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Abstract. We prove that for reals xi with
∑

xi � 0 , the estimate
∑

xi exi � CN
N
∑

x2
i holds,

where CN = max{2, e (1 − 1/N)} . We also prove analogues for the 1-norm and for Lebesgue-
integrable functions.

1. Introduction

Lemma 5.3 in [2] says: Suppose that for reals xi we have
N∑

i=1
xi = 0 . Then

N∑
i=1

xi e
xi � 1

2N

N∑
i=1

x2
i .

This is a technical lemma in a paper with an otherwise different and much broader
focus. This estimate has, however, caught our attention, since it can be read as an
estimate of x · exp(x) against ‖x‖2

2 on a hyperplane. The restriction
∑

xi = 0 is
needed, of course: without it, the left-hand side of the inequality can be negative. Even
with the restriction, it is not immediately clear that

∑
xi exi must even be nonnegative!

(In fact, its nonnegativity follows from Chebysheff’s inequality, see [3], Chapter IX).
This inequality is the starting point for our paper. Some questions immediately

arise: Is the constant 1/2N best possible? Can we obtain similar results by estimating
against ‖x‖2

p ? Are there integral analogues? What do we get when the exp function
is replaced by other functions; what properties of these functions lead to interesting
estimates?

In Section 2 we prove the following theorem, which is an improvement of the

Kostant-Michor inequality: Suppose that for reals xi we have
N∑

i=1
xi � 0 . Then

N∑
i=1

xi e
xi � CN

N

N∑
i=1

x2
i .
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where CN = max{2, e
(
1 − 1

N

)} .
In Section 3 of this paper, we discuss the 1-norm analogue of the Kostant-Michor

estimate. In fact, consider the inequality with ‖x‖2
1 on the right-hand side:

∑
xi eri �

CN
N (
∑ |xi|)2 if

∑
xi � 0 . We shall prove that this is true for CN = e/4 . But more

importantly, dividing the inequality by an additional factor of N , we expose Riemann

sums for the integral inequality
∫ 1

0 x(t) ex(t) dt � C
(∫ 1

0 |x(t)| dt
)2

if
∫ 1

0 x(t) dt � 0 .

Again, we shall prove that this is true with C = e/4 . We shall also consider a
more general case, replacing the function exp by a function φ with certain properties.
We shall prove that then the best possible statement is: the inequality is true for
C = φ ′(0)/4 . While there are functions φ for which this is the best possible constant,
for φ = exp it certainly is not!

Finally, in Section 4 we conclude the paper with some remarks and extensions,
regarding p -norms and possible integral analogues for the 2-norm case.

We shall use the following notation: We write x for the vector x = (x1, . . . , xN) ,
and we shall always abbreviate the positive and negative parts by y = x+ and z = x− ;
and similarly for the components of these vectors or for functions y(t) = x+(t) and
z(t) = x−(t) (a.e.).

2. The 2-norm case

Our tool in dealing with these inequalities will be the Karush-Kuhn-Tucker theo-
rem. The first step is to show that the inequality is coercive on the specified domain.
This is the point of the first two lemmas. Since there is no additional difficulty involved,
we formulate them for the general p -norm case, but we use them mainly for p = 2 and
p = 1 .

LEMMA 1. Assume that x ∈ R
N is such that

∑
xi � 0 . Assume further that x

has exactly M strictly positive components. Then for 1 � p < ∞ ,

‖x‖p �
(
1 + Mp−1

)1/p ‖x+‖p.

Proof. We use the estimate ‖x‖p � ‖x‖1 � M(p−1)/p ‖x‖p for every x ∈ R
N

which has exactly M non-zero components. Also note that
∑

xi � 0 is equivalent to∑
yi �

∑
zi . Now,

N∑
i=1

zp
i �

(
N∑

i=1

zi

)p

�
(

N∑
i=1

yi

)p

� Mp−1
N∑

i=1

yp
i ,

which implies

(
N∑

i=1

|xi|p
)1/p

=

(
N∑

i=1

yp
i +

N∑
i=1

zp
i

)1/p

� (1 + Mp−1)1/p

(
N∑

i=1

yp
i

)1/p

. �
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LEMMA 2. Let F(x) :=
N∑

i=1
xi exp(xi) − C

(
N∑

i=1
(x+

i )p

)2/p

with 1 � p < ∞ .

