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Abstract. In this paper, we introduce and study a new class of generalized nonlinear quasi-
variational-like inequalities for set-valed mappings in Banach spaces. Using the KKM technique,
we prove the existence and uniqueness of solution for this class of generalized nonlinear quasi-
variational-like inequalities for set-valued mappings in Banach spaces. Our results extend and
improve some main results of Verma.

1. Introduction and preliminaries

Variational inequalities not only have stimulated the new results dealing with non-
linear partial differential equations, but also have been used in a large variety of problems
arising in mechanics, physics, optimization and control, nonlinear programming, eco-
nomics and transportation equilibrium and engineering sciences, etc. In recent years,
variational inequalities have been generalized and applied in various directions. For
details, we refer to [1]–[9] and the references therein.

Recently, Huang, Fang and Cho [5] introduced and studied a new class of general-
ized nonlinear mixed quasi-variational inequalities for single-valued mappings, which
includes the variational inequalities considered by Verma [7], [8] as special cases.

In this paper, we introduce and study a new class of generalized nonlinear quasi-
variational-like inequalities for set-valued mappings in Banach spaces. Using the KKM
technique,we prove the existence and uniqueness of solution for this class of generalized
nonlinear quasi-variational-like inequalities for set-valued mappings in Banach spaces.
Our results extend and improve some main results of Verma [7], [8].

Throughout this paper, let X be a real reflexive Banach space, X∗ be its dual
space, and K be a nonempty convex closed subset of X . Denote 〈ω , x〉 = ω(x) for all
ω ∈ X∗ and x ∈ X . Let S, T : K → 2X∗

be two set-valued mappings, η : K ×K → K
be a single-valued mapping and f : K → R ∪ {+∞} be a proper convex functional.
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Suppose that η is affine with respect to the first argument satisfying η(u, v) = −η(v, u)
for all u, v ∈ K . It is clear that η(u, u) = 0 for all u ∈ K . We consider the following
problem:

For any ω ∈ X∗ , find u ∈ K such that

sup
x∈Su,w∈Tu

〈 x − w − ω ,η(v, u)〉 + f (v) − f (u) � 0 (1.1)

for all v ∈ K .
If S, T : K → X∗ is two single-valedmappings, then the problem (1.1) is equivalent

to the following problem:
For any ω ∈ X∗ , find u ∈ K such that

〈 Su− Tu − ω ,η(v, u)〉 + f (v) − f (u) � 0 (1.2)

for all v ∈ K .
If η(u, v) = gu−gv , then the problem (1.1) is equivalent to the following problem:
For any ω ∈ X∗ , find u ∈ K such that

sup
x∈Su,w∈Tu

〈 x − w − ω , gv− gu〉 + f (v) − f (u) � 0 (1.3)

for all v ∈ K , where g : K → K is an affine mapping.
If η(u, v) = u− v , then the problem (1.1) is equivalent to the following problem:
For any ω ∈ X∗ , find u ∈ K such that

sup
x∈Su,w∈Tu

〈 x − w − ω , v − u〉 + f (v) − f (u) � 0 (1.4)

for all v ∈ K .

REMARK 1.1. For a suitable choice of S, T,η , and f , the problem (1.1) includes
many kinds of known variational inequalities as special cases (see [5], [7], [8] and the
references therein).

DEFINITION 1.1. Amapping S : K → 2X∗
is said to be ϕ - p monotonewith respect

to the mapping η : K × K → K if there exist a mapping ϕ : [0, +∞) → [0, +∞) and
a constant p > 1 such that

〈 x − y,η(u, v)〉 � ϕ(‖u − v‖)‖u − v‖p (1.5)

for all u, v ∈ K, x ∈ Su and y ∈ Sv .

DEFINITION 1.2. A mapping T : K → 2X∗
is said to be ψ - p Lipschitzian with

respect to themapping η : K×K → K if there exist amapping ψ : [0, +∞) → [0, +∞)
and a constant p > 1 such that

〈w − z,η(u, v)〉 � ψ(‖u − v‖)‖u − v‖p (1.6)

for all u, v ∈ K, w ∈ Tu and z ∈ Tv .

DEFINITION 1.3. Let E, F be two topological spaces. A mapping F : E → 2F is
said to be lower semicontinuous if, for any net {xα} ⊂ E with xα → x and a point
y ∈ F(x) , there exist {xβ} ⊂ {xα} and yβ ∈ F(xβ) such that yβ → y .
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DEFINITION 1.4. A mapping S : K → X∗ is said to be hemicontinuous if, for
all x, y, z ∈ K , the mapping t 
→ 〈 S(x + ty), z〉 is continuous on [0, 1] . A mapping
T : K → 2X∗

is said to be lower hemicontinuous if, for all x, y, z ∈ K , the set-valued
mapping t 
→ 〈T(x + ty), z〉 is lower semicontinous on [0, 1] .

