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PLANAR PACKINGS AND MAPPINGS

RELATED TO CERTAIN MINMAX PROBLEMS

SEON-HONG KIM

(communicated by A. M. Fink)

Abstract. For any integer N � 1 , we obtain the extremal values of the minmax problem for
exponential sums,

f (N) := min
ai real

max

{∣∣∣∣∣
N∑

n=1

eian

∣∣∣∣∣ ,
∣∣∣∣∣

N∑
n=1

eiNan

∣∣∣∣∣
}

.

In particular, the two extremal problems f (3) and

max
a,b,c∈[0,2π]

min
{∣∣∣(eia − eib)(eib − eic)(eic − eia)

∣∣∣ , ∣∣∣(ei3a − ei3b)(ei3b − ei3c)(ei3c − ei3a)
∣∣∣}

are reduced to the problems about the packing of certain convex sets in the plane. This packing
method also can be used to solve some other extremal problems.

1. Introduction

There is an extensive literature ([3], [4], [5], [6]) concerning planar extremal prob-
lems. In this paper, we study certain minmax problems about unit vectors in the plane
that are best formulated in terms of complex exponentials. These problems are con-
nected with packings of certain planar convex sets. First, we consider the minimum
of sums of three vectors on the unit circle. It is not difficult to determine the value
m(w) := mina,b∈[0,w]

∣∣1 + eia + eib
∣∣ , where 0 � w � 2π . The function m(w) is

continuous and we observe that it is obtained when⎧⎪⎨
⎪⎩

a = w, b = w or 0, 0 � w � π,

a = w, b = w
2 , π < w < 4

3π,

a = 2
3π, b = 4

3π, 4
3π � w � 2π.

(1.1)

In particular, m(π) = 1 and m(w) = 0 if w � 4π/3 . A more interesting problem is
the determination of f (3) , where, for an integer N � 2 ,

f (N) := min
ai real

max

{∣∣∣∣∣
N∑

n=1

eian

∣∣∣∣∣ ,
∣∣∣∣∣

N∑
n=1

eiNan

∣∣∣∣∣
}

.
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In fact, in Section 2, we will see that the determination of f (3) can be reduced to a
problem about the packing of certain convex sets in the plane. This packing method
also can be used to solve some other extremal problems. For example, one can use it to
obtain the extremal value of

g(3) : = max
a,b,c∈[0,2π]

min
{∣∣(eia − eib)(eib − eic)(eic − eia)

∣∣ ,∣∣(ei3a − ei3b)(ei3b − ei3c)(ei3c − ei3a)
∣∣}

and some other related values. In Section 3, we will state some of these results without
proof, but will provide the figures of packings to illustrate the method and their proofs.

We note that switching min and max in f (3) and g(3) leads to trivial problems.
For f (3) we have

∣∣1 + eia + eib
∣∣2 = 2(cos a + cos b + cos (a − b)) + 3,∣∣1 + ei3a + ei3b
∣∣2 = 2(cos (3a) + cos (3b) + cos 3(a − b)) + 3.

Thus the original problem is essentially reduced to studying the functions

F1(a, b) := cos a + cos b + cos (a − b),
F2(a, b) := cos (3a) + cos (3b) + cos 3(a − b).

(1.2)

Let F = (F1, F2) : [0, 2π]2 → R2 , where x = F1(a, b) and y = F2(a, b) . By the
implicit function theorem, every point except the points where the Jacobian is 0 has a
neighborhood in which F is 1 - 1. But this does not imply that any restriction of F
to a connected subdomain with Jacobian �= 0 inside and Jacobian = 0 on boundaries
is invertible. But in this particular case it is true. In order to prove this, we use
upper envelopes and lower envelopes of the Lissajous figure of (1.2). We can find
both envelopes by doing computational algebraic geometry with Groebner bases. The
detailed proof of this also will be omitted.

In Section 4 , the extremal value f (N) , N � 4 , is calculated. There has been a
lot of work on sums of roots of unity, and in particular vanishing sums of such roots,
to which the result in Section 4 is connected. Arising from being of intrinsic interest,
vanishing sums of roots of unity arise naturally in a number of algebraic, geometric,
and combinatorial contexts (see [1], [2], [9], [11], [12]). For a partial survey up to 1978,
see [8]. Lam and Leung [7] showed recently by using technique of group rings that, for
any positive integer m (i.e. m ∈ N ), the set of all possible integers n for which there
exist m th roots of unity α1, · · · ,αn ∈ C such that α1 + · · · + αn = 0 is exactly the
collection of N -combinations of the prime divisors of m . We will show some related
results to the above in Section 4 that, for N � 4 ,

N∑
n=1

eian =
N∑

n=1

eiNan = 0

for some distinct a1, · · · , aN , 0 � ai < 2π , i.e. f (N) = 0 .
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2. f(N) for N=2,3

In this section, we study f (2) and f (3) . Here is the answer for N = 2 .

PROPOSITION 2.1. We have that f (2) = 1 .

Proof. We observe that f (2) = mina∈[0,2π] max
{|1 + eia| , ∣∣1 + ei2a

∣∣} . We easily
see that ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|eia + 1| � |ei2a + 1| and |eia + 1| > 1, 0 � a < 2
3π,

|eia + 1| = |ei2a + 1| = 1, a = 2
3π,

|eia + 1| < |ei2a + 1| and |eia + 1| > 1, 2
3π � a < 4

3π,

|eia + 1| = |ei2a + 1| = 1, a = 4
3π,

|eia + 1| � |ei2a + 1| and |eia + 1| > 1, 4
3π < a � 2π.

Hence f (2) = 1 . �

In the case of N = 3 , our first assertion is: If

f (3) = min
a,b∈[0,2π]

max
{∣∣1 + eia + eib

∣∣ , ∣∣1 + ei3a + ei3b
∣∣}

is extremal, then the two moduli are equal. We observe that if a = 3π/10 and b =
10π/9 , then

∣∣1 + eia + eib
∣∣ = 0.798818 · · · and

∣∣1 + ei3a + ei3b
∣∣ = 0.716736 · · · . So

we see that

f (3) <

√
3

2
= 0.866025 · · · .

