in the case of scalars.

THEOREM F (Furuta Inequality). If A � B � 0 , then for each r � 0 ,

(i) (B
r
2 ApB

r
2 )

1
q � (B

r
2 BpB

r
2 )

1
q

and
(ii) (A

r
2 ApA

r
2 )

1
q � (A

r
2 BpA

r
2 )

1
q

hold for p � 0 , q � 1 and (1 + r)q � p + r .

We remark that Theorem F yields the following famous Löwner-Heinz theorem
when we put r = 0 in (i) or (ii) stated above.

THEOREM L-H. A � B � 0 ensures Aα � Bα for any α ∈ [0, 1] .

By using Theorem F in [12] Furuta showed that if A � B � 0 , then for each p � 1

and r � 0 , F(p) = (B
r
2 ApB

r
2 )

1+r
p+r is increasing for p � 1 , Also, he pointed out that

this result didn’t remain valid for 0 < p < 1 and r � 0 . In this paper, we give an
extension and application of Furuta inequality with negative powers by using means of
operators.

THEOREM 1.1. If A � B � 0, 0 � p0 � 1 with −1 � r � 0 ,

(a) if p0 � −r , then M(α, r) = A− r
2 (A

r
2 BαA

r
2 )

p0+r
α+r A

−r
2

is decreasing for α ∈ [0, p0] and increasing for r ∈ [−1,−p0] .

(b) if p0 � −r , then M(α, r) = A− r
2 (A

r
2 BαA

r
2 )

p0+r
α+r A

−r
2

is increasing for α ∈ [p0, 1] and decreasing for r ∈ [−p0, 0] .

2. Proofs of the main results

We need the following lemma and theorem.

LEMMA ([8]). For invertible positive operator A and invertible operator B , let
AmsB = A1/2(A−1/2BA−1/2)sA1/2 , then

AmsB = Bm1−sA

holds for any real number s .

THEOREM A ([3] [4] [9] [17]). If A � B > 0 , then the following inequalities hold:

(i) A1−t � (A
−t
2 BpA

−t
2 )

1−t
p−t for 1 � p > t � 0 with p � 1

2 ,

(ii) A−t � (A
−t
2 BpA

−t
2 )

−t
p−t for 1 � t > p � 0 with 1

2 � p,

(iii) A2p−t � (A
−t
2 BpA

−t
2 )

2p−t
p−t for 1

2 � p > t � 0,

(iv) A2p−1−t � (A
−t
2 BpA

−t
2 )

2p−1−t
p−t for 1 � t > p � 1

2 ·
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Proof of Theorem 1.1.
Proof of (a) . We may assume that A and B are both invertible. First, we prove

M(α + ε, r) � M(α, r) for 0 � ε � p0 − α
M(α + ε, r) = A− r

2 (A
r
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r
2 )
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2
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� B
α
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(B− α

2 A−rB− α
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−ε
α+r ]B

α
2

= B
α
2 (B− α
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α
2

= A− r
2 (A
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r
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2

= M(α, r).
Next we show the monotonicity in r .
Let ε > 0 and satisfy −1 < r < r + ε < −p0 , then 0 � p0+r+ε

α+r+ε � 1 .

M(α, r + ε) = A− r+ε
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2 (A

r
2 BαA

r
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p0+r
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= M(α, r).
Proof of (b) . It is easy to show by almost the same way as one in (a), using L-H

theorem. In fact, for sufficiently small positive number ε ,

Bε � (B− α
2 A−rB−α

2 )
−ε
α+r and A−ε � (A

r
2 BαA

r
2 )

−ε
α+r

because of −r ∈ [0, 1] and α ∈ [0, 1] .

3. Some applications

THEOREM 2.1. If A � B � 0 with A > 0, 1 � p > t � 0 with p � 1
2 , then for

any fixed p0 ∈ [0, 1] ,

Gp,t(A, B, r, s) = A− r
2 [A

r
2 (A− t

2 BpA− t
2 )sA

r
2 ]

(1−t)p0+r
(p−t)s+r A− r

2

is decreasing for r ∈ [−(1 − t)p0, 0] and increasing for s ∈ [ (1−t)p0

p−t , 1−t
p−t ] , and the

following inequality holds:

A(1−t)p0 � Gp,t(A, B, r, s) � (A− t
2 BpA− t

2 )
(1−t)p0

p−t .

