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HADAMARD–TYPE INEQUALITIES FOR
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(communicated by A. M. Fink)

Abstract. In this paper we investigate (ω1,ω2) -convex functions and obtain characterization
theorems and Hadamard-type inequalities for them.

1. Introduction

The geometrical meaning of convexity is quite descriptive: each line segment
joining two distinct points of a real function’s graph (that is defined over a real interval I )
passes “above” the graph. Beckenbach [1] generalized this geometric idea by replacing
straight lines, (that is, functions of the form α + βx ) by a two parameter family
of continuous functions F such that, for any pairs (x1, y1), (x2, y2) ∈ I × R with
x1 �= x2 there exists a unique element ϕ ∈ F such that ϕ(xi) = yi , i = 1, 2 . Results
on the regularity properties of such, so-called generalized convex functions and also
on their second-order characterizations were obtained by Beckenbach and Bing [2]
and can also be found in the papers of Peixoto [14], [16], [15]. In the special case
when the two parameter family is the solution-set of a second-order homogeneous
linear differential equation, similar results were independently obtained by Bonsall [5].
Generalized convexity was characterized by the support property in the paper [3] by
Ben-Tal and Ben-Israel. Stability properties of generalized convexity were investigated
by Krzyszkowski [9].

The notion of (ordinary) convexity can also be characterized via the following
condition (cf. Popoviciu [17]): a function f : I → R is convex if and only if∣∣∣∣∣∣

f (x) f (y) f (z)
1 1 1
x y z

∣∣∣∣∣∣ � 0

whenever x, y, z ∈ I with x < y < z .
Replacing the functions 1 and x by two arbitrary functions ω1 and ω2 , we can

introduce the notion of (ω1,ω2) -convexity.
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DEFINITION 1. Let I ⊂ R be a nonempty interval and ω1,ω2 : I → R be given
functions. We say that the function f : I → R is (ω1,ω2) -convex if∣∣∣∣∣∣

f (x) f (y) f (z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ � 0 (1)

whenever x < y < z , x, y, z ∈ I .

Obviously, (ω1,ω2) -convexity is the particular case of generalized convexity in
the sense of Beckenbach and it is a generalization of standard convexity. Now the
generalized lines corresponding to the functions ω1 , ω2 are their linear combinations.
It turns out to be useful to assume (as for the generalized convexity due to Beckenbach)
that each generalized line is continuous and every two points of I×R with distinct first
coordinates can uniquely be connected by a generalized line. Formulating these two
regularity properties in mathematical terms, we have the following

DEFINITION 2. Let I ⊂ R be a nonempty interval and ω1,ω2 : I → R . We say
that (ω1,ω2) is a regular pair on I if ω1 and ω2 are continuous functions and∣∣∣∣ ω1(x) ω1(y)

ω2(x) ω2(y)

∣∣∣∣ �= 0

whenever x, y ∈ I with x < y .

If ω1 and ω2 are twice differentiable and their Wronski determinant is non-
vanishing then the generalized lines (i.e., the linear combinations of ω1 and ω2 ) can be
obtained as the solution set of a homogeneous second-order linear differential equation,
which is the setting investigated by Bonsall [5].

The aim of this paper is to obtain various characterizations of (ω1,ω2) -convexity
without assuming further regularity properties on them. Another result offers a trans-
formation that maps generalized lines into straight lines and thus also (ω1,ω2) -convex
functions to ordinary convex functions. Using these characterizations, we then derive a
generalization of Hadamard’s inequality [8] known for ordinary convex functions (see
the book of Dragomir and Pearce [7] for further references and details and also the paper
of Mitrinović and Lacković [11] and [13] for interesting historical remarks). Bonsall
[5] also obtained a generalization of Hadamard’s inequality that involves the adjoint
differential operator with respect to the linear differential operator that vanishes on ω1

and ω2 . Generalizations of Hadamard’s inequality for hihger-order convexity have
recently been obtained by the authors [4].

2. Generalized lines

First we investigate some essential properties of regular pairs and generalized lines.

THEOREM 1. Let (ω1,ω2) be a regular pair on I . Then,
(i) ω1 and ω2 have at most one zero in I ;
(ii) ω1 and ω2 cannot be equal to zero simultaneously;
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(iii) the function

Ω(x, y) :=
∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣
keeps its sign if x < y , x, y ∈ I .