On the other hand, if 1 , eia and eib (1 , ei3a and ei3b ) lie on the same closed half
complex plane,

∣∣1 + eia + eib
∣∣ � 1 (

∣∣1 + ei3a + ei3b
∣∣ � 1 ). But f (3) < 1 . So we

have
f (3) = min

0<a<π
π<b<a+π

max
{∣∣1 + eia + eib

∣∣ , ∣∣1 + ei3a + ei3b
∣∣} .

Define two functions s(a, b), t(a, b) on 0 < a < π, π < b < a + π by

s(a, b) : =
∣∣1 + eia + eib

∣∣2 = 2(cos a + cos b + cos (a − b)) + 3,

t(a, b) : =
∣∣1 + ei3a + ei3b

∣∣2 = 2(cos (3a) + cos (3b) + cos 3(a − b)) + 3.

Now we prove our first assertion.

PROPOSITION 2.2. If f (3) is extremal, then the two moduli are equal.

Proof. For fixed a , 0 < a < π , the extremal value of

min
π<b<a+π

max{s(a, b), t(a, b)}

is attained at a point (a, b) that satisfies one of the following conditions; (i) ds
db = 0 ,

(ii) dt
db = 0 , (iii) (a, b) = (a, π) or (a, a + π) , (iv) s(a, b) = t(a, b) .
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We first consider (i) and (ii). We compute that, on 0 < a < π , π < b < a + π ,

∂

∂b
s(a, b) = 4 cos

a
2

sin
(a

2
− b
)

= 0 if and only if b =
a
2

+ π,

and

∂

∂b
t(a, b) = 12 cos

a
2

sin
(a

2
− b
)

(2 cos a − 1) (2 cos (a − 2b) + 1) = 0

if and only if

b =
a
2

+
2π
3

,
a
2

+ π,
a
2

+
4π
3

. (2.1)

Hence (i) and (ii) hold on the lines in (2.1). Now we consider all a , 0 < a < π . By
using relative extrema, we can easily show that

z1 : = min
0<a<π

max

{√
s

(
a,

a
2

+
2π
3

)
,

√
t

(
a,

a
2

+
2π
3

)}

= min
0<a<π

max

{√
s

(
a,

a
2

+
4π
3

)
,

√
t

(
a,

a
2

+
4π
3

)}

=
√

3
2

and that

min
0<a<π

max

{√
s
(
a,

a
2

+ π
)
,

√
t
(
a,

a
2

+ π
)}

is extremal when s (a, a/2 + π) = t (a, a/2 + π) = 1 . Hence the points (a, b) with
(i) or (ii) do not have an extremal value <

√
3/2 when the two moduli are not equal.

For (iii), we have s(a, π) = t(a, π) = s(a, a + π) = t(a, a + π) = 1 . This proves the
proposition. �

By Proposition 2.2, in order that f (3) be extremal, we must have

s(a, b) = t(a, b),

where s(a, b) = 2(cos a+cosb+cos (a − b))+3 and t(a, b) = 2(cos (3a)+cos (3b)+
cos 3(a − b)) + 3 . Hence our original problem is reduced essentially to the study of
the functions

F1(a, b) = cos a + cos b + cos (a − b),
F2(a, b) = cos 3a + cos 3b + cos 3(a − b).

(2.2)

In fact, we can rephrase the problem on f (3) as : “If c0 = −1.204094 · · · is the real
root of 1 + 2(1 + x + x2 + x3) = 0 , then the sets

{(a, b) ∈ [0, 2π]2 : cos a + cos b + cos (a − b) � c0},
{(a, b) ∈ [0, 2π]2 : cos 3a + cos 3b + cos 3(a − b) � c0}

(2.3)

intersect in at most a finite number of points (a, b) modulo 2π , at which equality
holds.”
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If the above assertion can be proved and the interior of the curves Fi(a, b) = c0 (i = 1, 2)
represent points where Fi(a, b) < c0 , then, by Proposition 2.2, f (3) =

√
2c0 + 3 ,

where c0 is the real root of 1 + 2(1 + x + x2 + x3) = 0 . This means that f (3) =
0.769292 · · · . But we have

cos a + cos b + cos (a − b) + 1 = 4 cos
a
2

cos
a − b

2
cos

b
2
, (2.4)

so the ovals in F1(a, b) = −1 are bounded by the lines a = π, b = π, b = a + π and
b = a − π . Moreover, we will show, in Lemma 2.3 that, for c < −1 ,

{(a, b) ∈ [0, 2π]2 : cos a + cos b + cos (a − b) � c}
is a subset of the set that is bounded by the lines a = π, b = π, b = a+π and b = a−π .
So, by continuity of the curves, as c decreases from −1 to −3 , the ovals shrink and
finally disappear. So the interior of the curves Fi(a, b) = c0 (i = 1, 2) represent points
where Fi(a, b) < c0 . Thus in order to get f (3) =

√
2c0 + 3 , it is enough to show the

rephrased assertion on f (3) is true. Here, some diagrams are enlightening.

π 2 π
a

π

2 π
b

π 2 π
a

π

2 π
b

Figure 2.1 a: F1(a, b) = c0 Figure 2.1 b: F2(a, b) = c0

π
a

π

b

Figure 2.2

We plot the relations in (2.3) with equality on 0 � a � 2π, 0 � b � 2π . The
“ovals” in Figure 2.1 a have a very triangular shape and are mirror images of each other
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in the a = b line. The plot here looks really like a lattice packing of these ovals.
In order to plot the second equation, we must shrink both of these ovals by a factor
of 3 , and then extend the resulting configulation modulo 2π , so we get Figure 2.1 b.
We combine these two plots in Figure 2.2. We have a PACKING that is best possible
in the sense that any other value of c0 would either give overlapping interiors or no
points of contact. In the language of lattice theory (at least roughly), the set of large
bodies here is admissible for the “fat lattice” formed by the small bodies. The above
thus transforms local information into global information, and opens the possibility of
establishing the result by just checking the six symmetries. We first show that the ovals
in Figure 2.1 are in fact convex. It is obviously enough to consider the first case. Define,
for 0 � a, b � 2π ,

