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Abstract. In this paper, we introduce and study a new class of generalized set-valued nonlinear
quasi-variational-like inequalities in Hilbert spaces and construct some iterative algorithms to
compute the approximating solutions of this class of generalized set-valued nonlinear quasi-
variational-like inequalities by using the auxiliary principle technique. We also give the conver-
gence analysis of the iterative sequences generated by the algorithms. The results presented in
this paper extend and impro ve the corresponding results announced by Ding.

1. Introduction

Variational inequality theory and complementarity problem theory are very pow-
erful tools of the current mathematical technology. In recent years, classical variational
inequality and complementarity problems have been extended and generalized to study
a wide class of problems generated in mechanics, physics, optimization and control,
nonlinear programming, economics and transportation equilibrium, and engineering
sciences, etc. For the past years, many authors have studied various variational inequal-
ities and variational inclusions (see [1, 2, 4–7, 9, 11–14]) by various methods such as the
projection method and its variant forms, linear approximation, descent, and Newton’s
methods. However, these methods are invalid to solve variational-like inequalities. In
1981, Glowinski et al. [4] suggested another technique-auxiliary principle technique for
solving a class of variational inequalities. From then on, many authors extended and
generalize the auxiliary principle technique to solve variational inequalities. For details,
we refer to [3, 4, 7, 13] and the references therein.

Recently, Ding [3] studied a class of generalized mixed implicit quasi-variational
inequalities in Hilbert spaces and constructed some new iterative algorithms to compute
the approximating solutions by using the auxiliary principle technique. Inspired and
motivated by [3, 5, 14], in this paper, we introduce and study a new class of generalized
set-valued nonlinear quasi-variational-like inequalities in Hilbert spaces and construct
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some iterative algorithms to compute the approximating solutions of this class of gen-
eralized set-valued nonlinear quasi-variational-like inequalities by using the auxiliary
principle technique. We also give the convergence analysis of the iterative sequences
generated by the algorithms. The results presented in this paper extend and improve the
corresponding results of [2, 3, 5, 9, 12–14].

2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈 ·, ·〉 . Let
K : H → 2H be a set-valued mapping such that for each x ∈ H , K(x) is a nonempty
closed convex subset of H , where 2H denotes the family of all the nonempty subset
of H . Let T, A : H → CB(H) be two set-valued mappings, where CB(H) denotes
the family of all the nonempty closed bounded subset of H , N,η : H × H → H
be two single-valued mappings, and b : H × H → R be a real function. In this
paper, we consider the following generalized set-valued nonlinear quasi-variational-
like inequalities problem:

Find x ∈ H, u ∈ T(x) , and v ∈ A(x) such that

x ∈ K(x), 〈N(u, v),η(y, x)〉 + b(x, y) − b(x, x) � 0, ∀y ∈ K(x). (2.1)

If η(x, y) = g(x) − g(y) for all x, y in H , where g : H → H is a single-valued
mapping, then the problem (2.1) is equivalent to finding x ∈ H, u ∈ T(x) , and v ∈ A(x)
such that

x ∈ K(x), 〈N(u, v), g(y) − g(x)〉 + b(x, y) − b(x, x) � 0, ∀y ∈ K(x), (2.2)

which is called the generalized set-valued nonlinear implicit quasi-variational inequality.
If η(x, y) = x− y for all x, y in H , then the problem (2.1) is equivalent to finding

x ∈ H, u ∈ T(x) , and v ∈ A(x) such that

x ∈ K(x), 〈N(u, v), y − x〉 + b(x, y) − b(x, x) � 0, ∀y ∈ K(x), (2.3)

which is called the generalized mixed implicit quasi-variational inequality studied by
Ding [3].

If b(x, y) = 0 for all x, y in H , then the problem (2.1) is equivalent to finding
x ∈ H, u ∈ T(x) , and v ∈ A(x) such that

x ∈ K(x), 〈N(u, v),η(y, x)〉 � 0, ∀y ∈ K(x), (2.4)

which is called the quasi-variational-like inequality.
If K(x) = H for all x ∈ H , then the problem (2.1) is equivalent to find x ∈ H, u ∈

T(x) , and v ∈ A(x) such that

〈N(u, v),η(y, x)〉 + b(x, y) − b(x, x) � 0, ∀y ∈ H, (2.5)

which is called the generalized set-valued strongly nonlinear mixed variational-like
inequality.
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In many practical problems, K(x) has the following form:

K(x) = m(x) + K (2.6)

for all x in H , where m : H → H is a single-valued mapping and K is a nonempty
closed convex set of H .