Proof. The assertions (i) and (ii) are simple consequences of our definition. For
proving the third one, observe that the function Ω is continuous and nowhere zero on
the connected set {(x, y) ∈ I × I : x < y} , therefore it keeps its sign according to
Bolzano’s theorem. �

The part (iii) of Theorem 1 states that the function Ω is either positive or negative
if x < y . According to this property, a regular pair (ω1,ω2) is said to be positive if∣∣∣∣ ω1(x) ω1(y)

ω2(x) ω2(y)

∣∣∣∣ > 0 (2)

whenever x < y , x, y ∈ I .
The most important property of generalized lines guarantees the existence of a

generalized line “parallel” to the x -axis.

THEOREM 2. Let (ω1,ω2) be a regular pair on the nonempty interval I . Then,
there exist α, β ∈ R such that the inequality

αω1(x) + βω2(x) > 0 (3)

holds for all x ∈ I◦ , where I◦ denotes the interior of I .

Proof. For simplicity, we may assume that (ω1,ω2) is a positive regular pair. If
ω1 has no zero in I◦ , then α := 1 or α := −1 (according to the sign of ω1 ) and
β := 0 fulfills the requirements of the theorem. Suppose that ω1(ξ) = 0 for some
ξ ∈ I◦ . Then, according to (i) of Theorem 1, we may assume that the inequalities

ω1(x) < 0 (x < ξ)
ω1(y) > 0 (y > ξ)

hold. Let x, y ∈ I with x < ξ < y be arbitrary. The negativity of ω1(x) , the positivity
of ω2(y) , and (2) imply that

ω2(y)
ω1(y)

<
ω2(x)
ω1(x)

.

Therefore,

sup
y>ξ

[
ω2(y)
ω1(y)

]
� inf

x<ξ

[
ω2(x)
ω1(x)

]
(4)

and both of the sides are real numbers. Define the constant α by the formula

α := sup
y>ξ

[
ω2(y)
ω1(y)

]
,
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and choose β := −1 . We will show that

αω1(x) − ω2(x) > 0 (5)

holds for all x ∈ I◦ . This inequality remains true if x := ξ . Indeed, ω1(ξ) = 0 ; on
the other hand, substituting x := ξ into (2) and applying the positivity of ω1(y) , we
get that −ω2(ξ) > 0 . If y > ξ , then the definition of α gives that

α � ω2(y)
ω1(y)

;

therefore, multiplying both sides by the positive ω1(y) , we get

αω1(y) − ω2(y) � 0.

If x < ξ , then inequality (4) gives that

α � ω2(x)
ω1(x)

;

therefore, multiplying both sides by the negative ω1(x) , it follows that

αω1(x) − ω2(x) � 0.

Finally, we show that the left hand side of (5) always differs from zero. Assume
indirectly that there exists η ∈ I◦ such that

αω1(η) − ω2(η) = 0.

Then,

α =
ω2(η)
ω1(η)

.

If ξ < η , choose y ∈ I such that η < y hold. Substituting x := η and y into (2),
then applying the positivity of ω1(η) and ω1(y) , we get the inequality

α =
ω2(η)
ω1(η)

<
ω2(y)
ω1(y)

,

which contradicts the definition of α . If ξ > η , then choose x ∈ I with x < η .
Substituting x and y := η into (2), then applying the negativity of ω1(x) and ω1(η) ,
we get the inequality

α =
ω2(η)
ω1(η)

>
ω2(x)
ω1(x)

,

which contradicts (4). �
As a consequence of the previous result, a regular pair can always be replaced by

a canonical regular pair.

THEOREM 3. Let (ω1,ω2) be a regular pair on the nonempty interval I ⊂ R .
Then there exists a regular pair (ω∗

1 ,ω∗
2 ) on I that possesses the following properties:

(i) ω∗
1 is positive on I◦ ;
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(ii) ω∗
2 /ω∗

1 is strictly monotonic on I◦

(iii) (ω1,ω2) -convexity is equivalent to (ω∗
1 ,ω∗

2 ) -convexity.
Conversely, if the functions ω1,ω2 : I → R are continuous with the properties

(i’) ω1 is positive;
(ii’) ω2/ω1 is strictly monotone increasing (resp. decreasing),

then (ω1,ω2) is a positive (resp. negative) regular pair on I .