Then F(x) → ∞ when ‖x‖1 → ∞ , uniformly for all x such that
N∑

i=1
xi � 0 .

Proof. We have, using convexity of ψ(x) := x exp(x) on R+ and ψ(−z) > 1/2
for z ∈ R+ and ‖y‖p � ‖y‖1 for 1 � p < ∞ ,

F(x) =
N∑

i=1

yi exp(yi) −
N∑

i=1

zi exp(−zi) − C

(
N∑

i=1

yp
i

)2/p

� N ψ

(
1
N

N∑
i=1

yi

)
− N/2 − C‖y‖2

1

= ‖y‖1 ·
(

exp

(
1
N
‖y‖1

)
− C‖y‖1

)
− N/2,

which tends to infinity when ‖y‖1 tends to infinity. Because of Lemma 1, this happens
when ‖x‖1 → ∞ . �

In the next step we look at functions which take at most three different values, one
of them zero (or non-existent), one positive and one negative (or non-existent).

LEMMA 3. a) For all x, t > 0 and 0 � r � 1 we have the estimate

ex − re−tx � ex
t

t + r
.

b) For all s1 > 0 , s2 � 0 and x1 > 0 , x2 < 0 with s1x1 + s2x2 � 0 and
s1 + s2 � 1 the inequality

s1x1e
x1 + s2x2e

x2 � e(s1x1)2

holds.

Proof. a) We distinguish two cases:
(1) Assume that x � ln(t + r)/(t + 1) . Then note the following two facts:
(i) The function y �→ (1− r e−y)/y for y > 0 is decreasing for every 0 � r � 1 .
(ii) The inequality (t + 1)/ ln(t + r) � exp(1) holds for all t > 0 , 0 � r � 1 ,

provided that ln(t + r) > 0 . This is satisfied here since 0 < x(t + 1) � ln(t + r) .
Now write the inequality to be proved as

exp(x − 1)
1 − r exp(−x(t + 1))

x(t + 1)
(t + 1) � 1 − r

1
t + r

.

The first observation together with the assumption gives us

1 − r exp(−x(t + 1))
x(t + 1)

� 1 − r exp(− ln(t + r))
ln(t + r)

.
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Thus the left-hand side of the assertion is bigger than

exp(x − 1)
1 − r/(t + r)

ln(t + r)
(t + 1) � exp(−1)

(
1 − r

1
t + r

)
exp(1) = 1 − r

1
t + r

,

using x � 0 and the second observation.
(2) Assume that x � ln(t + r)/(t + 1) . Then write the inequality to be proved as

exp(x − 1)(1 − r exp(−x(t + 1))) � x

(
1 − r

1
t + r

)
.

Since exp(x − 1) � x for all x � 0 , we have to show that 1 − r exp(−x(t + 1)) �
1− r/(t + r) . This is equivalent to e−x(t+1) � 1/(t + r) , which is in turn equivalent to
−x(t + 1) � − ln(t + r) , as was assumed.

b) This inequality is in fact equivalent to part a). To see this, set x2 =: −tx1 with
t > 0 and r := s2t/s1 � 0 . Then the inequality to be shown becomes

s1x1e
x1 − s1rx1e

−tx1 � e(s1x1)2,

which is equivalent to
ex1 − re−tx1 � es1x1.

The boundary conditions become s1x1 − s1rx1 � 0 , which is equivalent to r � 1 , and
s1 + s1r/t � 1 , which is equivalent to s1 � t/(t + r) . Thus we are finished if we show
that

ex1 − re−tx1 � e
t

t + r
x1

for all 0 � r � 1 , and that is precisely the result of a). �

THEOREM 1. For N � 1 , let real xi be given such that
N∑

i=1
xi � 0 . Let CN :=

max{2, e
(
1 − 1

N

)} . Then

F(x) :=
N∑

i=1

xi e
xi − CN

N

N∑
i=1

x2
i � 0.

REMARK. CN = 2 for N = 2, 3, 4 and CN = e
(
1 − 1

N

)
for N � 5 .