REMARK 2.1. For a suitable choice of the mappings T, A, K, N,η , and b , one can
obtain many known variational inequalities and complementarity problems as special
cases from the problem (2.1) (See [2, 3, 5–7, 9, 11–14]).

For our results, we need the following concepts and results.

DEFINITION 2.1. Let T : H → CB(H) be a set-valued mapping. A mapping
N : H × H → H is said to be

(i) α -strongly monotone with respect to T in the first argument if there exists a
constant α such that

〈N(u, ·) − N(v, ·), x − y〉 � α‖x − y‖2, ∀x, y ∈ H, u ∈ T(x), v ∈ T(v);

(ii) β -Lipschitz continuous in the first argument if there exists a constant β > 0
such that

‖N(u, ·) − N(v, ·)‖ � β‖u − v‖, ∀u, v ∈ H.

In a similar way, we can define the monotonicity and Lipschitz continuity of N in
the second argument. We note that if N(·, ·) is Lipschitz continuous in both arguments,
then N is continuous.

DEFINITION 2.2. A mapping η : H × H → H is said to be

(i) σ -monotone if there exists a constant σ > 0 such that

〈η(u, v), u − v〉 � σ‖u − v‖2, ∀u, v ∈ H;

(ii) δ -Lipschitz continuous if there exists a constant δ > 0 such that

‖η(u, v)‖ � δ‖u − v‖, ∀u, v ∈ H.

DEFINITION 2.3. A mapping m : H → H is said to be τ -Lipschitz continuous if
there exists a constant τ > 0 such that

‖m(x) − m(y)‖ � τ‖x − y‖, ∀x, y ∈ H.

DEFINITION 2.4. A set-valued mapping T : H → CB(H) is said to be

(i) μ -strongly monotone if there exists a constant μ > 0 such that

〈 u − v, x − y〉 � μ‖x − y‖2, ∀x, y ∈ H, u ∈ T(x), v ∈ T(y);
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(ii) ξ -H -Lipschitz continuous if there exists a constant ξ > 0 such that

H(T(x), T(y)) � ξ‖x − y‖, ∀x, y ∈ H,

where H(·, ·) is the Hausdorff metric on CB(H) .

HYPOTHESIS 2.1. Let b : H × H → R be a real function satisfying the following
conditions:

(i) b(u, v) is linear with respect to u ;
(ii) b(u, v) is bounded, i.e., there exists a constant γ > 0 such that

b(u, v) � γ ‖u‖ · ‖v‖, ∀u, v ∈ H;

(iii) b(u, v) − b(u, w) � b(u, v − w), ∀u, v, w ∈ H;
(iv) b(u, v) is convex with respect to v .

REMARK 2.1. From (i)-(iv), we have
(1) |b(u, v)| � γ ‖u‖ · ‖v‖, b(u, 0) = b(0, v) = 0, ∀u, v ∈ H ;
(2) |b(u, v) − b(u, w)| � ν‖u‖ · ‖v − w‖, ∀u, v, w ∈ H ;
(3) b(u, v) is continuous.

HYPOTHESIS 2.2. Let η : H × H → H satisfy the following conditions:

(1) η(x, y) + η(y, z) = η(x, z) for all x, y, z in H ;
(2) for any x, y, u, v in H , x − y = u − v implies that η(x, y) = η(u, v) ;
(3) for given x, u, v in H , the mapping y �→ 〈N(u, v),η(y, x)〉 is convex and lower

semicontinuous.

HYPOTHESIS 2.3. Let g : H → H satisfy the following conditions:

(1) for any x, y, u, v in H , x − y = u − v implies that g(x) − g(y) = g(u) − g(v) ;
(2) for given u, v in H , the mapping y �→ 〈N(u, v), g(y)〉 is convex and lower

semicontinuous.

3. Auxiliary Problem

In this section, we give the auxiliary problem for the generalized set-valued non-
linear quasi-variational-like inequalities problem (2.1) and prove the existence and
uniqueness of solution of the auxiliary problem.

