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REVERSION OF HÖLDER TYPE INEQUALITIES

FOR SUMS OF WEIGHTED NORMS AND ADDITIVE

WEIGHTED ESTIMATES OF INTEGRAL OPERATORS

R. OINAROV

(communicated by V. I. Burenkov)

Abstract. The additive weighted estimate ‖uKf ‖q � C(‖ρf ‖p + ‖vHf ‖p) , f � 0 , where

Kf (x) =
x∫
0

K(x, s)f (s)ds , K(x, s) � 0 , Hf (x) =
x∫
0

f (s)ds is reduced to the two-weighted

estimate: ‖uKf ‖q � C‖ρ∗f ‖p , f � 0 , where the weight function ρ∗ is expressed via the
weight functions ρ and v .

1. Introduction

Let R+ = (0, +∞) , 1 < p, q < ∞ . Let u(·), v(·) and ρ(·) be weight functions
on R+ , i.e. nonnegative measurable functions on R+ . Let K and H be the integral
operators of the type:

Kf (x) =

x∫
0

K(x, s)f (s)ds, Hf (x) =

x∫
0

f (s)ds,

where K(x, s) � 0 with x � s � 0 .
Consider the weighted inequality:

‖uKf ‖q � C (‖ρf ‖p + ‖vHf ‖p) , f � 0, (1)

where ‖ · ‖p is the norm of the space Lp(R+) , 1 < p < ∞ .
For q � p the inequalities in the form (1) were considered in [1, 2, 3], and for

p > q and K ≡ H they were investigated in [4]. The inequality (1) includes different
important inequalities. For example, if f = y(n) � 0 , K(x, s) = (x − s)n−k−1 and
y(i)(0) = 0 , k � i � n − 1 , where n � 1 , 0 � k � n − 1 , then from (1) we have:

‖uy(k)‖q � C
(
‖ρy(n)‖p + ‖vy(n−1)‖p

)
. (2)
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The inequalities of the type (2) were considered in [5, 6]. If v ≡ 0 , (1) reduces to
the inequality with two weights:

‖uKf ‖q � C‖ρf ‖p , f � 0, (3)

which has been intensively investigated during several last years (cf. [7, 8]).
The aim of this paper is to reduce the inequality (1) to the equivalent inequality of

the form (3).
To obtain themain result we also consider the problemof evaluation of the quantity:

Jp(ρ, v, g, M) ≡ sup
f ∈M

∞∫
0

f (s)g(s)ds

‖ρf ‖p + ‖vHf ‖p
. (4)

The value (4) is of independent interest and it is the reversion of Hölder type
inequality for the norm ‖ρf ‖p + ‖vHf ‖p on the class of functions M = {f �
0, f is measurable on (0,∞)} .

It is known [9] that

Jp(ρ, 0, g, M) ≡ ‖ρ−1g‖p′ ,
1
p

+
1
p′

= 1. (5)

For M ↓= {0 � f ↓} , M ↑= {0 � f ↑} the relations

Jp(ρ, 0, g, M ↓) ≈

⎛⎜⎝ ∞∫
0

⎛⎝ t∫
0

g

⎞⎠p′−1⎛⎝ t∫
0

ρp

⎞⎠1−p′

gdt

⎞⎟⎠
1
p′

, (6)

Jp(ρ, 0, g, M ↑) ≈

⎛⎜⎝ ∞∫
0

⎛⎝ ∞∫
t

g

⎞⎠p′−1⎛⎝ ∞∫
t

ρp

⎞⎠1−p′

gdt

⎞⎟⎠
1
p′

(7)

were obtained in [10, 11]. If M ↑↓= {f � 0 : f ↑, 1
x f (x) ↓ } and 0 � g ↓ , the

problem of evaluation of Jp(ρ, 0, g, M ↑↓) was considered in [12]. Here and the sequel
the notation 0 � f ↓ (0 � f ↑) means that the function f is nonnegative, non-
increasing (non-decreasing). The symbol A � C means that there exists a constant
α > 0 such that the inequality A � αC holds and the symbol A ≈ C means that
A � C � A .