Proof. Without loss we assume N > 1 . Putting Lemmas 1 and 2 together, we
see that for any c ∈ R , the set {x : F(x) � c,

∑
xi � 0} is compact. Hence F is

minimized at some point x .
We can apply the Karush-Kuhn-Tucker theorem (see [1], Theorem 7.2.9) to the

problem

“Minimize F(x) subject to −
∑

xi � 0.”
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Since F is differentiable, we get the following necessary conditions for x : There exists
a λ � 0 such that

(xi + 1) exi − 2
α(N)

N
xi = λ for all i, (1)

where moreover λ = 0 if
∑

xi > 0 . This condition is satisfied when x = 0 ; then
F(x) = 0 .

From now on we assume that x �= 0 . This implies that x has at least one strictly
positive component.

We consider the function g(x) := (x+1)ex −2α(N)
N x . It has a unique critical point

0 � x̂ > −2 and is strictly decreasing to the left of x̂ and strictly increasing to the
right of x̂ . (Actually x̂ = W (2α(N)e2/N) − 2 where W is the Lambert W function.
We have 0 = x̂ if 2α(N)/N = 2 which happens exactly when N = 2 ; otherwise we
have 2α(N)/N < 2 and x̂ < 0 . See Figure 1 for the two extreme cases (x + 1)ex and
(x + 1)ex − 2x .)

Figure 1. The functions (x + 1)ex and (x + 1)ex − 2x .

Thus (1) has at most two solutions; since x̂ � 0 , precisely one of them is positive,
the other one (if it exists) must be negative. Therefore the components of a minimizing
vector x can achieve only at most two different values. We can in fact assume that
at least one negative component exists, because if not, then the inequality becomes
Naea − CNa2 � 0 for a > 0 , which is true whenever CN � Ne ; certainly it will be
true for our CN .

This observation implies that the strictly positive components are all equal with
value a occurring M times, say, and likewise the negative ones have some constant
value b occurring N−M timeswith 1 � M � N−1 . Moreover,we have g(−x) � g(x)
for x � 0 (indeed, this inequality is equivalent to 2α(N)

N � 1
x sinh x + cosh x , which is

true for N > 1 ). This implies that |b| � a , and so we can write b = −ta with some
t > 1 . Also, the condition Ma + (N − M)b � 0 then implies (N − M)t � M , which
in turn implies that t � N − 1 .

Thus we can write

F(x) = Maea − (N − M)tae−ta − CN

N

(
Ma2 + (N − M)t2a2

)
� Maea − Mae−ta − CN

N

(
Ma2 + Mta2

)
,
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and the condition F(x) � 0 follows from

ea − e−ta

a(1 + t)
� CN

N
for all a > 0, 1 < t � N − 1.

This is true for CN = 2 because

ea − e−ta

a(1 + t)
� ea − e−a

a(1 + t)
=

2 sinh a
a(1 + t)

� 2
1 + t

� 2
N

.

It is also true for CN = e
(
1 − 1

N

)
, because by Lemma 3 with r = 1 we have that

ea − e−ta

a(1 + t)
� e

t
(1 + t)2

,

which is greater than α(N)/N since 1 � t � N − 1 (and t �→ t
(1+t)2 is decreasing if

t > 1 ). �

REMARK. a) Note that the function F in this theorem can not be interpreted as a
Riemann sum. This means that there is no direct integral analogue for the inequality.
However, there are slightly different but related integral inequalities of this kind. We
address this in Section 4 of our paper.

b) For jointly monotone sequences ai, bi , Chebysheff’s inequality (see also Sec-
tion 3) says that

N∑
i=1

ai bi � 1
N

(
N∑

i=1

ai

) (
N∑

i=1

bi

)
holds (with “> ” instead of “� ” if ai �≡ a1 or bi �≡ b1 ). Applying this with ai = xi

and bi = exi , we get

N∑
i=1

xi e
xi � 1

N

(
N∑

i=1

xi

)(
N∑

i=1

exi

)
.