Given x ∈ H, u ∈ T(x) , and v ∈ A(x) , we consider the following auxiliary
problem for the problem (2.1):

Find w ∈ K(x) such that

〈w, y−w〉 �〈 x, y−w〉 −ρ〈N(u, v),η(y, w)〉 +ρb(x, w)−ρb(x, y), ∀y ∈ K(x), (3.1)

where ρ > 0 is a constant.
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THEOREM 3.1. Let T, A : H → CB(H) , and N,η : H×H → H be four mappings.
Let K : H → 2H be a set-valuedmapping such that for each x ∈ H , K(x) is a nonempty
closed convex subset of H . Let b : H × H → R is a real function such that for any
given x ∈ H , y �→ b(x, y) is convex and lower semi-continuous on H . Moreover,
suppose that Hypothesis 2.2 holds. Then for any given x ∈ H, u ∈ T(x) , and v ∈ A(x) ,
the following problem:

min
y∈K(x)

J(y), (3.2)

where {
J(y) = 1

2 〈 y, y〉 + j(y),
j(y) = ρ〈N(u, v),η(y, x)〉 + ρb(x, y) − 〈 x, y〉 ,

(3.3)

admits a unique solution and w is a solution of the problem (3.2) if and only if w is a
solution of the problem (3.1).

Proof. Since the function y �→ b(x, y) is convex lower semicontinuous, it follows
from Hypothesis 2.2 that j(y) is convex lower semicontinuous on K(x) and J(x) is
strictly convex and lower semicontinuous on K(x) . By Theorem 2.5 of [10, p. 25], j
is bounded from below by a hyperplane f (y) = 〈 h, y〉 + r , where h ∈ H and r ∈ R .
Hence we have

J(y) =
1
2
〈 y, y〉 + j(y) � 1

2
‖y‖2 + 〈 h, y〉 + r

=
1
2
‖y + h‖2 − 1

2
‖h‖2 + r.

This implies that

J(y) → ∞ and ‖y‖ → ∞. (3.4)

Now let {yn} ⊂ K(x) be a minimizing sequence of J on K(x) , i.e.,

lim
n→∞ J(yn) = d and d = inf

y∈K(x)
J(y).

We claim that {yn} is bounded. If it is false, then there exists a subsequence {ynk} ⊂
{yn} such that ‖ynk‖ � k, k = 1, 2, 3, . . . . By (3.4), we have J(ynk) → ∞ which
contradicts the fact lim

k→∞
J(ynk) = d < ∞ . Therefore there exists a constant r1 > 0

such that
{yn} ⊂ K(x) ∩ B(0, r1) = {y ∈ K(x) : ‖y‖ � r1}.

By Weierstrass theorem (See, [10, p. 24]), there exists w ∈ K(x) such that

J(w) = min
y∈K(x)

J(y).

Since J is strictly convex, we know that w is the unique solution of the problem (3.2).
Now suppose that w is a unique solution of the problem (3.2). We show that w

is also a solution of the auxiliary problem (3.1). For any y ∈ K(x) and t ∈ [0, 1] , we
have
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J(w) =
1
2
〈w, w〉 + j(w) � J(w + t(y − w))

=
1
2
〈w + t(y − w), w + t(y − w)〉 + j(w + t(y − w))

� 1
2
〈w, w〉 +

t2

2
〈 y − w, y − w〉 + t〈w, y − w〉 + j(w) + t(j(y) − j(w)).

This implies that

t
2
〈 y − w, y − w〉 + 〈w, y − w〉 + j(y) − j(w) � 0.

Letting t → 0 in the above inequality, we obtain

〈w, y − w〉 + ρ〈N(u, v),η(y, x)〉 + ρb(x, y) − 〈 x, y〉
− ρ〈N(u, v),η(w, x)〉 − ρb(x, w) + 〈 x, w〉 � 0.

It follows from (1) of Hypothesis 2.2 that

〈w, y − w〉 � 〈 x, y − w〉 − ρ〈N(u, v),η(y, w)〉 + ρb(x, w) − ρb(x, y), ∀y ∈ K(x).

This prove that w is a solution of the auxiliary problem (3.1).
Conversely, suppose that w is a solution of the auxiliary problem (3.1). It follows

from (3.1) that

1
2
[〈 y, y〉 − 〈w, w〉 ]

= 〈w, y − w〉 +
1
2
〈 y − w, y − w〉 � 〈w, y − w〉

� 〈 x, y − w〉 − ρ〈N(u, v),η(y, w)〉 + ρb(x, w) − ρb(x, y)
= 〈 x, y〉 − 〈 x, w〉 − ρ〈N(u, v),η(y, x)〉

+ρ〈N(u, v),η(w, x)〉 + ρb(x, w) − ρb(x, y), ∀y ∈ K(x).