2. Main results

THEOREM 2.1. Let X be a real reflexive Banach space, X∗ be its dual space
and K be a nonempty convex closed subset of X . Let S, T : K → 2X∗

be two lower
hemicontinuous set-valued mappings satisfying (1.5) and (1.6) , respectively, where
mappings ϕ,ψ : [0, +∞) → [0, +∞) satisfy ϕ(t) > ψ(t) for all t � 0 and there
exists a constant δ > 0 such that ϕ − ψ is bounded on [0, δ ] . In addition, suppose
that η(u, v) = −η(v, u) for all u, v ∈ K , η : K × K → K is affine with respect to the
first argument and f : K → R ∪ {+∞} is a proper convex functional. Then, for any
ω ∈ X∗ , u ∈ K is a solution of the problem (1.1) if and only if u ∈ K is a solution of
the following problem:

Find u ∈ K such that

〈 y − z,η(v, u)〉 + f (v) − f (u)
� (ϕ(‖v − u‖) − ψ(‖v − u‖))‖v − u‖p (2.1)

for all v ∈ K, y ∈ Sv and z ∈ Tv .

Proof. Suppose that the problem (1.1) holds. Since the mappings S and T satisfy
(1.5) and (1.6), respectively, then, for all u, v ∈ K, x ∈ Su, y ∈ Sv, w ∈ Tu and z ∈ Tv ,
we have

〈 y − z − ω ,η(v, u)〉 + f (v) − f (u)
= 〈−ω ,η(v, u)〉 + 〈 x − y,η(u, v)〉
− 〈w − z,η(u, v)〉 + f (v) − f (u) − 〈 x − w,η(u, v)〉

� 〈 x − w − ω ,η(v, u)〉 + f (v) − f (u)
+ (ϕ(‖v − u‖) − ψ(‖v − u‖))‖v − u‖p.

Since u ∈ K is a solution of the problem (1.1), this implies that

〈 x − w − ω ,η(v, u)〉 + f (v) − f (u) � 0

for all v ∈ K , x ∈ Su and w ∈ Tu . Thus we have

〈 y − z − ω ,η(v, u)〉 + f (v) − f (u)
� (ϕ(‖v − u‖) − ψ(‖v − u‖))‖v − u‖p

for all v ∈ K, y ∈ Sv and z ∈ Tv , i.e., (2.1) is true.
Conversely, suppose that (2.1) holds. Without loss of generality, choose a point

v ∈ K such that f (v) < +∞ and so f (u) < +∞ . Letting vn = (1 − 1
n )u + 1

n v for
n = 1, 2, 3 . . . , then vn ∈ K and vn − u = 1

n (v − u) for all n � 1 . Further, since



334 Y. P. FANG, Y. J. CHO, N. J. HUANG AND S. M. KANG

η : K × K → K is affine with respect to the first argument and η(u, v) = −η(v, u)
for all u, v ∈ K , we know that η(u, u) = 0 and η(vn, u) = 1

nη(v, u) . For any
x ∈ Su and w ∈ Tu , since S, T are lower hemicontinuous, there exist subsequence
{vnj} ⊂ {vn}, ynj ∈ Svnj and znj ∈ Tvnj such that

ynj → x, znj → w, 〈 ynj − znj , τ〉 → 〈 x − w, τ〉 (2.2)

as j → ∞ for any τ ∈ X . It follows from (2.1) that

〈 ynj − znj − ω ,η(vnj , u)〉 + f (vnj) − f (u)

=
1
nj
〈 ynj − znj − ω ,η(v, u)〉 + f (vnj) − f (u)

� (ϕ(‖vnj − u‖)− ψ(‖vnj − u‖))‖vnj − u‖p

=
(

1
nj

)p(
ϕ
(

1
nj
‖v − u‖

)
− ψ

(
1
nj
‖v − u‖

))
‖v − u‖p.

(2.3)

Since f is convex and η(vnj , u) = 1
nj
η(v, u) , from (2.3), we have

〈 ynj − znj − ω ,η(v, u)〉 + f (v) − f (u)

�
(

1
nj

)p−1(
ϕ
(

1
nj
‖v − u‖

)
− ψ

(
1
nj
‖v − u‖

))
‖v − u‖p.

(2.4)

It follows from (2.2) and (2.4) that

〈 x − w − ω ,η(v, u)〉 + f (v) − f (u) � 0

for all v ∈ K, x ∈ Su and w ∈ Tu . This completes the proof.

REMARK 2.1. Theorem 2.1 improves and extends Theorem 2.1 of Verma [7] and
[8].

In the sequel, we need the following definition and lemma for our further result.

DEFINITION 2.1. A mapping F : X → 2X is said to be a KKM mapping if, for any

{x1, x2, . . . , xn} ⊂ X , co{x1, x2, . . . , xn} ⊂
n⋃

i=1
F(Xi) .

LEMMA 2.1. [10] Let K be a nonempty subset of a topological vector space E
and F : K → 2E be a KKM mapping. If F(x) is closed in E for every x in K and
there exists at least a point x0 ∈ K such that F(x0) is compact, then

⋂
x∈K

F(x) �= ∅ .