K1(a, b) : = cos a + cos b + cos (a − b) − c,

K2(a, b) : = cos 3a + cos 3b + cos 3(a − b) − c,

where c < −1 is a constant. Then, since c < −1 , K1(a, b) > 0 if a = 0, 2π or
b = 0, 2π . We observe that implicit differentiation with respect to a in K1(a, b) = 0
gives (

db
da

)
K1

= cos
b
2

csc
(a

2
− b
)

sec
a
2

sin

(
a − b

2

)
,

(
d2b
da2

)
K1

= −1
4

cos

(
b − a

2

)
cos

b
2

csc3
(a

2
− b
)

sec2 a
2

(−3 + cos (a − 2b) + cos (2a − b)) + cos (a + b)) ,

(2.5)

and implicit differentiation with respect to a in K2(a, b) = 0 gives(
db
da

)
K2

=
(

cos
b
2

sec
a
2

sin

(
a − b

2

)
csc
(a

2
− b
)

(2 cos (2a − b) + 1)(2 cos b − 1)
)/(

(2 cos a − 1)(2 cos (a − 2b) + 1)
)

,(
d2b
da2

)
K2

=
(
−3 cos

b − a
2

cos
b
2
(2 cos b − 1)(2 cos (b − a) − 1) csc3

(a
2
− b
)

sec2 a
2

(−3 + cos (3a − 6b) + cos (6a − 3b) + cos (3a + 3b))
)/

(
4(2 cos a − 1)2(2 cos (a − 2b) + 1)3

)
,

(2.6)
where

(
db
da

)
Ki

denotes db
da from Ki(a, b) = 0 .

LEMMA 2.3. There is no locus of K1(a, b) = 0 in the regions bounded by
(a) 0 � a � π, a + π � b � 2π ,
(b) 0 � a � π, 0 � b � π ,
(c) π � a � 2π, 0 � b � a − π ,
(d) π � a � 2π, π � b � 2π .
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Proof. The cases (c) and (d) are symmetric with (a) and (b) about b = a
and b = −a + 2π , respectively. So it suffices to consider the cases (a) and (b) .
For (a) , we have cos b � cos (a + π) , since a + π � b � 2π . So K1(a, b) =
cos a+cos b+cos (a − b)−c � cos a+cos (a + π)+cos (a − b)−c = cos (a − b)−c >
0 , since c < −1 . For (b) , we observe that cos a + cos b + cos (a − b) � −1 ,
since cos a + cos b + cos (a − b) + 1 = 4 cos (a/2) cos ((a − b)/2) cos (b/2) and
−π/2 � (a − b)/2 � π/2 . But c < −1 . Hence K1(a, b) > 0 , which completes the
proof. �

Lemma 2.3 implies that, by (2.4), the interior of the curves Fi(a, b) = c0 (i = 1, 2)
represents points where Fi(a, b) < c .

a2ππ

π

2π

b

Figure 2.3

PROPOSITION 2.4. The closed interiors of Ki(a, b) = 0 (i = 1, 2) are convex.

Proof. It suffices to consider K1(a, b) . By (2.5),(
d2b
da2

)
K1

< 0 if and only if cos
b − a

2
cos

b
2

csc
(a

2
− b
)

> 0,

since −3 + cos (a − 2b) + cos (2a − b) + cos (a + b) < 0 for any a, b . Here we have
four cases : cos ((b − a)/2), cos (b/2), csc (a/2 − b) are + + + , + − − , − + −
and − − + . Then we can get Figure 2.3 by considering each case, where the shadowed

open domains are for
(

d2b
da2

)
K1

> 0 , the remaining open domains are for
(

d2b
da2

)
K1

< 0

and the boundaries are for
(

d2b
da2

)
K1

= 0 . By Lemma 2.3, the locus of K1(a, b) = 0 is

contained in the region bounded by a = π, b = π, b = a + π and b = a − π . By the

signs of
(

d2b
da2

)
K1

, the closed interior of K1(a, b) = 0 is convex. �

For the main result, we need the following two propositions. Denote the resultant
of p(x) and q(x) by

resx (p(x), q(x)) .
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PROPOSITION 2.5. Let σ = 0.970123422 · · · and τ = 5.313061884 · · · be such
that cosσ and cos τ satisfy

2x3 + 2x2 − 1 = 0.

Then, on b = a + σ and b = τ , we have

K1(a, b) � 0, K2(a, b) � 0,

where c is the real root of 1 + 2(1 + x + x2 + x3) = 0 .

Proof. We write out the proof for the case b = a + σ . The details for the case
b = τ will be written by using [ ] next to the case b = a + σ unless they are same.
On b = a + σ [b = τ ],

K1(a, b) = cos a + cos b + cos (a − b) − c

= cos a(1 + cosσ) − sin a sinσ + cosσ − c

[cos a(1 + cos τ) + sin a sin τ + cos τ − c].

So we need to show that

cos a(1+cosσ)−sin a sinσ+(cosσ−c) � 0 [cos a(1+cos τ)+sin τ sin a+(cos τ−c) � 0].

Since cosσ − c > 0 ( cos τ − c > 0 ), it is enough to show that

(cosσ − c)2 = (cosσ + 1)2 + (sinσ)2 = 2 cosσ + 2, (2.7)

[
(cos τ − c)2 = (cos τ + 1)2 + (sin τ)2 = 2 cos τ + 2

]
(2.8)

Since cosσ = cos τ , we only need to show that (2.7) is true. Now, since

2

(
y − 2

2

)3

+ 2

(
y − 2

2

)2

− 1 =
1
4

(
y3 − 4y2 + 4y − 4

)
,

we see that x3 − 4x2 + 4x − 4 is the minimal polynomial of 2 cosσ + 2 . Next, by
computer algebra,

resx

(
1 + 2(1 − x + x2 − x3), 2(y − x)3 + 2(y − x) − 1

)
= −16(y3 − 2y − 2)(4y6 + 12y4 − 12y3 + 28y2 − 18y + 9),

and one deduces that x3 − 2x − 2 is the minimal polynomial of cosσ − c . But if
p(x) = x3−4x2 +4x−4 , then p(x2) = (x3−2x+2)(x3−2x−2) . So x3−4x2 +4x−4
is the minimal polynomial of (cosσ − c)2 . Hence (cosσ − c)2 and 2 cosσ + 2 have
the same minimal polynomial, which gives us the desired equality. Now (2.8) has
exactly the form of the equality (2.7). Similar arguments show that

(cos (3σ)−c)2 = (cos (3σ)+1)2+(sin (3σ))2 = 2 cos (3σ)+2 (= 0.532260178 · · ·).
So b = a + σ also implies K2(a, b) � 0 . This completes the proof of the proposi-
tion. �
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PROPOSITION 2.6. Let a0 = 2.656530942 · · · be such that cos a0 satisfies

4x3 − 2x + 1 = 0.