Proof. A � B � 0 ensures the following (3.1) by theorem A

A(1−t) � (A− t
2 BpA− t

2 )
1−t
p−t (3.1)
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for each 0 � p � 1 and p � t � 0 . Put A1 = A(1−t) and B1 = (A− t
2 BpA− t

2 )
1−t
p−t .

Then
A1 � B1 � 0 (3.2)

so that by Theorem 1.1, if 0 � −r1 � 1,−r1 � p0 � 1 , then

G(α, r1) = A
− r1

2
1 (A

r1
2

1 Bα
1 A

r1
2

1 )
p0+r1
α+r1 A

− r1
2

1 (3.3)

is increasing for p1 ∈ [p0, 1] and decreasing for r1 ∈ [−p0, 0] .
Put r1 = r

1−t ∈ [−p0, 0] and α = (p−t)s
1−t ∈ [p0, 1] , then

p0 + r1

α + r1
=

(1 − t)p0 + r
(p − t)s + r

, A
− r1

2
1 = A− r

2 and Bp1
1 = (A− t

2 BpA− t
2 )s (3.4)

so that by (3.1), (3.2), (3.3) and (3.4), we have that

Gp,t(A, B, r, s) = A− r
2

[
A

r
2 (A− t

2 BpA− t
2 )sA

r
2

] (1−t)p0+r
(p−t)s+r
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2

is decreasing for r ∈ [−(1 − t)p0, 0] and increasing for s ∈ [ (1−t)p0

p−t , 1−t
p−t ] .

THEOREM 2.2. If A � B � 0 with A > 0 , 1 � q � p � q
2 and p � t � 0 , then

for any fixed p0 ∈ [0, 1] ,

Hp,t(A, B, r, s) = A− r
2

[
A

r
2 (A− t

2 BpA− t
2 )sA

r
2

] (q−t)p0+r
(p−t)s+r

A− r
2

is decreasing for r ∈ [−(q − t)p0, 0] and increasing for s ∈ [ (q−t)p0

p−t , q−t
p−t ] .

The following inequality holds:

A(1−t)p0 � Hp,t(A, B, r, s) � (A− t
2 BpA− t

2 )
(q−t)p0

p−t .

Proof. A � B � 0 with A > 0 ensures Aq � Bq by Löwner−Heinz theorem.
Put

A1 = Aq and B1 = Bq (3.5)

then A1 � B1 � 0 . Let

p1 =
p
q
, t1 =

t
q

and r1 =
r
q
. (3.6)

Then 1 � p1 � t1 � 0 , p1 � 1
2 , and r1 ∈ [−(1 − t1)p0, 0], s1 ∈ [ (1−t1)p0

p1−t1
, 1−t1

p1−t1
] , and

by theorem 2.1 we have that
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(
A
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2
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1
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is decreasing for r1 ∈ [−(1 − t1)p0, 0] and increasing for s ∈ [ (1−t1)p0

p1−t1
, 1−t1

p1−t1
] . Put

p1 =
p
q
, t1 =

t
q

and r1 =
r
q
. (3.7)

Then p1 ∈ [ 1
2 , 1] , t1 ∈ [0, 1] and r1 � t1 . It follows from (3.5), (3.6), and (3.7)

that

Hp,t(A, B, r, s) = A− r
2

[
A

r
2 (A− t

2 BpA− t
2 )sA

r
2

] (q−t)p0+r
(p−t)s+r

A− r
2

is decreasing for r ∈ [−(q − t)p0, 0] and increasing for s ∈
[

(q−t)p0

p−t , q−t
p−t

]
.

THEOREM 2.3. If A � B � 0 with A > 0 , and 1
2 > p > t > 0 , then for any fixed

p0 ∈ [0, 1] ,

Fp,t(A, B, r, s) = A− r
2 (A

r
2 (A− t

2 BpA− t
2 )sA

r
2 )

(2p−t)p0+r
(p−t)s+r A

−r
2

is decreasing for r ∈ [−(2p − t)p0, 0] and increasing for s ∈
[

(2p−t)p0

p−t , 2p−t
p−t

]
. More-

over, the following inequality holds:

A(2p−t)p0 � Fp,t(A, B, r, s) �
(
A− t

2 BpA− t
2

) (2p−t)p0
p−t

.

Proof. We have only to replace ‘1’ in the proof of theorem 2.1 by ‘2p’.
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