This together with the convexity of exp , i.e.,

1
N

N∑
i=1

exi � e
1
N

∑
xi ,

implies that

1
N

N∑
i=1

ψ(xi) � ψ
(

1
N

N∑
i=1

xi

)
if
∑

xi � 0,

> if additionally xi �≡ x1,
(2)

with ψ(x) = x ex . Note that ψ itself is not convex; by inequality (2), it is “conditionally
convex”. In any case, this shows directly that

N∑
i=1

ψ(xi) > 0 if
∑

xi > 0.
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3. The 1-norm and its integral analogue

Consider ∫
I
x(t) ex(t) dt � α ‖x‖2

p,

for all integrable functions x with
∫

I x(t) dt � 0 . Then α = 0 if p > 1 . Indeed,
consider

xn(t) := χ[1/n,1] − (n − 1)χ[0,1/n],

for n ∈ N . Then
∫

I xn(t) dt = 0 and∫
I
xn(t) exn(t) dt =

(
1 − 1

n

)(
e − e1−n

)→ e,

while ∫
I
xn(t)p dt =

(
1 − 1

n

)
(1 + (n − 1)p−1) → ∞, (p > 1).

Hence, the ratio ∫
I xn(t) exn(t) dt(∫

I xn(t)p dt
)β → 0,

for any p > 1 and any β > 0 , and thus α > 0 is impossible. Therefore no comparison
to the p -norm can be achieved.

Note, however, that for p = 1 , we have(∫
I
|xn(t)| dt

)2

= 4

(
1 − 1

n

)2

,

and now the ratio is bounded below by e/4 . Thus, we explore∫ 1

0
x(t) ex(t) dt � α ‖x‖2

1 if
∫ 1

0
x(t) dt � 0

and its discrete analogue. We start, however, with the more general estimate∫ 1

0
x(t) φ(x(t)) dt � α ‖x‖2

1 if
∫ 1

0
x(t) dt � 0,

where φ is a functionwith properties to be specified below. As it transpires, the estimate
will then be true with α = φ ′(0)/4 , and this constant can not be improved within the
given class of functions φ . On the other hand, we have seen above that in the case
of φ = exp , α is not larger than e/4 (and we shall prove below that this is the right
value), so that in this case there is a gap between the general and the specific constants,
and this gap is closed by employing more specific methods.

In the discussion of the general case, we need the following form of Chebysheff’s
inequality (see [3], Chapter IX). It says: If the real functions a(t), b(t), a(t)b(t) are
Lebesgue integrable on [0, 1] and(

a(t) − a(u)
)(

b(t) − b(u)
)

� 0 for almost all u, t ∈ [0, 1],
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then ∫ 1

0
a(t)b(t) dt �

(∫ 1

0
a(t) dt

)(∫ 1

0
b(t) dt

)
.

Thus, the inequality is satisfied when a, b are of the form a(t) = f 1(x(t)) , b(t) =
f 2(x(t)) , and f 1, f 2 are both increasing or both decreasing.

Note that if x is an integrable function, then the condition
∫ 1

0 x(t) dt � 0 is

equivalent to
∫ 1

0 x+(t) dt �
∫ 1

0 x−(t) dt , which implies∫ 1

0
|x(t)| dt =

∫ 1

0
x+(t) dt +

∫ 1

0
x−(t) dt � 2

∫ 1

0
x+(t) dt.

Therefore the inequality∫ 1

0
x(t) φ(x(t)) dt � α

(∫ 1

0
|x(t)| dt

)2

if
∫ 1

0
x(t) dt � 0

follows from the sharper inequality∫ 1

0
x(t) φ(x(t)) dt � 4α

(∫ 1

0
x+(t) dt

)2

if
∫ 1

0
x(t) dt � 0,

which is what we will prove.