Then

K1(a0,−a0 + 2π) = K2(a0,−a0 + 2π) = 0,

K1(a0, 2a0) = K2(a0, 2a0) = 0,

where c is the real root of 1 + 2(1 + x + x2 + x3) = 0 .

Proof. We can see that, for b0 = 2a0 or b0 = −a0 + 2π ,

K1(a0, b0) = cos (2a0) + 2 cos a0 − c,

K2(a0, b0) = cos (6a0) + 2 cos (3a0) − c.

Now 4 cos3 a0 − 2 cosa0 + 1 = cos (3a0) + cos a0 + 1 and

0 = (cos (3a0) + cos a0 + 1) (cos (3a0) − 6 cos (2a0) + 13 cos a0 − 7)

=1 + 2
(
1 + (cos (2a0) + 2 cos a0) + (cos (2a0) + 2 cos a0)2 + (cos (2a0) + 2 cos a0)3

)
.

Since c is the only real root of 1 + 2(1 + x + x2 + x3) = 0 ,

c = cos (2a0) + 2 cos a0,

and this means that K1(a0,−a0 + 2π) = K1(a0, 2a0) = 0 . For K2 ,

0 = (cos (3a0) + cos (a0) + 1) (cos (9a0) + cos (3a0) − 1))
(2 cos (6a0) − 2 cos (4a0) − 8 cos (3a0) + 4 cosa0 + 5)

=1 + 2 (1 + (cos (6a0) + 2 cos (3a0))+

(cos (6a0) + 2 cos (3(a0))2 + (cos (6a0) + 2 cos (3a0))3
)
,

which, by the same reasoning, proves the result. �
Now we have

THEOREM 2.7. If c0 is the real root of 1 + 2(1 + x + x2 + x3) = 0 , then the sets

{(a, b) ∈ [0, 2π)2 : cos a + cos b + cos (a − b) � c0},
{(a, b) ∈ [0, 2π)2 : cos (3a) + cos (3b) + cos 3(a − b) � c0}

intersect in at most a finite number of points (a, b) modulo 2π , at which equality holds.

Proof. Take c = c0 in Ki(a, b) (i = 1, 2) as the real root of 1+2(1+x+x2+x3) =
0 . Let

A = {(a, b) ∈ [0, 2π)2 |K1(a, b) = 0},
B = {(a, b) ∈ [0, 2π)2 |K2(a, b) = 0}.

Then, by Lemma 2.3, the locus of A consists of at least two closed curves, one of which
is bounded by 0 � a � π , π � b � 2π and b � a + π , and the other of which is
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bounded by π � a � 2π , 0 � b � π and b � a− π , since the equation K1(a, b) = 0
is invariant if we switch a and b . Moreover, the curves are again symmetric about
b = −a + 2π , so it is enough to consider the region, say

� = {(a, b) ∈ [0, π] × [π, 2π) : b � −a + 2π, b < a + π, a < π}.
Let

D := {(a, b) ∈ � |
(

db
da

)
K1

=
(

db
da

)
K2

and K1(a, b) = K2(a, b) = 0}.

From (2.5) and (2.6), we can compute that, on (a, b) ∈ � ,(
db
da

)
K1

=
(

db
da

)
K2

if and only if

cos

(
a − b

2

)
cos

b
2

csc
(a

2
− b
)

sin

(
a − b

2

)
sin

(
a − b

2

)
sin

(
a + b

2

)
sin

b
2

tan
a
2

= 0

if and only if
b = 2a, a + π,−a + 2π.

But, for b = a + π , K1(a, b) = K2(a, b) = −1 − c0 for b = a + π . The K1(a, b) =
K2(a, b) = 0 implies that c0 = −1 , which is not the case. Suppose that b = 2a or
b = −a + 2π . Then we can see that

K1(a, b) = cos (2a) + 2 cos a − c0,

K2(a, b) = cos (6a) + 2 cos (3a) − c0

and equating these two formulae on c0 gives

−32
(
4 cos3 a − 2 cos a + 1

)
cos2 (a/2) sin2 (a/2)

(
cos2 (a/2) − sin2 (a/2)

)
= 0.

A calculation shows that the possible zeros of cos (a/2) = 0 and cos2 (a/2) −
sin2 (a/2) = 0 are a = π and a = π/2 , respectively, and there are no zeros sat-
isfying sin (a/2) = 0 . But a = π and a = π/2 do not correspond to c0 which is the
real root of 1 + 2(1 + x + x2 + x3) = 0 . Hence

D ⊂ {(a, b) ∈ � | (b = 2a or b = −a + 2π) and 4 cos3 a − 2 cos a + 1 = 0}
= {(a0,−a0 + 2π), (a0, 2a0)},

where a0 = 2.656530942 · · · is such that cos a0 satisfies 4x3 − 2x + 1 = 0 . Hence,
by Proposition 2.6, we have

D = {(a0,−a0 + 2π), (a0, 2a0)}.
The lines b = a+σ , b = τ that are given in Proposition 2.5 pass through (a0,−a0+2π)
and (a0, 2a0) given in Proposition 2.6, respectively. In fact,

2 cos3 (2a0) + 2 cos2 (2a0) − 1 =2 cos3 (2π − 2a0) + 2 cos2 (2π − 2a0) − 1

=(4 cos3 a0 − 2 cos a0 − 1)(4 cos3 a0 − 2 cos a0 + 1),
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and 2x3 + 2x2 − 1 = 0 has only one real root, so it follows from 2π − 2a0 < 2a0 that
σ = 2π− 2a0 and τ = 2a0 . On the other hand, by Proposition 2.4, the closed interiors
of Ki(a, b) = 0 (i = 1, 2) are convex. Hence the lines b = a + σ , b = τ are tangent
at (a0,−a0 + 2π) to two closed convex sets and at (a0, 2a0) to two closed convex sets,
respectively, since, on b = a + σ and b = τ , we have that

K1(a, b) � 0 and K2(a, b) � 0.