The paper consists of 5 sections, including this introduction. The second section
contains notation and lemmas, which are necessary to prove the main results of section
3. In the fourth section the inequality (2) is considered for the particular case of power
weight function. In the last fifth section the analogues of (1) and (4) are proved in
which the operators K and H are replaced by their duals.
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2. Auxiliary lemmas

Suppose that the weighted functions u , v and ρ satisfy the following conditions:

ρ ∈ Lloc
p (R+), ρ−1 ∈ Lloc

p′ (R+), (8)

v ∈ Lp(t,∞), u ∈ Lq(t,∞), u(·)K(·, t) ∈ Lq(t,∞), ∀t > 0, (9)

and define the function

ϕ(x) =

⎧⎪⎨⎪⎩ inf
0<t<x

⎡⎢⎣
⎛⎝ x∫

t

ρ−p′(s)ds

⎞⎠− 1
p′

+

⎛⎝ ∞∫
t

vp(s)ds

⎞⎠
1
p
⎤⎥⎦
⎫⎪⎬⎪⎭

−1

.

LEMMA 1. Let 1 < p < ∞ and the weight functions ρ and v satisfy the conditions
(8) and (9). Then the function ϕ is positive, strictly increasing on R+ , i.e. ϕ(x) >
ϕ(τ) > 0 if x > τ > 0 .

Proof. Let x > τ > 0 , then from (8) we get
x∫
τ
ρ−p′(s)ds > 0 . Therefore:

ϕ(x) �

⎧⎪⎨⎪⎩ inf
0<t<τ

⎡⎢⎣
⎛⎝ τ∫

t

ρ−p′ds +

x∫
τ

ρ−p′ds

⎞⎠− 1
p′

+

⎛⎝ ∞∫
t

vpds

⎞⎠
1
p
⎤⎥⎦
⎫⎪⎬⎪⎭

−1

>

⎧⎪⎨⎪⎩ inf
0<t<τ

⎡⎢⎣
⎛⎝ τ∫

t

ρ−p′ds

⎞⎠− 1
p′

+

⎛⎝ ∞∫
t

vpds

⎞⎠
1
p
⎤⎥⎦
⎫⎪⎬⎪⎭

−1

= ϕ(τ) > 0.

�

LEMMA 2. Let 1 < p < ∞ and the weight functions ρ and v satisfy the conditions
(8) and (9). Then the function ϕ is locally absolutely continuous on R+ and satisfies
the condition:

0 � ρp(x)ϕ(x)
(

dϕ
dx

)p−1

� 1 (10)

for almost all x ∈ R+ .

Proof. For x > τ > 0 we have:

ϕp′(x) = sup
0<t<x

x∫
t
ρ−p′ds[

1 +
(

x∫
t
ρ−p′ds

) 1
p′
(∞∫

t
vpds

) 1
p
]p′
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< sup
0<t<τ

τ∫
t
ρ−p′ds +

x∫
τ
ρ−p′ds[

1 +
( τ∫

t
ρ−p′ds

) 1
p′
(∞∫

t
vpds

) 1
p
]p′

+ sup
τ<t<x

x∫
t
ρ−p′ds[

1 +
(

x∫
t
ρ−p′ds

) 1
p′
(∞∫

t
vpds

) 1
p
]p′ � ϕp′(τ) + 2

x∫
τ

ρ−p′ds.

Hence, in view of ϕ ↑ we obtain:

0 < ϕp′(x) − ϕp′(τ) � 2

x∫
τ

ρ−p′ds. (11)

By (8) and absolute continuity of the Lebesque integral we get that the strictly
increasing function ϕ is absolutely continuouson any closed interval in R+ . Therefore,
for almost all x ∈ R+ there exists a positive, locally summable derivative dϕ

dx . Hence,
from (11) it follows that:

p′ϕp′−1(x)ϕ′(x) = lim
τ→x

ϕp′(x) − ϕp′(τ)
x − τ

� 2 lim
τ→x

⎛⎝ 1
x − τ

x∫
τ

ρ−p′ds

⎞⎠
= 2ρ−p′(x)

for almost all x ∈ R+ . �

LEMMA 3. Let 1 < p < ∞ and the functions ρ and v satisfy the conditions (8)
and (9). Then the inequality:

ϕ(x) � min

⎧⎪⎨⎪⎩
⎛⎝ x∫

0

ρ−p′ds

⎞⎠
1
p′

,

⎛⎝ ∞∫
x

vpds

⎞⎠− 1
p
⎫⎪⎬⎪⎭ (12)

holds for all x ∈ R+ .