This implies that J(y) � J(w) for all y ∈ K(x) and so w is a solution of the problem
(3.2). The proof is complete.

4. Iterative Algorithms and Convergence

In this section, by using the auxiliary technique, we construct some new iterative
algorithms for solving the problems (2.1)–(2.4) and give the convergence analysis of
the iterative sequences generated by the algorithms.

Based on Theorem 3.1, we give one algorithm for the problem (2.1) as follows:

ALGORITHM 4.1. Suppose that T, A, K, N,η , and b are the same as in Theorem
3.1 and that Hypothesis 2.2 holds. For any given x0 ∈ H, u0 ∈ T(x0) , and v0 ∈ A(x0) ,
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based on Theorem 3.1 and Nadler [8], there exist {xn}, {un} , and {vn} such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn+1 ∈ K(xn),
un+1 ∈ T(xn+1), ‖un+1 − un‖ � (1 + (1 + n)−1)H(T(xn+1), T(xn)),
vn+1 ∈ A(xn+1), ‖vn+1 − vn‖ � (1 + (1 + n)−1)H(A(xn+1), A(xn)),
〈 xn+1, y − xn+1〉 � 〈 xn, y − xn+1〉 − ρ〈N(un, vn),η(y, xn+1)〉

+ρb(xn, xn+1) − ρb(xn, y), ∀y ∈ K(xn). n = 0, 1, 2 . . .

(4.1)

If η(x, y) = g(x) − g(y) for all x, y in H , then Algorithm 4.1 reduces to the
following algorithm for the problem (2.2).

ALGORITHM 4.2. Let T, A, K, N , and b be the same as in Theorem 3.1. Suppose
that Hypothesis 2.3 holds. For any given x0 ∈ H, u0 ∈ T(x0) , and v0 ∈ A(x0) , based
on Theorem 3.1 and Nadler [8], there exist {xn}, {un} , and {vn} such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn+1 ∈ K(xn),
un+1 ∈ T(xn+1), ‖un+1 − un‖ � (1 + (1 + n)−1)H(T(xn+1), T(xn)),
vn+1 ∈ A(xn+1), ‖vn+1 − vn‖ � (1 + (1 + n)−1)H(A(xn+1), A(xn)),
〈 xn+1, y − xn+1〉 � 〈 xn, y − xn+1〉 − ρ〈N(un, vn), g(y) − g(xn+1)〉

+ρb(xn, xn+1) − ρb(xn, y), ∀y ∈ K(xn). n = 0, 1, 2 . . .

If η(x, y) = x − y for all x, y in H , then Algorithm 4.1 reduces to the following
algorithm for the problem (2.3).

ALGORITHM 4.3. Let T, A, K, N , and b be the same as in Theorem 3.1. For any
given x0 ∈ H, u0 ∈ T(x0) , and v0 ∈ A(x0) , based on Theorem 3.1 and Nadler [8], there
exist {xn}, {un} , and {vn} such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn+1 ∈ K(xn),
un+1 ∈ T(xn+1), ‖un+1 − un‖ � (1 + (1 + n)−1)H(T(xn+1), T(xn)),
vn+1 ∈ A(xn+1), ‖vn+1 − vn‖ � (1 + (1 + n)−1)H(A(xn+1), A(xn)),
〈 xn+1, y − xn+1〉 � 〈 xn, y − xn+1〉 − ρ〈N(un, vn), y − xn+1〉

+ρb(xn, xn+1) − ρb(xn, y), ∀y ∈ K(xn), n = 0, 1, 2 . . .

If b(x, y) = 0 for all x, y in H , then Algorithm 4.1 reduces to the following
algorithm for the problem (2.4).