Therefore, it remains to show that the convex sets lie on opposite sides of the lines. We
shall show that (

d2b
da2

)
K1

(
d2b
da2

)
K2

< 0

at (a, b) = (a0, 2a0) and (a, b) = (a0,−a0 + 2π) . From (2.5) and (2.6), we can
compute that(

d2b
da2

)
K1

(
d2b
da2

)
K2

= −W(a, b)
(−1 + 2 cos (a − b)) (−1 + 2 cos b)

1 + 2 cos (a − 2b)
,

where −W(a, b) < 0 at (a, b) = (a0, 2a0) or (a0,−a0 + 2π) . Set

Φ := (−1 + 2 cos (a0 − b0)) (−1 + 2 cos b0) (1 + 2 cos (a0 − 2b0)) .

Then, by using κ := 4 cos3 a0 − 2 cos a0 + 1 = 0 ,

Φ = Φ + κ
(
4κ − 8 cos2 a0 − 8 cosa0 + 2

)
= 3 − 4 cos a0 − 8 cos2 a0

= −
(

cos a0 − −1 −√
7

4

)(
cos a0 − −1 +

√
7

4

)
.

Then we can check that

−1 −√
7

4
< cos a0 <

−1 +
√

7
4

.

Hence
(

d2b
da2

)
K1

(
d2b
da2

)
K2

< 0 at (a, b) = (a0, 2a0) and (a, b) = (a0,−a0 +2π) , which

proves the theorem. �

By Theorem 2.7, we have the answer for f (3) .

COROLLARY 2.8. f (3) =
√

2c + 3 , where c is the real root of 1+ 2(1+ x+ x2 +
x3) = 0 . Thus f (3) = 0.769292 · · · .

REMARK 2.9. Let F = (F1, F2) : [0, 2π]2 → R2 , where{
x = F1(a, b) = cos a + cos b + cos (a − b),
y = F2(a, b) = cos (3a) + cos (3b) + cos (3(a − b)).

(2.9)
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Figure 2.4

Here the Jacobian J of F is not equal to zero at any point of [0, 2π]2 except the
points on the given lines in Figure 2.4 on [0, 2π]2 . Let

R1 = Im F ∩ {(x, y) : x > −1},
R2 = Im F ∩ {(x, y) : x < −1}.

Then we can prove (details omitted) that
(a) the mapping under F whose domain is Ω1, Ω5 or Ω6 (or the domains sym-

metric about b = a , b = −a + 2π and origin) and codomain is R1 is invertible,
and

(b) the mapping under F whose domain is Ω2, Ω3 or Ω4 (or the domains sym-
metric about b = a , b = −a + 2π and origin) and codomain is R2 is invertible.

This is somewhat related to the Jacobian conjecture: given a polynomial mapping
F = (p, q) : C

2 → C
2 , if the Jacobian of F is equal to 1 , then F is invertible.

This conjecture was posed by O. Keller in 1939 and after 60 years it still remains an
open problem. In 1994, Pinchuk [10] constructed a counterexample to the so called
real Jacobian conjecture, which is stronger than the classical one. In fact, he found a
polynomial mapping F = (p, q) : R2 → R2 with a nonvanishing Jacobian which is not
a global diffeomorphism from R2 to R2 . In our example, even though the mapping
F = (F1, F2) is not a polynomial mapping but a trigonometric polynomial mapping,
it satisfies the conclusion of real Jacobian conjecture. Hence it suggests problems on
trigonometric polynomial mappings of Jacobian conjecture type.

In Figure 2.5, we have plotted the Lissajous figure of (2.9).
To prove (a) and (b) above we find upper envelopes and lower envelopes of the

Lissajous figure of (2.5) by doing computational algebraic geometry with Groebner
bases. In fact, for x � −1 , the Lissajous figure of (2.5) has upper envelope

y = x3 − 3x2 + 3,

and lower envelope

y2 − 8x3y − 72x2y − 126xy− 60y + 16x6 − 72x4 − 48x3 − 27x2 − 108x− 72 = 0.
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For x � −1 , the Lissajous figure of (2.5) has

y2 − 8x3y − 72x2y − 126xy− 60y + 16x6 − 72x4 − 48x3 − 27x2 − 108x− 72 = 0.

for both its upper envelope and lower envelope.

REMARK 2.10. We can get the value of f (3) by using Lagrange multipliers. In
fact, in

f (3) = min
a,b,c∈[0,2π]

max
{∣∣eia + eib + eic

∣∣ , ∣∣ei3a + ei3b + ei3c
∣∣} ,

we may multiply by e−i(a−b)/2 and e−i3(a−b)/2 respectively, to obtain, without loss of
generality,

f (3) = min
a,c∈[0,2π]

max
{∣∣eia + e−ia + eic

∣∣ , ∣∣ei3a + e−i3a + ei3c
∣∣} .

Observe that |eia + e−ia + eic|2 = |2 cos a + cos c + i sin c|2 = 4 cos2 a+4 cosa cos c+
1 . If we let t = cos a , u = cos c , then f (3) becomes

min
−1�t�1
−1�u�1

max
{
1 + 4t2 + 4tu, 1 + 4(4t3 − 3t)2 + 4(4t3 − 3t)(4u3 − 3u)

}
.

By Proposition 2.2, the two quantities are equal at the minimum. Hence one can set the
problem as:

min
−1�t�1
1�u�1

{
1 + 4t2 + 4tu

}
subject to

1 + 4t2 + 4tu = 1 + 4(4t3 − 3t)2 + 4(4t3 − 3t)(4u3 − 3u).