THEOREM 2. If x is an integrable function on [0, 1] such that
∫ 1

0
x(t) dt � 0 ,

and φ is a non-negative non-decreasing function which is continuous on [−B, A] and
differentiable on (0, A), where A � max

0�t�1
x+(t), B � max

0�t�1
x−(t), then

∫ 1

0
x(t)φ

(
x(t)
)
dt � c

(∫ 1

0
x+(t) dt

)2

, (3)

where c = min
0<ξ<A

φ ′(ξ). If, in addition, φ ′(0) exists ( relative to the interval (0, A) )

and φ ′(ξ) � φ ′(0) for 0 < ξ < A, then∫ 1

0
x(t)φ

(
x(t)
)
dt � φ ′(0)

(∫ 1

0
x+(t) dt

)2

. (4)

Note. In the above, max and min denote the essential maximum and essential
minimum repsectively

Proof. Without loss in generality, we assume that, for every t ∈ [0, 1], x(t) is
defined and finite and lies in (−B, A). Set y := x+, z := x− and observe that∫ 1

0
x(t) φ(x(t)) dt =

∫ 1

0
y(t) φ(y(t)) dt −

∫ 1

0
z(t) φ(−z(t)) dt. (5)
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Note that, for a(t) := y(t), b(t) := φ(y(t)), we have, using the mean value theorem,(
a(t) − a(u)

)(
b(t) − b(u)

)
=
(
y(t) − y(u)

)2φ ′(ξ) � 0 with u, v ∈ [0, 1], ξ ∈ (0, A).

Hence, using Chebysheff’s inequality in the first term in (5) and φ(−z(t)) � φ(0) in
the second, we have∫ 1

0
x(t) φ(x(t)) dt �

(∫ 1

0
y(t) dt

)(∫ 1

0
φ(y(t)) dt

)
− φ(0)

∫ 1

0
z(t) dt.

But
∫ 1

0 y(t) dt �
∫ 1

0 z(t) dt and so, using the mean value theorem,

∫ 1

0
x(t) φ(x(t)) dt �

(∫ 1

0
y(t) dt

)(∫ 1

0

(
φ(y(t)) − φ(0)

)
dt

)
� c

(∫ 1

0
y(t) dt

)2

dt.

This proves the first part of the theorem; the second part follows immediately. �

Are the inequalities in Theorem 2 sharp? We give some examples.

EXAMPLES. a) If φ(x) := x+ , then φ ′(0) = 1 (relative to (0,∞) ), and φ ′(ξ) =
φ ′(0) for all ξ ∈ (0,∞) . Therefore formula (4) says:∫ 1

0
x(t) x+(t) dt �

(∫ 1

0
x+(t) dt

)2

,

and this is sharp even on
∫

x(t) dt = 0 , since for x(t) :=
{

1 if 0 � t � a
−a/(1 − a) if a < t � 1

}
,

the left-hand integral evaluates to a and the right-hand side of the inequality evaluates
to a2 , so that both sides are asymptotically equal when a approaches 1 .

b) If φ(x) := exp(x3) , then φ is convex on R+ , so that again the assumptions of
Formula (4) are satisfied with φ ′(0) = 0 . Again, this is sharp even on

∫
x(t) dt = 0 ,

since we can choose x(t) :=
{

b if 0 � t � 1/2
−b if 1/2 < t � 1

}
. Then the left-hand integral

evaluates to b sinh(b3) , the right-hand side evaluates to (b/2)2 , and the quotient of
both tends to 0 if b tends to 0 .

c) If φ(x) := arc tan(x) , then φ is concave on R+ , and moreover the constant c
in (3) is 0 . Again, the estimate is sharp on

∫
x(t) dt = 0 as the same x(t) as in the

previous example shows, now letting b tend to ∞ . (This works for every function φ
for which φ(x)/x tends to 0 as x tends to ±∞ .)

d) The example in which we are most interested is of course φ(x) := exp(x) . This
function is convex, so Formula (4) obtains with φ ′(0) = 1 . On the other hand, from
the example before Theorem 2 we know that the estimate∫ 1

0
x(t) ex(t) dt � α

(∫ 1

0
x+(t) dt

)2
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will be true for no constant α larger than e . Here is a gap: is α = 1 the right constant,
or can α be as large as e ? In fact, we now prove that the estimate remains true for
α = e ; thus, for the function φ = exp Theorem 2 is not sharp. (It might be interesting
to determine properties of a function φ cause Theorem 2 to be sharp.)

LEMMA 4. Let F(x1, . . . , xN) :=
N∑

i=1

xi exp(xi)− e
N

(
N∑

i=1

x+
i

)2

. Then F(x) � 0

whenever
∑

xi � 0 .