Proof. The previous Theorem 2 guarantees the existence of real constants α and
β such that (3) holds for all x ∈ I◦ . Define

ω∗
1 := αω1 + βω2, ω∗

2 := −βω1 + αω2.

Then, using the product rule of determinants, for x, y ∈ I with x < y , we have∣∣∣∣ ω∗
1 (x) ω∗

1 (y)
ω∗

2 (x) ω∗
2 (y)

∣∣∣∣ =
∣∣∣∣ α β
−β α

∣∣∣∣·
∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ = (α2+β2)
∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ �= 0,

therefore, (ω∗
1 ,ω∗

2 ) is also a regular pair on I . Using that ω∗
1 is positive, one can

easily deduce that the positivity (resp. negativity) of the determinant∣∣∣∣ ω∗
1 (x) ω∗

1 (y)
ω∗

2 (x) ω∗
2 (y)

∣∣∣∣
yields the strictly increasing (resp. decreasing) property of the function ω∗

2 /ω∗
1 on the

interior of I .
To see that (ω1,ω2) -convexity is equivalent to (ω∗

1 ,ω∗
2 ) -convexity, let f : I → R

be an arbitrary function and x < y < z be arbitrary elements of I . Then, by the product
rule of determinants,∣∣∣∣∣∣

f (x) f (y) f (z)
ω∗

1 (x) ω∗
1 (y) ω∗

1 (z)
ω∗

2 (x) ω∗
2 (y) ω∗

2 (z)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 0
0 α β
0 −β α

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

f (x) f (y) f (z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣
= (α2 + β2) ·

∣∣∣∣∣∣
f (x) f (y) f (z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ ,
whence the equivalence of the corresponding convexities follows.

The converse assertion is a simple calculation. �

3. (ω1,ω2) -convex functions

Our goal is deriving characterization theorems for (ω1,ω2) -convex functions.
The first one is the generalization of a classical theorem for convex functions, while the
second one formulates a connection between (ω1,ω2) -and the usual convexity.

THEOREM 4. Let (ω1,ω2) be a positive regular pair on the nonempty interval I
such that ω1 is positive. The following statements are equivalent:

(i) f : I → R is (ω1,ω2) -convex;
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(ii) for all x, y, z ∈ I : x < y < z we have that∣∣∣∣ f (y) f (z)
ω1(y) ω1(z)

∣∣∣∣∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣
�

∣∣∣∣ f (x) f (y)
ω1(x) ω1(y)

∣∣∣∣∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣
;

(iii) for all x0 ∈ I◦ there exist α, β ∈ R such that

αω1(x0) + βω2(x0) = f (x0),
αω1(x) + βω2(x) � f (x) (x ∈ I);

(iv) for all n ∈ N , x0, x1, . . . , xn ∈ I and λ1, . . . , λn � 0 satisfying the conditions

n∑
k=1

λkω1(xk) = ω1(x0) (6)

n∑
k=1

λkω2(xk) = ω2(x0) (7)

we have that

f (x0) �
n∑

k=1

λkf (xk); (8)

(v) for all x0, x1, x2 ∈ I and λ1, λ2 � 0 satisfying the conditions

λ1ωj(x1) + λ2ωj(x2) = ωj(x0) (j = 1, 2)

we have that
f (x0) � λ1f (x1) + λ2f (x2).

Proof. (i) ⇒ (ii). Assume indirectly that (ii) is not true. Using the positivity of
the denominators, it follows that there exist x, y, z ∈ I with x < y < z such that∣∣∣∣ f (y) f (z)

ω1(y) ω1(z)

∣∣∣∣ ·
∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ >

∣∣∣∣ f (x) f (y)
ω1(x) ω1(y)

∣∣∣∣ ·
∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣ ,
or, after rearranging this inequality,

f (y)
[
ω1(x)

∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣+ ω1(z)
∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣
]

> ω1(y)
[
f (x)

∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣+ f (z)
∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣
]

.

Subtracting

f (y)ω1(y)
∣∣∣∣ ω1(x) ω1(z)
ω2(x) ω2(z)

∣∣∣∣
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from both sides and applying the expansion theorem “backward”, we get that

f (y)

∣∣∣∣∣∣
ω1(x) ω1(y) ω1(z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ > ω1(y)

∣∣∣∣∣∣
f (x) f (y) f (z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ .
The left hand side of this inequality equals zero, while the (ω1,ω2) -convexity of f
implies that the right hand side is non-negative, which is contradiction.