Proof. By the definition of the function ϕ we have that for all x ∈ R+ :

ϕ−1(x) � max

⎧⎪⎨⎪⎩ inf
0<t<x

⎛⎝ x∫
t

ρ−p′ds

⎞⎠− 1
p′

, inf
0<t<x

⎛⎝ ∞∫
t

vpds

⎞⎠
1
p
⎫⎪⎬⎪⎭

= max

⎧⎪⎨⎪⎩
⎛⎝ x∫

0

ρ−p′ds

⎞⎠− 1
p′

,

⎛⎝ ∞∫
x

vpds

⎞⎠
1
p
⎫⎪⎬⎪⎭ ,
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and (12) follows. �

COROLLARY 1. If at least one of the conditions:

ρ−1 ∈ Lp′(0, t), t > 0 or v /∈ Lp(R+)

is satisfied, then ϕ(0) ≡ lim
x→0+

ϕ(x) = 0 .

LEMMA 4. Let 1 < p < ∞ and the weight functions ρ and v satisfy the conditions
(8) and (9). Then:⎛⎜⎝ ∞∫

0

⎛⎝ t∫
0

f ds

⎞⎠p−1

f (t)ϕ−p(t)dt

⎞⎟⎠
1
p

� 8 (‖ρf ‖p + ‖vHf ‖p) , f � 0. (13)

Proof. Let the right side of (13) be finite for some f � 0 . Then there exists a
sequence of points xk , k ∈ Z0 in R+ such that

2k−1 =

xk−1∫
0

f (s)ds =

xk∫
xk−1

f (s)ds, k ∈ Z0,

2k �
x∫

0

f (s)ds � 2k+1 with xk � x � xk+1, k ∈ Z0,

R+ =
⋃
k

[xk, xk+1), [xi, xi+1)
⋂

[xj, xj+1) = ∅ for i �= j,

where Z0 ⊆ Z , Z is the set of integers.
By using these facts and the monotonicity of the function ϕ > 0 , we have:⎛⎜⎝ ∞∫

0

⎛⎝ t∫
0

f ds

⎞⎠p−1

f (t)ϕ−p(t)dt

⎞⎟⎠
1
p

=

⎛⎜⎝∑
k

xk+1∫
xk

⎛⎝ t∫
0

f ds

⎞⎠p−1

f (t)ϕ−p(t)dt

⎞⎟⎠
1
p

�

⎛⎝∑
k

2(k+1)(p−1)ϕ−p(xk)

xk+1∫
xk

f (t)dt

⎞⎠
1
p

�

⎛⎜⎜⎝∑
k

2p(k+1)

⎡⎢⎢⎣
⎛⎜⎝ xk∫

xk−1

ρ−p′ds

⎞⎟⎠
− 1

p′

+

⎛⎜⎝ ∞∫
xk−1

vpds

⎞⎟⎠
1
p
⎤⎥⎥⎦

p⎞⎟⎟⎠
1
p
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�

⎛⎜⎜⎝∑
k

2p(k+1)

⎛⎜⎝ xk∫
xk−1

ρ−p′ds

⎞⎟⎠
− p

p′
⎞⎟⎟⎠

1
p

+

⎛⎜⎝∑
k

2p(k+1)

∞∫
xk−1

vpds

⎞⎟⎠
1
p

= I1 + I2. (14)

We estimate I1 and I2 separately. Hölder’s inequality yields:

I1 � 4

⎛⎜⎝∑
k

xk∫
xk−1

|ρf |pds

⎞⎟⎠
1
p

� 4‖ρf ‖p . (15)