ALGORITHM 4.4. Suppose that T, A, K, N , and η are the same as in Theorem 3.1
and that Hypothesis 2.2 holds. For any given x0 ∈ H, u0 ∈ T(x0) , and v0 ∈ A(x0) ,
based on Theorem 3.1 and Nadler [8], there exist {xn}, {un} , and {vn} such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn+1 ∈ K(xn),
un+1 ∈ T(xn+1), ‖un+1 − un‖ � (1 + (1 + n)−1)H(T(xn+1), T(xn)),
vn+1 ∈ A(xn+1), ‖vn+1 − vn‖ � (1 + (1 + n)−1)H(A(xn+1), A(xn)),
〈 xn+1, y − xn+1〉 � 〈 xn, y − xn+1〉 − ρ〈N(un, vn),η(y, xn+1)〉 , ∀y ∈ K(x),

n = 0, 1, 2 . . .
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THEOREM 4.1. Let K : H → 2H be a set-valued mapping such that K(x) has
the form of (2.6). Let T, A : H → CB(H) be γ -H -Lipschitz continuous and μ -H -
Lipschitz continuous, respectively. Let N : H × H → H be α -strongly monotone
with respect to T and β -Lipschitz continuous in the first argument, and ξ -Lipschitz
conouous in the second argument. Let m : H → H be σ -Lipschitz continuous and
η : H × H → H be s -strongly monotone and τ -Lipschitz continuous. Suppose that
Hypotheses 2.1 and 2.2 hold and that the following inequalities hold:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|ρ − α−k
β2γ 2−k2 | <

√
(α−k)2−(β2γ 2−k2)4σ(1−σ)

β2γ 2−k2 ,

k = βγ
√

1 − 2s + τ2 + τξμ + ν, k < βγ ,

α > k +
√

(β2γ 2 − k2)4σ(1 − σ), ρk + 2σ < 1.

(4.2)

Then the iterative sequences {xn}, {un} , and {vn} generated byAlgorithm4.1 converge
strongly to x, u , and v respectively and (x, u, v) is a solution of the problem (2.1).

Proof. It follows from (4.1) that

〈 xn+1, y − xn+1〉 � 〈 xn, y − xn+1〉 − ρ〈N(un, vn),η(y, xn+1)〉
+ρb(xn, xn+1) − ρb(xn, y), ∀y ∈ K(xn) (4.3)

and

〈 xn+2, y − xn+2〉 � 〈 xn+1, y − xn+2〉 − ρ〈N(un+1, vn+1),η(y, xn+2)〉
+ρb(xn+1, xn+2) − ρb(xn+1, y), ∀y ∈ K(xn+1). (4.4)

Adding 〈−m(xn), y − xn+1〉 to two sides of the inequality (4.3) and then, taking
y = xn+2 − m(xn+1) + m(xn) ∈ K(xn) , we obtain

〈 xn+1 − m(xn), xn+2 − xn+1 − m(xn+1) + m(xn)〉
� 〈 xn − m(xn), xn+2 − xn+1 − m(xn+1) + m(xn)〉

−ρ〈N(un, vn),η(xn+2 − m(xn+1) + m(xn), xn+1)〉
+ρb(xn, xn+1) − ρb(xn, xn+2 − m(xn+1) + m(xn)). (4.5)

Adding 〈−m(xn+1), y − xn+2〉 to two sides of the inequality (4.4) and then, taking
y = xn+1 − m(xn) + m(xn+1) ∈ K(xn+1) , we obtain

〈 xn+2 − m(xn+1), xn+1 − xn+2 − m(xn) + m(xn+1)〉
� 〈 xn+1 − m(xn+1), xn+1 − xn+2 − m(xn) + m(xn+1)〉

−ρ〈N(un+1, vn+1),η(xn+1 − m(xn) + m(xn+1), xn+2)〉
+ρb(xn+1, xn+2) − ρb(xn+1, xn+1 − m(xn) + m(xn+1)). (4.6)

From Hypothesis 2.2, we know that

η(xn+1 − m(xn) + m(xn+1), xn+2) = −η(xn+2 − m(xn+1) + m(xn), xn+1)
= η(xn+1 − xn+2, m(xn) − m(xn+1)). (4.7)
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It follows from (4.5)–(4.7) that

‖ xn+1 −xn+2 − (m(xn) − m(xn+1))‖2

� 〈 xn − xn+1 − (m(xn) − m(xn+1)), xn+1 − xn+2 − (m(xn) − m(xn+1))〉
−ρ〈N(un, vn),η(xn+1 − xn+2, m(xn) − m(xn+1))〉
+ρ〈N(un+1, vn+1),η(xn+1 − xn+2, m(xn) − m(xn+1))〉
+ρ[b(−xn, xn+1) − b(−xn, xn+2 − m(xn+1) + m(xn))
+b(xn+1, xn+1 − m(xn) + m(xn+1)) − b(xn+1, xn+2)]