(ii) ⇒ (iii). Choose x0 ∈ I◦ and define the constant β by

β := inf
x>x0

⎡
⎢⎢⎣−

∣∣∣∣ f (x0) f (x)
ω1(x0) ω1(x)

∣∣∣∣∣∣∣∣ ω1(x0) ω1(x)
ω2(x0) ω2(x)

∣∣∣∣

⎤
⎥⎥⎦ .

According to (ii) , if ξ < x0 < x , then the inequality

−

∣∣∣∣ f (ξ) f (x0)
ω1(ξ) ω1(x0)

∣∣∣∣∣∣∣∣ ω1(ξ) ω1(x0)
ω2(ξ) ω2(x0)

∣∣∣∣
� −

∣∣∣∣ f (x0) f (x)
ω1(x0) ω1(x)

∣∣∣∣∣∣∣∣ ω1(x0) ω1(x)
ω2(x0) ω2(x)

∣∣∣∣
holds, whence β > −∞ . Now define the constant α by

α :=
f (x0) − βω2(x0)

ω1(x0)
.

Then we immediately get the equality

αω1(x0) + βω2(x0) = f (x0).

The desired inequality
αω1(x) + βω2(x) � f (x)

can be rewritten into the equivalent form

β
∣∣∣∣ ω1(x0) ω1(x)
ω2(x0) ω2(x)

∣∣∣∣+
∣∣∣∣ f (x0) f (x)
ω1(x0) ω1(x)

∣∣∣∣ � 0. (9)

The definition of β guarantees that (9) is satisfied if x0 < x . Assume that x < x0 and
choose ξ ∈ I such that x < x0 < ξ hold. Then, applying (ii) , we have the inequality∣∣∣∣ f (x0) f (ξ)

ω1(x0) ω1(ξ)

∣∣∣∣∣∣∣∣ ω1(x0) ω1(ξ)
ω2(x0) ω2(ξ)

∣∣∣∣
�

∣∣∣∣ f (x) f (x0)
ω1(x) ω1(x0)

∣∣∣∣∣∣∣∣ ω1(x) ω1(x0)
ω2(x) ω2(x0)

∣∣∣∣
.

Observe that the denominator of the right hand side is positive, therefore, after rearrang-
ing this inequality, we get that

−

∣∣∣∣ f (x0) f (ξ)
ω1(x0) ω1(ξ)

∣∣∣∣∣∣∣∣ ω1(x0) ω1(ξ)
ω2(x0) ω2(ξ)

∣∣∣∣
∣∣∣∣ ω1(x0) ω1(x)
ω2(x0) ω2(x)

∣∣∣∣+
∣∣∣∣ f (x0) f (x)
ω1(x0) ω1(x)

∣∣∣∣ � 0,
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which, and the choice of β immediately implies (9).
(iii) ⇒ (iv). First assume that x0 = x1 = . . . = xn . We recall that ω1(x0) and

ω2(x0) cannot be equal to zero simultaneously due to Theorem 1; therefore (6) or (7)

gives the identity
n∑

k=1
λk = 1 , and the inequality (8) trivially holds.

Now assume that x0, x1, . . . , xn are distinct points of I such that the equations (6)
and (7) are satisfied. We will show that necessarily x0 ∈ I◦ must hold. If inf(I) ∈ I
and indirectly x0 = inf(I) , then we have the inequalities

ω1(x0)ω2(xk) − ω1(xk)ω2(x0) � 0

for all k = 1, . . . , n because (ω1,ω2) is a positive regular pair on I ; furthermore, at
least one inequality is strict. Multiplying the k th inequality by the positive λk , and
summing from 1 to n , we obtain that

ω1(x0)
n∑

k=1

λkω2(xk) > ω2(x0)
n∑

k=1

λkω1(xk).

But, due to the equations (6) and (7), both sides have the common value ω1(x0)ω2(x0) ,
which is contradiction. An analogous argument gives that the case x0 = sup(I) also
impossible, therefore x0 ∈ I◦ follows.

