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A NOTE ON WEYL’S INTERLACING INEQUALITY

MANDEEP SINGH AND JASPAL SINGH AUJLA

(communicated by G. P. H. Styan)

Abstract. We shall prove Weyl’s interlacing inequality on one dimensional perturbation of Her-
mitian matrices using fundamental techniques.

The variational principles for eigenvalues of a matrixwere discovered in connection
with problems of physics. One of the famous work where many of these were used
is The Theory of Sound by Lord Rayleigh, originally published in 1877, reprinted by
Dover in 1945, [4]. The classic book on modern applied mathematics is Methods of
Mathematical Physics by R. Courant and D. Hilbert [1], is replete with applications of
variational principles. For more recent source, see [5].

In this short note we consider two interlacing sets of real numbers and shall prove
that they can be realised as the eigenvalues of a Hermitian matrix A , and one of its one
dimensional perturbation B = A + tP , where t is a nonnegative real number and P
is a projection of rank 1. Alternate proofs of this can be seen in [3], [6] and [7] which
are based on the theory of calculus of residues in complex analysis. We rather use an
elementary technique to prove this. We begin with the following lemma due to Cauchy.
For a proof the reader is refered to [2, page 268].

LEMMA 1. Let −∞ < λ1 < η1 < . . . < λn < ηn < ∞ . Then

det

(
1

ηi − λj

)
i, j

=

∏
i>j

(ηi − ηj)(λj − λi)

∏
i, j

(ηi − λj)
.

LEMMA 2. Let zi , xi and t be complex numbers. Then

det (D(z) − txx∗) = z1z2 . . . zn −
n∑

j=1

t
∏
i�=j

zi|xj|2,

where D(z) is the diagonal matrix with diagonal entries z1, z2, . . . , zn and x =
(x1, x2, . . . , xn)T .

Proof. By continuity, on replacing zi by zi + ε if necessary, we can assume that
all zi are non-zero. The desired result is trivially true if x = 0 . So we assume that
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x �= 0 . Note that for k = x∗x, the matrix P = 1
k xx

∗ is a projection of rank 1. Then
since

tD(z)−1xx∗(tD(z)−1xx∗) = (tx∗D(z)−1x)tD(z)−1xx∗,

the only non-zero eigenvalue of tD(z)−1xx∗ is tx∗D(z)−1x . This implies that

1 − tx∗D(z)−1x = 1 − t
|x1|2
z1

− t
|x2|2
z2

− · · · − t
|xn|2
zn

is an eigenvalue of I − tD(z)−1xx∗. All other eigenvalues of I − tD(z)−1xx∗ are 1.
Hence

det (D(z) − txx∗) = det
(
D(z)(I − tD(z)−1xx∗)

)
= det (D(z)) det (I − tD(z)−1xx∗)

= z1z2 · · · zn −
n∑

j=1

t
∏
i�=j

zi|xj|2.

This completes the proof. �

THEOREM 3. Let −∞ < λ1 � η1 � λ2 � η2 � . . . � λn � ηn < ∞. Let A
be an n × n Hermitian matrix whose eigenvalues are λ1, λ2, . . . , λn. Then there exists
t � 0 and a projection P of rank 1 such that B = A + tP has η′

j s as its eigenvalues.

Proof. We shall prove the result when −∞ < λ1 < η1 < λ2 < η2 < . . . < λn <
ηn < ∞ and t > 0 . The general result then follows on using continuity argument. We
can assume that

A = diag (λ1, λ2, . . . , λn).

For the existence of a matrix B such that its eigenvalues are η′
j s , we must have

t = tr (B − A) =
n∑

i=1

(ηi − λi).