Using Lagrange multipliers, we can prove f (3) = |4T0 − 1| = 0.769292 · · · , where
T0 is the real root of 32T3 − 48T2 + 20T − 1 = 0 . However our packing method that
we used to first determine f (3) has other applications. In fact by using our packing
method one can prove the results in the following section. They do not seem to follow
from the Lagrange multiplier method. We state below the results without proof.
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3. Products of distances between 3 vectors on the unit circle

In Section 2, we had studied the minimum of sums of three vectors on the unit
circle. In this section, we consider products of distances between them. Let

g(3) = max
a,b,c∈[0,2π]

min
{∣∣(eia − eib)(eib − eic)(eic − eia)

∣∣ ,∣∣(ei3a − ei3b)(ei3b − ei3c)(ei3c − ei3a)
∣∣}

= max
a,b∈[0,2π]

min
{∣∣(1 − eia)(1 − eib)(eia − eib)

∣∣ , ∣∣(1 − ei3a)(1 − ei3b)(ei3a − ei3b)
∣∣} .

Notice that∣∣(1 − eia)(1 − eib)(eia − eib)
∣∣2 = 4 (− sin a + sin b + sin (a − b))2 ,∣∣(1 − ei3a)(1 − ei3b)(ei3a − ei3b)
∣∣2 = 4 (− sin (3a) + sin (3b) + sin 3(a − b))2

.
(3.1)

Define, for 0 < a, b < 2π ,

μ(a, b) := − sin a+sin b+sin (a − b), ν(a, b) := − sin (3a)+sin (3b)+sin 3(a − b).

Then
g(3) = max

a,b∈[0,2π]
min {2 |μ(a, b)| , 2 |ν(a, b)|}

and we can compute that

μ(a, b)ν(a, b) = 16 sin2 (a/2) sin2 (b/2) sin2 (a/2 − b/2)
(2 cos a + 1)(2 cos (a − b) + 1)(2 cos b + 1)

and μ(a, b)ν(a, b) > 0, < 0 in each open domain that is marked as +, − in Figure
3.1. We denote the union of the open domains that are marked as +, − in Figure 3.1
by POS and NEG , respectively.

+ +

+

+

+

b

2π4π

2π

4π
3

2π
3

3
2π
3

- -

a

-

--

+

+

++

+

+

+

-

Figure 3.1
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Define

g1(3) := max
(a,b)∈POS

min
{∣∣(1 − eia)(1 − eib)(eia − eib)

∣∣ , ∣∣(1 − ei3a)(1 − ei3b)(ei3a − ei3b)
∣∣} ,

g2(3) := max
(a,b)∈NEG

min
{∣∣(1 − eia)(1 − eib)(eia − eib)

∣∣ , ∣∣(1 − ei3a)(1 − ei3b)(ei3a − ei3b)
∣∣} ,

and set g(3) = max{g1(3), g2(3)} . By using the same packing method that determined
f (3) in Section 2, we have the following theorem.

THEOREM 3.1. We have

g1(3) = −2c2 = 3.813955827 · · · ,

g2(3) = 4,

g(3) = 4,

where c2 = −1.906977913 · · · is the smallest real root of 16x8 − 320x6 + 2184x4 −
5084 = 0 .

To prove Theorem 3.1 we use the observations below. By (3.1), our original
problems (g1(3) and g2(3) ) are essentially reduced to studying{

G1(a, b) = − sin a + sin b + sin (a − b),
G2(a, b) = − sin (3a) + sin (3b) + sin 3(a − b),

and { −G1(a, b) = sin a − sin b − sin (a − b),
G2(a, b) = − sin (3a) + sin (3b) + sin 3(a − b).

We then follow the procedure of the proof of Theorem 2.7 to prove the four theorems
below. The idea is based on the packing method we used in Section 2. The following
figures illustrate the method and its proof.

Theorem 3.2 tells us that g1(3) = −2c2 = 3.813955827 , where c2 is the smallest
real root of 16x8 − 320x6 + 2184x4 − 5084x2 + 2197 = 0 .

π 2 π
a

π

2 π
b

π 2 π
a

π

2 π
b

Figure 3.2 a: G1(a, b) = c2 Figure 3.2 b: G2(a, b) = c2
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π 2 π
a

π

b

Figure 3.3

THEOREM 3.2. Let c2 = −1.906977913 · · · , where c2 is the smallest real root of
16x8 − 320x6 + 2184x4 − 5084x2 + 2197 = 0 . The sets

{(a, b) ∈ [0, 2π)2 : G1(a, b) � c2},
{(a, b) ∈ [0, 2π)2 : G2(a, b) � c2}

intersect in at most a finite number of points (a, b) modulo 2π , at which equality holds.

Theorem 3.3 tells us that g2(3) = 4 .

π 2 π
a

π

2 π
b

π 2 π
a

π

2 π
b

Figure 3.4 a: −G1(a, b) = 2 Figure 3.4 b: G2(a, b) = 2

THEOREM 3.3. The sets

{(a, b) ∈ [0, 2π)2 : −G1(a, b) � 2},
{(a, b) ∈ [0, 2π)2 : G2(a, b) � 2}

intersect in at most a finite number of points (a, b) modulo 2π , at which equality holds.
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Figure 3.5

We also see that the packing method yields a proof of the following result. In fact,
Theorem 3.4 is used in the proof of Theorem 3.2.

π 2 π
a

π

2 π
b

π 2 π
a

π

2 π
b

Figure 3.6a: F1(a, b) = 0 Figure 3.6b: G1(a, b) = c1

π 2 π
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π
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Figure 3.7
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THEOREM 3.4. Let c1 = −
√

6
√

3 − 9 = −1.179959679 · · · and F1(a, b) =
cos a + cos b + cos (a − b) . The sets

{(a, b) ∈ [0, 2π)2 : F1(a, b) � 0},
{(a, b) ∈ [0, 2π)2 : G1(a, b) � c1}

intersect in at most a finite number of points (a, b) modulo 2π , at which equality holds.

4. f(N) for N �=2,3

In this section, we determine, for an integer N � 4 ,

f (N) = min
ai real

max

{∣∣∣∣∣
N∑

n=1

eian

∣∣∣∣∣ ,
∣∣∣∣∣

N∑
n=1

eiNan

∣∣∣∣∣
}

. (4.1)

First, we prove the following.

THEOREM 4.1. Let M be an integer � 2 . Then there are infinitely many even
numbers N(= 2α , α a positive integer � 2) such that, for each integer β , 0 � β �
log N
log 2 − 2 ,

N∑
n=1

eian =
N∑

n=1

ei(2βM)an = 0

for some suitable distinct a1, · · · , aN .