Now, according to (iii) , choose α, β ∈ R so that the relations

αω1(x0) + βω2(x0) = f (x0)
αω1(x) + βω2(x) � f (x) (x ∈ I)

be valid. Then, substituting x = xk into the last inequality and applying the equations
(6) and (7), we get that

n∑
k=1

λkf (xk) �
n∑

k=1

λkαω1(xk) +
n∑

k=1

λkβω2(xk)

= αω1(x0) + βω2(x0) = f (x0),

which was to be proved.
(iv) ⇒ (v). Taking the particular case n = 2 in (iv) , we get (v) .
(v) ⇒ (i). Choose x < y < z ∈ I and define the constants λ1, λ2 by the formulas

λ1 =

∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣∣∣∣∣ ω1(x) ω1(z)
ω2(x) ω2(z)

∣∣∣∣
, λ2 =

∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣∣∣∣∣ ω1(x) ω1(z)
ω2(x) ω2(z)

∣∣∣∣
.

Obviously, λ1, λ2 � 0 and, according to Cramer’s rule, λ1, λ2 satisfy the system of
linear equations

λ1ω1(x) + λ2ω1(z) = ω1(y)
λ1ω2(x) + λ2ω2(z) = ω2(y).
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Substituting λ1 and λ2 into the inequality of (v) and multiplying it by the positive
base determinant, we get that

0 � f (x)
∣∣∣∣ ω1(y) ω1(z)
ω2(y) ω2(z)

∣∣∣∣− f (y)
∣∣∣∣ ω1(x) ω1(z)
ω2(x) ω2(z)

∣∣∣∣+ f (z)
∣∣∣∣ ω1(x) ω1(y)
ω2(x) ω2(y)

∣∣∣∣ ;
or equivalently,

0 �

∣∣∣∣∣∣
f (x) f (y) f (z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ ,
which completes the proof. �

If the base functions ω1 and ω2 are twice differentiable with positive Wronski
determinant, then Bonsall [5] showed that a twice differentiable function f : I → R is
(ω1,ω2) -convex if and only if∣∣∣∣∣∣

f (x) f ′(x) f ′′(x)
ω1(x) ω ′

1(x) ω ′′
1 (x)

ω2(x) ω ′
2(x) ω ′′

2 (x)

∣∣∣∣∣∣ � 0

holds for all x ∈ I . This result can also be deduced from Theorem 4.
Specializing Theorem4 to the standard setting, we get the classical characterization

of convexity (cf. [10, p. 152].

COROLLARY 1. Let I ⊂ R be a nonempty interval. The following statements are
equivalent:

(i) f : I → R is convex;
(ii) for all x, y, z ∈ I : x < y < z we have that

f (y) − f (x)
y − x

� f (z) − f (y)
z − y

;

(iii) for all x0 ∈ I◦ there exist α, β ∈ R such that

α + βx0 = f (x0), α + βx � f (x) (x ∈ I);

(iv) for all n ∈ N , x0, x1, . . . , xn ∈ I and λ1, . . . , λn � 0 satisfying the conditions

n∑
k=1

λk = 1,
n∑

k=1

λkxk = x0

we have that

f (x0) �
n∑

k=1

λkf (xk);

(v) for all x0, x1, x2 ∈ I and λ1, λ2 � 0 satisfying the conditions

λ1 + λ2 = 1, λ1x1 + λ2x2 = x0.

we have that
f (x0) � λ1f (x1) + λ2f (x2).
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Hint. Choose ω1(x) := 1 and ω2(x) = x . Then the requirements of Theorem 4
are fulfilled, and we can derive the statements of our corollary from that of Theorem
4. �

THEOREM 5. Let (ω1,ω2) be a positive regular pair on the nonempty open interval
I such that ω1 is positive. The function f : I → R is (ω1,ω2) -convex if and only if
the function g : ω2/ω1(I) → R defined by

g :=
f
ω1

◦
(
ω2

ω1

)−1

is convex in the standard sense.

Proof. In this case the function ω2/ω1 is continuous and strictly monotone in-
creasing, according to Theorem 3. Therefore, the image of the interval I by the function
ω2/ω1 is a nonempty open interval. Consider the identity∣∣∣∣∣∣

f (x) f (y) f (z)
ω1(x) ω1(y) ω1(z)
ω2(x) ω2(y) ω2(z)

∣∣∣∣∣∣ = ω1(x)ω1(y)ω1(z)

∣∣∣∣∣∣
(f /ω1)(x) (f /ω1)(y) (f /ω1)(z)

1 1 1
(ω2/ω1)(x) (ω2/ω1)(y) (ω2/ω1)(z)

∣∣∣∣∣∣
= ω1(x)ω1(y)ω1(z)

∣∣∣∣∣∣
g(u) g(v) g(w)
1 1 1
u v w

∣∣∣∣∣∣ ,
where

u = (ω2/ω1)(x), v = (ω2/ω1)(y), w = (ω2/ω1)(z).