THEOREM 2.2. Let X be a real reflexive Banach space, X∗ be its dual space and
K be a nonempty bounded closed convex subset of X . Let S, T,ϕ,ψ and η be the same
as in Theorem 2.1 . Suppose that ϕ − ψ , η are continuous and f : K → R ∪ {+∞}
is proper convex lower semicontinuous. Then the problem (1.1) has a unique solution.

Proof. We first prove the existence of solution of the problem (1.1). Define the
set-valued mappings F, G : K → 2K by

F(v) = {u ∈ K : 〈 x−w−ω ,η(v, u)〉 + f (v)− f (u) � 0 for some x ∈ Su, w ∈ Tu}
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and

G(v) = {u ∈ K : 〈 y − z − ω ,η(v, u)〉 + f (v) − f (u)
� (ϕ(‖v − u‖) − ψ(‖v − u‖))‖v − u‖p for all y ∈ Sv, z ∈ Tv}

for all v ∈ K , respectively. We show that F is a KKM mapping. Assume that F is not
a KKM mapping. Then there exist {v1, v2, . . . , vn} ⊂ K and ti > 0 , i = 1, 2, . . . , n ,
such that

n∑
i=1

ti = 1, v =
n∑

i=1

tivi �∈
n⋃

i=1

F(vi).

For any y ∈ Sv and z ∈ Tv , by the definition of F , we have

〈 y − z − ω ,η(vi, v)〉 + f (vi) − f (v) < 0

for i = 1, 2, . . . , n . It follows that

0 = 〈 y − z − ω ,η(v, v)〉 =

〈
y − z − ω ,η

(
n∑

i=1

tivi, v

)〉

=
n∑

i=1

ti〈 y − z − ω ,η(vi, v)〉 <

n∑
i=1

ti(f (v) − f (vi))

= f (v) −
n∑

i=1

tif (vi) � f (v) − f (v) = 0,

which is a contradiction. This implies that F is a KKM mapping. Now we prove that
F(v) ⊂ G(v) for all v ∈ K . Letting u ∈ F(v) , then there exist x ∈ Su, w ∈ Tu such
that

〈 x − w − ω ,η(v, u)〉 + f (v) − f (u) � 0.

Since the mappings S and T satisfy (1.5) and (1.8), respectively, we have

〈 y − z − ω ,η(v, u)〉 + f (v) − f (u)
= 〈 x − y,η(u, v)〉 − 〈w − z,η(u, v)〉

+ 〈−ω ,η(v, u)〉 − 〈 x − w,η(u, v)〉 + f (v) − f (u)
� (ϕ(‖v − u‖) − ψ(‖v − u‖))‖v− u‖p

+ 〈 x − w − ω ,η(v, u)〉 + f (v) − f (u)
� (ϕ(‖v − u‖) − ψ(‖v − u‖))‖v− u‖p

for all v ∈ K, y ∈ Sv and z ∈ Tv . This implies that u ∈ G(v) , and so G is also a KKM
mapping. From the assumptions, we know that G(v) is weakly closed for all v in K .
Since K is bounded closed convex, we know that K is weakly compact and so G(v)
is weakly compact in K for all v ∈ K . It follows from Lemma 2.1 that

⋂
v∈K

G(v) �= ∅.
Hence, there exists a point u0 ∈ K such that

〈 y − z,η(v, u0)〉 + f (v) − f (u0)
� (ϕ(‖v − u0‖) − ψ(‖v − u0‖))‖v − u0‖p



336 Y. P. FANG, Y. J. CHO, N. J. HUANG AND S. M. KANG

for all v ∈ K , y ∈ Sv and z ∈ Tv . By Theorem 2.1, we know that

sup
x0∈Su0 ,w0∈Tu0

〈 x0 − w0 − ω ,η(v, u0)〉 + f (v) − f (u0) � 0

for all v ∈ K .
To show the uniqueness of the solution, let u1, u2 ∈ K be two solutions of the

problem (1.1). For any x1 ∈ Su1, w1 ∈ Tu1, x2 ∈ Su2 and w2 ∈ Tu2 , we have

〈 x1 − w1 − ω ,η(v, u1)〉 + f (v) − f (u1) � 0 (2.5)

and

〈 x2 − w2 − ω ,η(v, u2)〉 + f (v) − f (u2) � 0 (2.6)

for all v ∈ K . Setting v = u2 in (2.5) and v = u1 in (2.6) and adding them, then we
have

〈 x1 − w1 − (x2 − w2),η(u2, u1)〉 � 0. (2.7)

By (1.5) and (1.6), we obtain

〈 x1 − w1 − (x2 − w2),η(u2, u1)〉
= 〈 x1 − x2,η(u2, u1)〉 − 〈w1 − w2,η(u2, u1)〉
� −(ϕ(‖u1 − u2‖) − ψ(‖u1 − u2‖))‖u1 − u2‖p.

(2.8)

Since ϕ(t) > ψ(t) for all t > 0 , it follows from (2.7) and (2.8) that ‖u1 − u2‖p = 0.
This implies that u1 = u2 . This completes the proof.

REMARK 2.2. Theorem 2.2 improves and extends Theorem 2.4 of Verma [8].
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