Proof. Step 1. It follows from Lemma 2 that F is coercive on
∑

xi � 0 .
Step 2. We nowapply the Karush-Kuhn-Tuckerconditions (see [1], Theorem7.2.9)

to the non-smooth problem

“Minimize F(x) subject to −
∑

xi � 0.”

We get the following condition for any minimizing point x : There exists a λ � 0 such
that

0 ∈ ∂F(x) − λ · ∇
(∑

xi

)
,

where moreover λ = 0 if
∑

xi > 0 . Computing the generalized gradients, (see [1],
Chapter 6), this is equivalent to:

λ ∈ (1 + xi) exi − e
N

2‖x +‖1 · ∂xi
+ for i = 1, . . . , N.

Since ∂xi
+ =

⎧⎨⎩
1 if xi > 0
0 if xi < 0

[0, 1] if xi = 0

⎫⎬⎭ , we get the following necessary conditions for

any minimizing point x , where we set c := 2e‖x +‖1/N :

(xi + 1) exi = λ + c if xi > 0,

(xi + 1) exi = λ if xi < 0,
λ ∈ [1 − c, 1] if xi = 0.

The vector x = 0 satisfies these conditions; then F(x) = 0 .
Wemay nowassume that x �= 0 . Since λ � 0 , this implies that the vector x has (at

most) three distinct values: one positive value x1 > 0 , one negative value x2 ∈ [−1, 0)
(since only for those arguments does the function (x + 1) ex have values λ � 0 ), and
possibly x3 = 0 .

Step 3. It now suffices to prove the theorem for those vectors x among which the
minima of F must be in accord with the result of Step 2. Therefore, assume that the
vector x consists of M1 entries x1 > 0 , M2 entries x2 < 0 and N −M1 −M2 entries
x3 = 0 with M1, M2 � 0 and M1 + M2 � N ; also, the condition

∑
xi � 0 translates

to M1x1 + M2x2 � 0 . Then

1
N

F(x) =
M1

N
x1 ex1 +

M2

N
x2 ex2 − e

(
M1

N
x1

)2

� 0

according to Lemma 3. �
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REMARK. If we fix the dimension N , then the constant e in Lemma 4 can be
replaced by some bigger constant; for example, if N = 2 , then 4 instead of e works.
To find these constants for general N (and so probably also to improve the constant
α(N) in Theorem 1), we would need discrete versions of Lemma 3 (taking into account
that s1 and s2 are of the form M/N with 1 � M � N − 1 ). However, our estimate
is asymptotically not far off: if we choose x1 := 1 , x2 := −1 , s1 := (N − 1)/N ,
s2 := 1/N , then

s1 x1 ex1 + s2 x2 ex2

(s1 x1)2
= e

(
1 +

1
N − 1

)(
1 − 1

N − 1
e−2

)
,

and (at least numerically) this value is quite close to the true infimum of the left-hand
side. Note that we actually get smaller values with

∑
xi > 0 than if we restrict x by∑

xi = 0 .

The final step now is to prove the integral analogue. To make things easier, we
note that it suffices to prove the estimate for functions which satisfy x(t) � −1 for all
t . Because if not, we define

x̃(t) :=
{

x(t) if x(t) � −1
−1 if x(t) � −1

}
.

Then we have x(t) ex(t) � x̃(t) ex̃(t) and x(t) � x̃(t) and x+(t) = x̃+(t) for all t , so that
the statement for x follows from that for x̃ .

THEOREM 3. If x : [0, 1] → R is Lebesgue-integrable and
∫ 1

0 x(t) dt � 0 , then∫ 1

0
x(t) ex(t) dt � e

(∫ 1

0
x+(t) dt

)2

.

Proof. Step 1. We first prove the estimate for Riemann-integrable functions. The
idea is, of course, to approximate the integrals by Riemann sums and then use Lemma 4.
But it makes sense to write this down explicitly.