The positivity of ω1 forces that both of the sides are simultaneously positive, negative
or zero. That is, the function f is (ω1,ω2) -convex if and only if the function g is
convex in the standard sense. �

Observe that Theorem 5 yields also regularity properties for (ω1,ω2) -convex
functions. Namely, we have the following important

COROLLARY 2. Let (ω1,ω2) be a regular pair on the nonempty interval I . If the
function f : I → R is (ω1,ω2) -convex, then f is continuous on I◦ . If I is of the form
[a, b] , then f is Riemann integrable on I .

Hint. If the function f is (ω1,ω2) -convex on I , then, using the notation of
Theorem5, the function g is convex in the standard sense on J := ω2/ω1(I) . Therefore,
by well known regularity properties of convex functions (cf. [10, p. 149] and [18]), g is
continuous on J◦ . On the other hand, we have that

f = ω1 · g ◦
(
ω2

ω1

)
,

and the right hand side is continuous on I◦ whence the continuity of the function f
follows.

For proving the integrability if I is the compact interval [a, b] , it is enough to show
that f is bounded on I = [a, b] . Taking an arbitrary interior point x0 , the inequality
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in (iii) of Theorem 4 implies that f is bounded from below on I . Putting x := a
and z := b into the definition inequality (1) of (ω1,ω2) -convexity, we get that f is
also bounded by a linear combination of ω1 and ω2 from above on I . Hence f is a
bounded function, indeed. �

4. Hadamard-inequality for (ω1,ω2) -convex functions

The previous corollary enables us to formulate our main result.

THEOREM 6. Let (ω1,ω2) be a positive regular pair on the interval [a, b] such
that ω1 is positive on ]a, b[ . If f : [a, b] → R is an (ω1,ω2) -convex function, then
the inequalities

cf (ξ) �
∫ b

a
f (x)dx � c1f (a) + c2f (b), (10)

hold, where

ξ =
(
ω2

ω1

)−1
(∫ b

a ω2(x)dx∫ b
a ω1(x)dx

)
, c =

∫ b
a ω1(x)dx

ω1(ξ)
(11)

and

c1 =

∣∣∣∣∣
∫ b

a ω1(x)dx ω1(b)∫ b
a ω2(x)dx ω2(b)

∣∣∣∣∣∣∣∣∣ ω1(a) ω1(b)
ω2(a) ω2(b)

∣∣∣∣
, c2 =

∣∣∣∣∣ ω1(a)
∫ b

a ω1(x)dx

ω2(b)
∫ b

a ω2(x)dx

∣∣∣∣∣∣∣∣∣ ω1(a) ω1(b)
ω2(a) ω2(b)

∣∣∣∣
. (12)

In the proofwe will use the consequences of Theorem4, but a more direct approach
can also be followed.

Proof. Define c and ξ by (11). We show that they are constructed such that the
left hand side inequality of (10) is exact for f = ω1 and f = ω2 , respectively. By the
definition of (11), we have that ∫ b

a ω2(x)dx∫ b
a ω1(x)dx

=
ω2(ξ)
ω1(ξ)

.

Using the definition of c and this equation, we get the equations∫ b

a
ω1(x)dx = cω1(ξ) (13)

∫ b

a
ω2(x)dx = cω2(ξ), (14)

which show that (10) holds for f = ωi .
Let f : [a, b] → R be an arbitrary (ω1,ω2) -convex function.
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According to (iii) of Theorem 4, there exist α, β ∈ R such that the relations

αω1(ξ) + βω2(ξ) = f (ξ)
αω1(x) + βω2(x) � f (x)

are satisfied for all x ∈ [a, b] . Therefore, due to the formulas (13) and (14), we get that∫ b

a
f (x)dx � α

∫ b

a
ω1(x)dx + β

∫ b

a
ω2(x)dx

= cαω1(ξ) + cβω2(ξ) = cf (ξ)

which results the left hand side inequality of (10).
To prove the right hand side inequality of (10), observe first that c1 and c2 are

constructed so that the left hand side inequality of (10) holds with equality for f = ω1

and f = ω2 .
Substituting x = a and z = b into (1) and developing the determinant by its

second column, we get the inequality

f (y)
∣∣∣∣ ω1(a) ω1(b)
ω2(a) ω2(b)