(Here tr (B − A) denote the trace of the matrix (B − A) ). Note that any projection P
of rank 1 can be written as

P = (xixj)i, j with
n∑

i=1

|xi|2 = 1,

where the x′is are complex numbers. Now, for the required result we need to show the
existence of suitable x′is . The numbers η′

ks would be the eigenvalues of B = A + tP
if and only if the det(ηkI − B) = 0, for k = 1, 2, . . . , n, i.e.,

det

⎛
⎜⎜⎜⎜⎜⎝

ηk − λ1 − t|x1|2 −tx1x2 · · · −txnx1

−tx1x2 ηk − λ2 − t|x2|2 · · · −txnx2

−tx1x3 −tx2x3 · · · −txnx3
...

...
. . .

...
−tx1xn −tx2xn · · · ηk − λn − t|xn|2

⎞
⎟⎟⎟⎟⎟⎠

= 0.
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Therefore by Lemma 2, we get

(ηk − λ1)(ηk − λ2) · · · (ηk − λn) − t
n∑

j=1

∏
i�=j

(ηk − λi)|xj|2 = 0.

From the strict inequalities between the η′
ks and λ ′

ks and with t �= 0, we obtain

|x1|2
ηk − λ1

+
|x2|2

ηk − λ2
+ · · · + |xn|2

ηk − λn
=

1
t
, (1)

k = 1, 2, . . . , n . By Lemma 1, the det
(

1
ηi−λj

)
i,j
�= 0. Therefore the above system of

linear equations has a unique real solution in |xj|2. To settle the problem, we claim that
(1) has a unique positive solution. This can be seen by rewriting the system (1) trivially
in the following way, i.e.

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
1

η2−λ1

1
η2−λ2

· · · 1
η2−λn

1
η3−λ1

1
η3−λ2

· · · 1
η3−λn

...
...

. . .
...

1
ηn−λ1

1
ηn−λ2

· · · 1
ηn−λn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

|x1|2 1
η1−λ1

|x2|2 1
η1−λ2

|x3|2 1
η1−λ3

...
|xn|2 1

η1−λn

⎞
⎟⎟⎟⎟⎟⎟⎠

= t−1

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

. (2)

For any invertible matrix U , we write (2) as

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
1

η2−λ1

1
η2−λ2

· · · 1
η2−λn

1
η3−λ1

1
η3−λ2

· · · 1
η3−λn

...
...

. . .
...

1
ηn−λ1

1
ηn−λ2

· · · 1
ηn−λn

⎞
⎟⎟⎟⎟⎟⎟⎠

UU−1

⎛
⎜⎜⎜⎜⎜⎜⎝

|x1|2 1
η1−λ1

|x2|2 1
η1−λ2

|x3|2 1
η1−λ3

...
|xn|2 1

η1−λn

⎞
⎟⎟⎟⎟⎟⎟⎠

= t−1

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

.

Take U =

⎛
⎜⎜⎜⎝

1 −1 −1 · · · −1
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎠ , the above system becomes

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
1 1

η2−λ2
· · · 1

η2−λn

1 1
η3−λ2

· · · 1
η3−λn

...
...

. . .
...

1 1
ηn−λ2

· · · 1
ηn−λn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
n∑
1
|xi|2 1

η1−λi

)

|x2|2 λ2−λ1
η1−λ2

|x3|2 λ3−λ1
η1−λ3

...
|xn|2 λn−λ1

η1−λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= t−1

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠

. (3)
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Once again (3) can trivially be seen equivalent to

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
0 1

η2−λ2
· · · 1

η2−λn

0 1
η3−λ2

· · · 1
η3−λn

...
...

. . .
...

0 1
ηn−λ2

· · · 1
ηn−λn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
n∑
1
|xi|2 1

η1−λi

)

−|x2|2 1
η1−λ2

−|x3|2 1
η1−λ3

...
−|xn|2 1

η1−λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= t−1

⎛
⎜⎜⎜⎜⎜⎝

1
1
1
...
1

⎞
⎟⎟⎟⎟⎟⎠

. (4)

The claim follows on using induction hypothesis. This completes the proof. �
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