Fix N ∈ N and let ti := i/N for i = 0, . . . , N . Define the vector v = (v1, . . . , vN)
by vi := sup x([ti−1, ti]) . Then, since x ex is increasing for x � −1 , we also have
vi evi = sup{x(τ) ex(τ) : τ ∈ [ti−1, ti]} , so that 1

N

∑
vi evi is a Riemann sum for∫

x(t) ex(t) dt (see [4], Theorem6.28). Moreover,Lemma4 is applicable since 1
N

∑
vi �∫

x(t) dt � 0 . We also have 1
N

∑
v+
i �

∫
x+(t) dt . Thus we get

1
N

N∑
i=1

vi e
vi � e

(
1
N

N∑
i=1

v+
i

)2

� e

(∫ 1

0
x+(t) dt

)2

by Lemma 4, and the left-hand side of this inequality tends to
∫ 1

0 x(t) ex(t) dt as N goes
to infinity.

Step 2. We now prove the estimate for essentially bounded Lebesgue-integrable
functions. Thus assume that |x(t)| � M a.e., say. Take an ε > 0 and set xε := x + ε .
Then

∫ 1
0 xε(t) dt > 0 and |xε(t)| � M + ε . Now use Luzin’s theorem (see [4],
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Theorems 6.76 and 6.77) to find a sequence of continuous functions gn such that
gn(t) → x(t) a.e. and |gn(t)| � M+ε . Then we also have gn(t) egn(t) → xε(t) exε (t) and
g+

n (t) → x+
ε (t) a.e. Now using Lebesgue’s dominated convergence theorem (see [4],

Theorem 6.22), we get
∫

gn(t) dt → ∫
xε(t) dt ,

∫
gn(t) egn(t) dt → ∫

xε(t) exε (t) dt and∫
g+

n (t) dt → ∫
x+
ε (t) dt . Since by part a) the inequality holds for gn (if n is large

enough such that
∫

gn(t) dt > 0 ), it must also hold for xε .
Finally letting ε tend to 0 , we obtain

∫
xε(t) exε (t) dt → ∫

x(t) ex(t) dt and∫
x+
ε (t) dt → ∫

x+(t) dt , and the estimate then follows for x .
Step 3. Finally, we prove the estimate for unbounded Lebesgue-integrable func-

tions. In this case, there are two possibilities. Either
∫

x(t) ex(t) dt = ∞ (then we
have nothing left to prove), or that integral is finite. In this case choose ε > 0 . For

every M ∈ R+ , define xM(t) :=
{

x(t) if x(t) � M
M if x(t) � M

}
. Then choose M such that

0 �
∫

x(t) ex(t) dt − ∫ xM(t) exM(t) dt � ε and 0 �
∫

x(t) dt − ∫ xM(t) dt � ε . Further,
set xε := xM + ε . Then 0 �

∫
x(t) dt �

∫
xε(t) dt , and the estimate therefore holds

for xε . Now, when ε tends to 0 , then∫ 1

0
xε(t) exε (t) dt = eε

∫ 1

0
xM(t) exM(t) dt + ε eε

∫ 1

0
exM(t) dt →

∫ 1

0
x(t) ex(t) dt

(using that
∫

exM(t) dt is bounded above by
∫

ex(t) dt < ∞ ) and
∫

x+
ε (t) dt → ∫

x+(t) dt ,
so that x again inherits the estimate. �

REMARK. What property of the function exp(x) causes the improvement from
the general constant Cφ = φ ′(0) (= 1 for φ = exp ) in Theorem 2 to the specific
constant Cexp = e in Theorem 3? We do not know, but we note that if we choose,

instead of φ = exp , the function φ(x) :=
{

x + 1 if x � 0
exp(x) if x < 0

}
, then we have

Cφ = 1 again, as can be seen by choosing x(t) :=
{

a if t � s
−as/(1 − s) if s < t � 1

}
and then setting s = 1 − 1/a and letting a tend to infinity. On the other hand, if we

choose φ(x) :=
{

exp(x) if x � 0
0 if x < 0

}
, then we seem to retain Cφ = e .

4. Remarks and extensions

Inequalities for the p -norm. So far we have only treated estimates for the 1- and
the 2-norms. The method in both cases consisted of two principal steps: First, we argued
that the function F is minimized when the vector x takes at most two different values.
We did this by employing the Karush-Kuhn-Tucker theorem. Second, we computed the
minimum of F for these vectors. We did this in Lemma 3 by elementary estimates.