∣∣∣∣ � ω1(y)
∣∣∣∣ f (a) f (b)
ω2(a) ω2(b)

∣∣∣∣− ω2(y)
∣∣∣∣ f (a) f (b)
ω1(a) ω1(b)

∣∣∣∣
for all y ∈ [a, b] . Thus, with the constants

α :=

∣∣∣∣ f (a) f (b)
ω2(a) ω2(b)

∣∣∣∣∣∣∣∣ ω1(a) ω1(b)
ω2(a) ω2(b)

∣∣∣∣
, β := −

∣∣∣∣ f (a) f (b)
ω1(a) ω1(b)

∣∣∣∣∣∣∣∣ ω1(a) ω1(b)
ω2(a) ω2(b)

∣∣∣∣
,

we have that

f (a) = αω1(a) + βω2(a), f (b) = αω1(b) + βω2(b),
f (y) � αω1(y) + βω2(y) (y ∈ I).

Therefore, after integrating the last inequality and using that the right hand side of (10)
is exact for f = ωi , we get that∫ b

a
f (y)dy � α

∫ b

a
ω1(y)dy + β

∫ b

a
ω2(y)dy

= c1
(
αω1(a) + βω2(a)

)
+ c2

(
αω1(b) + βω2(b)

)
= c1f (a) + c2f (b).

Thus the proof of the theorem is complete. �
Now,without the sake of completeness,we list up someHadamard-type inequalities

as applications of our last theorem.

COROLLARY 3. (Hadamard [8]). If f : [a, b] → R is a (1, x) -convex function
(i.e., convex in the standard sense), then

f

(
a + b

2

)
� 1

b − a

∫ b

a
f (x)dx � f (a) + f (b)

2
.



HADAMARD–TYPE INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS 391

COROLLARY 4. If f : [a, b] → R is a (cosh, sinh) -convex function, then

2 sinh

(
b − a

2

)
f

(
a + b

2

)
�
∫ b

a
f (x)dx � tanh

(
b − a

2

)
(f (a) + f (b)) .

COROLLARY 5. If f : [a, b] ⊂] − π
2 , π

2 [→ R is a (cos, sin) -convex function, then

2 sin

(
b − a

2

)
f

(
a + b

2

)
�
∫ b

a
f (x)dx � tan

(
b − a

2

)
(f (a) + f (b)) .

COROLLARY 6. If f : [a, b] → R is a (1, exp) -convex function, then

(b − a)f
(

log
exp(b) − exp(a)

b − a

)
�
∫ b

a
f (x)dx

�
(

(b − a) exp(b)
exp(b) − exp(a)

− 1

)
f (a) +

(
1 − (b − a) exp(a)

exp(b) − exp(a)

)
f (b).

COROLLARY 7. If f : [a, b] ⊂]0,∞[→ R is an (xp, xq) -convex function
( (q − p)(p + 1)(q + 1) �= 0 ), then

(
bp+1 − ap+1

p + 1

)q(
q + 1

bq+1 − aq+1

)p

f

(
q−p

√
(p + 1)(bq+1 − aq+1)
(q + 1)(bp+1 − ap+1)

)
�
∫ b

a
f (x)dx

�
(bp+1−ap+1)bq

p+1 − (bq+1−aq+1)bp

q+1

apbq − aqbp
f (a) +

(bq+1−aq+1)ap

q+1 − (bp+1−ap+1)aq

q+1

apbq − aqbp
f (b).
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[4] M. BESSENYEI AND ZS. PÁLES, Higher-order generalizations of Hadamard’s inequality, Publ. Math.

Debrecen 61 (2002), no. 3-4, 623–643.
[5] F. F. BONSALL, The characterization of generalized convex functions, Quart. J. Math., Oxford Ser. (2) 1

(1950), 100–111.
[6] D. BRYDAK, Applications of generalized convex functions to second order differential inequalities,

General Inequalities, 4 (Oberwolfach, 1983) (E. F. Beckenbach and W. Walter, eds.), International
Series of Numerical Mathematics, vol. 71, Birkhäuser, Basel, 1984, pp. 297–305.
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