� 〈 xn − xn+1 − (m(xn) − m(xn+1)), xn+1 − xn+2 − (m(xn) − m(xn+1))〉
−ρ〈N(un, vn) − N(un+1, vn+1),η(xn+1 − xn+2, m(xn) − m(xn+1))〉
+ρb(xn+1 − xn, xn+1 − xn+2 − (m(xn) − m(xn+1)))

� 〈 xn − xn+1 − ρ(N(un, vn) − N(un+1, vn)), xn+1 − xn+2 − (m(xn) − m(xn+1))〉
−〈m(xn) − m(xn+1), xn+1 − xn+2 − (m(xn) − m(xn+1))〉
+ρ〈N(un, vn) − N(un+1, vn), xn+1 − xn+2 − (m(xn) − m(xn+1))
−η(xn+1 − xn+2, m(xn) − m(xn+1))〉
−ρ〈N(un+1, vn) − N(un+1, vn+1),η(xn+1 − xn+2, m(xn) − m(xn+1))〉
+ρν‖xn+1 − xn‖ · ‖xn+1 − xn+2 − (m(xn) − m(xn+1))‖

� {‖m(xn) − m(xn+1)‖ + ‖xn − xn+1 − ρ(N(un, vn) − N(un+1, vn))‖
+ρν‖xn+1 − xn‖} · ‖xn+1 − xn+2 − (m(xn) − m(xn+1))‖
+ρ‖N(un, vn) − N(un+1, vn)‖ · ‖xn+1 − xn+2 − (m(xn) − m(xn+1))
−η(xn+1 − xn+2, m(xn) − m(xn+1))‖
+ρ‖N(un+1, vn) − N(un+1, vn+1)‖ · ‖η(xn+1 − xn+2, m(xn) − m(xn+1))‖. (4.8)

Since η is s -strongly monotone and τ -Lipschitz continuous, we have

‖η(xn+1 − xn+2, m(xn) − m(xn+1))‖ � τ‖xn+1 − xn+2 − (m(xn) − m(xn+1))‖ (4.9)

and

‖xn+1 − xn+2 − (m(xn) − m(xn+1)) − η(xn+1 − xn+2, m(xn) − m(xn+1))‖
�

√
1 − 2s + τ2‖xn+1 − xn+2 − (m(xn) − m(xn+1))‖. (4.10)

It follows from (4.8)–(4.10) that

‖xn+1 − xn+2‖ � 2‖m(xn) − m(xn+1)‖ + ‖xn − xn+1 − ρ(N(un, vn) − N(un+1, vn))‖
+ρν‖xn − xn+1‖ + ρ

√
1 − 2s + τ2‖N(un, vn) − N(un+1, vn)‖

+ρτ‖N(un+1, vn) − N(un+1, vn+1)‖. (4.11)

Since N(·, ·) is α -strongly monotone with respect to T and β -Lipschitz continuous
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in the first argument and T is γ -H -Lipschitz continuous, we have

‖N(un, vn) − N(un+1, vn)‖ � β‖un − un+1‖
� βH(T(xn), T(xn+1))

� βγ
(

1 +
1

1 + n

)
‖xn − xn+1‖ (4.12)

and

‖xn − xn+1 − ρ(N(un, vn) − N(un+1, vn))‖2

� ‖xn − xn+1‖2 − 2ρ〈 xn − xn+1, N(un, vn) − N(un+1, vn)〉
+ ρ2‖N(un, vn) − N(un+1, vn)‖2

�
(

1 − 2ρα + ρ2β2γ 2

(
1 +

1
1 + n

))
‖xn − xn+1‖2. (4.13)

By using ξ -Lipschitz continuity of N(·, ·) in the second argument and μ -H -Lipschitz
continuity of A , we get

‖N(un+1, vn) − N(un+1, vn+1)‖ � ξ‖vn − vn+1‖
� ξ

(
1 +

1
1 + n

)
H(A(xn), A(xn+1))

� ξμ
(

1 +
1

1 + n

)
‖xn − xn+1‖. (4.14)

Since m is σ -Lipschitz continuous, we obtain

‖m(xn) − m(xn+1)‖ � σ‖xn − xn+1‖. (4.15)

From (4.11)–(4.15), we have

‖xn+1 − xn+2‖ � θn‖xn − xn+1‖, (4.16)

where

θn =

√
1 − 2ρα + ρ2β2γ 2

(
1 +

1
1 + n

)2

+ ρβγ
(

1 +
1

1 + n

) √
1 − 2s + τ2

+ ρτξμ
(

1 +
1

1 + n

)
+ ρν + 2σ.