Proof. Let α, M be positive integers that are � 2 , and set N = 2α . Let

αn =
{ 2n−1

2α−1M
π, 1 � n � 2α−1,

αn−2α−1 + π, 2α−1 + 1 � n � 2α .

Thus the sequence {eiαn} consists of 2α−1 elements together with their negatives, so

N∑
n=1

eiαn = 0.

Next, for each integer 0 � β � α − 2 = log N
log 2 − 2 ,

∑
:=

N∑
n=1

eiαn(2βM) =
2α−1∑
n=1

e
iπ (2n−1)2β

2α−1 +
2α∑

n=2α−1+1

eiπ2βMe
iπ(2n−1)2β

2α−1

=
2α−1∑
n=1

e
iπ (2n−1)2β

2α−1 + eiπ2βM
2α−1∑
m=1

e
iπ(2m−1)2β

2α−1
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upon making the change of variable n = m + 2α−1 . If 2βM is odd, this is obviously
zero. Otherwise, ∑

= 2e−iπ2β−α+1
2α−1∑
n=1

e
i2π
(

n
2α−β−1

)
= 0,

since α − β − 1 � 1 . �

The above theorem answers our main question when N in (4.1) is 2α , where α
is a positive integer � 2 ; one takes M = 2α and β = 0 . For the cases N �= 2, 3 , we
divide the positive integers into the four congruence classes modulo 4. Without loss of
generality, we assume that one of the eian in our problem is fixed at 1 . We start with
the following lemma.

LEMMA 4.2. Let N be an integer � 4 .
(a) If N = 4k + 1 for some k ≡ 0 or 1 (mod 3) , then∑

0�n�N−3
n�= N−3

2

ei (2n+1)π
N−1 =

∑
0�n�N−3

n�= N−3
2

eiN (2n+1)π
N−1 = 0,

and
ei πN

6 + ei 5πN
6 + ei 9πN

6 = ei π6 + ei 5π
6 + ei 9π

6 = 0.

(b) If N ≡ 2 (mod 4) , then

ei πN
6 + ei 5πN

6 + ei 9πN
6 + ei 2πN

6 + ei 10πN
6 + eiπ

= ei π6 + ei 5π
6 + ei 9π

6 + ei 2π
6 + ei 10π

6 + eiπ = 0
(4.2)

and
ei πN

4 + ei 3πN
4 + ei 5πN

4 + ei 7πN
4 = ei π4 + ei 3π

4 + ei 5π
4 + ei 7π

4 = 0. (4.3)

(c) If N = 4k + 3 for some k ≡ 1 or 2 (mod 3) , then∑
1�n�N−2

n�= N−1
2

ei 2nπ
N−1 =

∑
1�n�N−2

n�= N−1
2

eiN 2nπ
N−1 = 0,

and
ei πN

6 + ei 5πN
6 + ei 9πN

6 = ei π6 + ei 5π
6 + ei 9π

6 = 0.

(d) If N = 3n , where n is odd � 3 , then(
0,

2πN
3n−4

,
4πN
3n−4

, · · · ,
(6n−10)πN

3n−4

)
≡
(

0,
2π

3n−4
,

4π
3n−4

, · · ·, (6n−10)π
3n−4

)
(mod 2π)

as multisets, and hence

1 + ei 2πN
3n−4 + ei 4πN

3n−4 + · · · + ei (6n−10)πN
3n−4

= 1 + ei 2π
3n−4 + ei 4π

3n−4 + · · · + ei (6n−10)π
3n−4 = 0.
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Proof. Wecan easily prove (b). The result of (d) is obvious from gcd (3n, 3n − 4) =
1 (here n is odd � 3 ). Also the idea of the proof of (c) is essentially same as that of
(a). Hence we only prove (a) for this proposition.

(a) The first part follows from∑
0�n�N−3

n�= N−3
2

ei (2n+1)π
N−1 =

∑
0�n� N−5

2

ei (2n+1)π
N−1 +

∑
N−1

2 �n�N−3

ei (2n+1)π
N−1

=
∑

0�n� N−5
2

ei (2n+1)π
N−1 +

∑
0�n� N−5

2

ei( 2n+1
N−1 +1)π = 0

and N(2n+1)π
N−1 ≡

(
2n+1
N−1 + 1

)
π (mod 2π) , where n is a nonnegative integer. For the

second part, we observe that(
πN
6

,
5πN

6
,
9πN

6

)
≡
{ ( π6 , 5π

6 , 9π
6 ) if k ≡ 0 (mod3),

( 5π
6 , π

6 , 9π
6 ) if k ≡ 1 (mod3)

(mod 2π ). This completes the proof. �
By using Lemma 4.2, we shall show the following.

PROPOSITION 4.3. Let N be an integer � 4 . Then

N∑
n=1

eian =
N∑

n=1

eiNan = 0

for some distinct a1, · · · , aN , 0 � ai < 2π , i.e.

f (N) = min
ai real

max

{∣∣∣∣∣
N∑

n=1

eian

∣∣∣∣∣ ,
∣∣∣∣∣

N∑
n=1

eiNan

∣∣∣∣∣
}

= 0.

Proof. We divide the positive integers N � 4 into the four congruence classes
modulo 4.
Case 1 N ≡ 0 (mod4) .
Choose

an =

{ (n−1)π
N , 1 � n � N

2 ,

(2n−N−2)π
2N + π, N

2 + 1 � n � N,

so that aN
2 +k+1 = ak+1 +π for 0 � k � N

2 −1 , since aN
2 +k+1 = 2( N

2 +k+1)−N−2)π
2N +π =

kπ
N + π = ak+1 + π . Also

eiNan + eiNan+1 = 0

for all odd integers n , 1 � n � N . In fact,

eiNan +eiNan+1 =

{
ei(n−1)π + einπ = 0, 1 � n � N

2 − 1,

ei
(

(2n−N)π
2 +(N−1)π

)
+ ei

(
(2n−N)π

2 +Nπ
)

= 0, N
2 + 1 � n � N − 1.
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This proves that f (N) = 0 .
Case 2 N ≡ 1 (mod4) .
Suppose that N = 4k + 1 for some k ≡ 0 or 1 (mod3), k � 1 . Then, by Lemma 4.2
(a),

e
iπ
6 + ei 5π

6 + ei 9π
6 +

∑
0�n�N−3

n�= N−3
2

ei (2n+1)π
N−1

=ei πN
6 + ei 5πN

6 + ei 9πN
6 +

∑
0�n�N−3

n�= N−3
2

eiN (2n+1)π
N−1 = 0.