We believe that such problems provide very nice applications of the KKT theorem.
Moreover, we have tried to find a way to do the reduction in the first step by elementary
(ad hoc) methods; with no success. Thus, KKT really is the method of choice here.
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Thus to prove similar estimates for a p -norm on the right-hand side of the in-
equality, we first have to apply KKT in the first step. However, in general this does not
give us the desired reduction to the two-valued case, since the analysis is then much
more difficult. In fact, after applying KKT, we arrived at a certain function g in the
2 -norm case. In general, this function has a more complicated structure; it even may
have cusps. As a visual example, take p = 3/2 , so that the function g is of the form
g(x) = (x + 1)ex − a |x|1/2 · signum(x) for some constant a ; see Figure 2.

Figure 2. A function g(x) for p = 3/2 .

Integral analogues. Let us look again at the p = 2 case. Theorem 1 says that for
all vectors x = (x1, . . . , xN) with

∑
xi � 0 the inequality

N∑
i=1

xi e
xi � CN

1
N

N∑
i=1

x2
i

is true with some constants CN . How large can those CN be? All we currently know
is that the method still works if we set CN equal to max{2, e

(
1 − 1

N

)} . Numerically,
it seems that the CN can even be slightly bigger than that.

One way to approach this question is to consider right-hand sides which majorize
1
N

∑
x2
i , but which at the same time have a simpler structure. Then if the new inequality

is true with a factor of C̃N , then we can infer that C̃N � CN . We looked at right-hand
sides where the sum over all squares is replaced by a sum where only the squares of the
positive components of x are used. (Remember the p = 1 case, where we used the
positive components in a similar way.) Unfortunately, we have only found inequalities
with very bad C̃N . However, an advantage of this method is that we arrive at functions
which can (as in the p = 1 case) be interpreted as Riemann sums, so there will be again
be an integral analogue. We think that interesting enough to describe our attempts here.

The first possibility is to observe that if
∑

xi � 0 , then 1
N ‖x‖2

2 � ‖x+‖2
2 . (Indeed,

this is trivially true if all components of x are nonnegative; if at least one component is
negative, then we can use Lemma 1 with M � N − 1 .) Thus if we can prove that

N∑
i=1

xi e
xi � C(1)

N

N∑
i=1

(x+
i )2 if

N∑
i=1

xi � 0,
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for some constants C(1)
N > 0 , then for the original estimate we get CN � C(1)

N . However,

this is not a very good bound for CN : the constant C(1)
N will for large N not be much

bigger than 1 . To see this, set x1 = . . . = xN−1 = −1/(N(N − 1)) and xN = 1/N .
Then

∑
xi = 0 and∑

xi exp(xi)
x2
N

= N2

(−(N − 1) exp(−1/N(N − 1))
N(N − 1)

+
exp(1/N)

N

)
= N (exp(1/N) − exp(−1/N(N − 1))) ,

which tends to 1 if N goes to infinity. In any event, the new estimate does have an
integral analogue; it is∫ 1

0
x(t) ex(t) dt � C(1)

∫ 1

0
(x+(t))2 dt if

∫ 1

0
x(t) dt � 0.

This can be true only with some C(1) � 1 .
The second possibility is to use Lemma 1 directly to get that 1

N ‖x‖2
2 � M+1

N ‖x+‖2
2

if
∑

xi � 0 , where M is the number of positive entries in x . Thus if we could prove
that

N∑
i=1

xi e
xi � C(2)

N
M + 1

N

N∑
i=1

(x+
i )2 if

N∑
i=1

xi � 0,

then the original estimate follows with at least CN � C(2)
N . As before, for large N

we have a C(2)
N around 1 . However, there is an important difference to all previous

cases: Numerical evidence suggests that in the case the corresponding function F(x) is
infimized not by a vector x with two different values, but by an x with three different
values, one negative and two positive, one of those very close to 0 . With two-valued
functions, it seems we can only prove C(2)

N � e . In any event, an integral analogue is∫ 1

0
x(t) ex(t) dt � C(2) s

∫ 1

0
(x+(t))2 dt if

∫ 1

0
x(t) dt � 0, where s := m(supp x+).

Again, we can not expect this to be true if C(2) is greater than 1 .
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