Letting

θ =
√

1 − 2ρα + ρ2β2γ 2 + ρ(βγ
√

1 − 2s + τ2 + τξμ + ν) + 2σ.

We know that θn → θ as n → ∞ . It follows from (4.2) that 0 � θ < 1 . Hence
θn < 1 for n sufficiently large. Therefore (4.16) implies that {xn} is a Cauchy
sequence in H and we can suppose that xn → x ∈ H .



AUXILIARY PRINCIPLE TECHNIQUE 349

Since T and A are both H -Lipschitz continuous, from (4.1), we get

‖un − un+1‖ �
(

1 +
1

1 + n

)
H(T(xn), T(xn+1))

�
(

1 +
1

1 + n

)
γ ‖xn − xn+1‖

and

‖vn − vn+1‖ �
(

1 +
1

1 + n

)
H(A(xn), A(xn+1))

�
(

1 +
1

1 + n

)
γ ‖xn − xn+1‖.

This imply that {un} and {vn} are also Cauchy sequences in H . Let un → u and
vn → v as n → ∞ .

Furhter, we have

d(u, T(x)) � ‖un − u‖ + d(un, T(x))
� ‖un − u‖ + H(T(xn), T(x))
� ‖un − u‖ + γ ‖xn − x‖ → 0.

This implies that u ∈ T(x) . Similarly, we can prove that v ∈ A(x) . By Theorem 3.1,
we know that there exists a unique w ∈ K(x) such that

〈w, y−w〉 �〈 x, y−w〉 −ρ〈N(u, v),η(y, v)〉 +ρb(x, w)−ρb(x, y), ∀y∈K(x). (4.17)

By applying (4.3) and (4.17) and similar argument as proving (4.11), we can prove that

‖xn+1 − w‖ � 2‖m(xn) − m(x)‖ + ‖xn − x − ρ(N(un, vn) − N(u, vn))‖
+ρν‖xn − x‖ + ρ

√
1 − 2s + τ2‖N(un, vn) − N(u, vn)‖

+ρτ‖N(u, vn) − N(u, v)‖. (4.18)

From the assumptions, we know that m and N(·, ·) are continuous. Therefore (4.18)
implies that xn → w as n → ∞ . Since xn → x , we must have x = w . It follows from
(4.17) that (x, u, v) is a solution of the problem (2.1). This completes the proof.

From Theorem 4.1, we can obtain the following corollaries.

COROLLARY 4.1. Let T, A, K, N, m, and b be the same as in Theorem 4.1. Let g :
H → H be s -strongly monotone and τ -Lipschitz continuous. Suppose that Hypotheses
2.1 and 2.3, and condition (4.2) hold. Then the iterative sequences {xn}, {un} , and
{vn} generated by Algorithm 4.2 converge strongly to x, u , and v respectively and
(x, u, v) is a solution of the problem (2.2).

COROLLARY 4.2. Let T, A, K, N, m, and b be the same as in Theorem 4.1. Suppose
thatHypothesis 2.1. If condition (4.2) holds for k = μξ+ν , then the iterative sequences
{xn}, {un} , and {vn} generated by Algorithm 4.3 converge strongly to x, u , and v
respectively and (x, u, v) is a solution of the problem (2.3).



350 NAN-JING HUANG AND YA-PING FANG

COROLLARY 4.3. Let T, A, K, N,η, m, and b be the same as in Theorem 4.1.
Suppose that Hypothesis 2.3 holds. If condition (4.2) holds for k = νξ , then the
iterative sequences {xn}, {un} , and {vn} generated by Algorithm 4.4 converge strongly
to x, u , and v respectively and (x, u, v) is a solution of the problem (2.4).

REMARK 4.1. Theorem 4.1 improves and generalizes the corresponding results of
[2, 3, 5, 9, 12–14].
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