(4.4)

Here we note that each term ei (2n+1)π
N−1 of the sum on the left hand side in (4.4) is not any

of ei π6 , ei 5π
6 and ei 9π

6 . In fact,(
2n + 1
N − 1

=
)

2n + 1
4k

=
h
6
, (h = 1, 5, 9)

implies that 2kh = 3(2n+1) , which is impossible. So f (N) = 0 if k ≡ 0 or 1 (mod3) .
The case N = 4k + 1 with k ≡ 2 (mod3) will be considered in Case 5.
Case 3 N ≡ 2 (mod4) .
Suppose that N = 4k + 2 for some positive integer k � 1 . Then, by Lemma 4.2 (b),
we immediately get the result for k = 1 and k = 2 by adding each side of (4.2) and
(4.3). Now we assume that k � 3 . We first fix 10 numbers

ei π6 , ei 5π
6 , ei 9π

6 , ei 2π
6 , ei 10π

6 , ei 6π
6 , ei π4 , ei 3π

4 , ei 5π
4 , ei 7π

4 (4.5)

that were used in f (10) = 0 , i.e. k = 2 . Then we only need to find N0 := 4k − 8
more numbers eian so that

∑
1�n�N0

eian =
∑

1�n�N0
eiNan = 0 . Let

U0 = {u1, u2, · · · , u2k−4} (u1 = 1)

be the set of the successive 2k−4 integers starting from 1 to an integer < N satisfying

ui

N
�=
{ h

6 , h = 1, 2, 5,
h
4 , h = 1, 3,

and let
U1 = U0 + N = {u1 + N, u2 + N, · · · , u2k−4 + N}

and U = U0 ∪ U1 . We divide the positive integers k into the three congruence classes
modulo 3 . If k = 3j or 3j + 2 , then N = 12j + 2 or 12j + 10 , respectively, and these
are not multiples of 4 and 6 . So, in these cases, we have U0 = {1, 2, · · · , 2k − 4} ,
U1 = {N + 1, N + 2, · · · , N + 2k − 4} . Now choose

{ai} =
{uπ

N
: u ∈ U

}
so that

∑
1�n�N0

eian =
∑

1�n�N0
eiNan = 0 . Suppose that k = 3j + 1 . Then

N = 6(2j + 1) is not a multiple of 4 but a multiple of 6 . We have

2k − 2 < N0, 2k − 2 <
N
2

(4.6)
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and

U0 = {1, 2, · · · , 2k − 2} −
{

u ∈ Z : 1 � u � 2k − 2,
u
N

=
1
6
,
1
3

}
,

U1 = U0 + N.

Then, for h = 6, 9, 10 , we note that, by (4.6),

h
6

/∈
{ u

N
: u ∈ U1

}
.

Now choose
{ai} =

{uπ
N

: u ∈ U
}

so that
∑

1�n�N0
eian =

∑
1�n�N0

eiNan = 0 . This gives f (N) = 0 .
Case 4 N ≡ 3 (mod4) .
Suppose that N = 4k + 3 for some positive integer k with k ≡ 1 or 2 (mod3) . Then
by Lemma 4.2 (c),

ei π6 + ei 5π
6 + ei 9π

6 +
∑

1�n�N−2
n�= N−1

2

ei 2nπ
N−1

=ei Nπ
6 + ei 5Nπ

6 + ei 9Nπ
6 +

∑
1�n�N−2

n�= N−1
2

eiN 2nπ
N−1 = 0.

(4.7)

Here we note that each term ei 2nπ
N−1 of the sum on the left hand side in (4.7) is not any

of ei π6 , ei 5π
6 and ei 9π

6 . Thus f (N) = 0 . The case N = 4k + 3 with k ≡ 0 (mod3) will
be considered in Case 5.
Case 5 N = 3n, where n is an odd integer � 3 .
The cases N = 4k + 1 with k ≡ 2 (mod3) from Case 2 and N = 4k + 3 with k ≡
0 (mod3) from Case 4 are in fact the case N = 3n, where n is an odd integer � 3 .
For each n , consider the 3n − 4 numbers ai :

0,
2π

3n − 4
,

4π
3n − 4

,
6π

3n − 4
, · · · ,

(6n − 10)π
3n − 4

. (4.8)

Then, by Lemma 4.2 (d),

1 + ei 2πN
3n−4 + ei 4πN

3n−4 + · · · + ei (6n−10)πN
3n−4

= 1 + ei 2π
3n−4 + ei 4π

3n−4 + · · · + ei (6n−10)π
3n−4 = 0.

So it remains to find four more numbers to get f (N) = 0 . Obviously,(
πN
4

,
3πN

4
,
5πN

4
,
7πN

4

)
≡
(
π
4

,
3π
4

,
5π
4

,
7π
4

)
(mod 2π) (4.9)

and
ei Nπ

4 + ei 3Nπ
4 + ei 5Nπ

4 + ei N7π
4 = 0.
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Here we note that the numbers in (4.9), π/4, 3π/4, 5π/4, 7π/4 , are not any of the
numbers in (4.8). In fact,

2u
3N − 4

=
2v + 1

4
, (0 � u � 3n − 5, 0 � v � 3)

implies that 8u + 4(2v + 1) = 3n(2v + 1) , which is impossible, since the left side is
even and the right side is odd. Hence f (3n) = 0 for all odd n � 3 . This completes
the proof. �

By this section, Proposition 2.1 and Corollary 2.8, we have the final answer for
f (N) .

THEOREM 4.4. Let N be an integer � 2 , and let

f (N) = min
ai real

max

{∣∣∣∣∣
N∑

n=1

eian

∣∣∣∣∣ ,
∣∣∣∣∣

N∑
n=1

eiNan

∣∣∣∣∣
}

.

Then ⎧⎨
⎩

f (2) = 1,

f (3) = 0.769292 · · · ,

f (N) = 0, N � 4.
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