By applying Jensen’s inequality, we obtain:

I2 = 23

⎛⎜⎝∑
k

2p(k−2)

∞∫
xk−1

vpds

⎞⎟⎠
1
p

= 8

⎛⎜⎝∑
k

⎛⎜⎝ xk−1∫
xk−2

f ds

⎞⎟⎠
p∑

i�k

xi∫
xi−1

vpds

⎞⎟⎠
1
p

= 8

⎛⎜⎝∑
i

xi∫
xi−1

vpds
∑
k�i

⎛⎜⎝ xk−1∫
xk−2

f ds

⎞⎟⎠
p ⎞⎟⎠

1
p

� 8

⎛⎜⎝∑
i

xi∫
xi−1

vpds

⎛⎜⎝∑
k�i

xk−1∫
xk−2

f ds

⎞⎟⎠
p ⎞⎟⎠

1
p

� 8

⎛⎜⎝∑
i

xi∫
xi−1

vp

⎛⎝ x∫
0

f (s)ds

⎞⎠p

dx

⎞⎟⎠
1
p

� 8‖vHf ‖p. (16)

From (14) – (16) we get (13). �

LEMMA 5. Let 1 < p < ∞ and the weight functions ρ and v satisfy the conditions
(8) and (9). Then the following estimate holds:

‖ρf ‖p + ‖vHf ‖p �
⎛⎝ ∞∫

0

|f (t)|pϕ−1(t)
(

dϕ
dt

)1−p

dt

⎞⎠
1
p

. (17)

Proof. From (10), (12) we find that:

ρp(x) � ϕ−1(x)
(

dϕ
dx

)1−p

for almost all x ∈ R+, (18)
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sup
x>0

⎛⎝ x∫
0

ϕp′−1(t)
dϕ
dt

dt

⎞⎠
1
p′
⎛⎝ ∞∫

x

vpds

⎞⎠
1
p

� sup
x>0

ϕ(x)

⎛⎝ ∞∫
x

vpds

⎞⎠
1
p

� 1. (19)

The inequality (18) shows that:

‖ρf ‖p �
⎛⎝ ∞∫

0

|f |pϕ−1

(
dϕ
dt

)1−p

dt

⎞⎠
1
p

,

and from (19), by using Hardy inequality [9], we have:

‖vHf ‖p �
⎛⎝ ∞∫

0

|f |pϕ−1

(
dϕ
dt

)1−p

dt

⎞⎠
1
p

,

i.e. (17) holds. �

3. The main results

THEOREM 1. Let 1 < p < ∞ , 0 � g ↓ and the weight functions ρ and v satisfy
the conditions (8) and (9). Let ϕ(0) = 0 , then:

Jp(ρ, v, g, M) ≡ sup
f ∈M

∞∫
0

f (s)g(s)ds

‖ρf ‖p + ‖vHf ‖p
≈
⎛⎝ ∞∫

0

gp′(s)dϕp′ (s)

⎞⎠
1
p′

. (20)

Proof. Estimate below. Combing (17) and (5), we have:

Jp(ρ, v, g, M) � sup
f ∈M

∞∫
0

f (s)g(s)ds(∞∫
0

f pϕ−1
(

dϕ
dt

)1−p
dt

) 1
p

= Jp

(
ϕ− 1

p

(
dϕ
dt

)− 1
p′

, 0, g, M

)

=

⎛⎝ ∞∫
0

gp′(s)ϕp′−1(s)
dϕ
ds

ds

⎞⎠
1
p′

≈
⎛⎝ ∞∫

0

gp′(s)dϕp′ (s)

⎞⎠
1
p′

. (21)

Estimate above. By using the condition ϕ(0) = 0 and (6), we find:

Jp′

((
ϕ

p′
p

dϕ
dt

) 1
p′

, 0, f , M ↓
)

≈

⎛⎜⎝ ∞∫
0

⎛⎝ t∫
0

f ds

⎞⎠p−1

f (t)ϕ−p(t)dt

⎞⎟⎠
1
p

.
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Therefore, for f � 0 and 0 � g ↓
∞∫

0

f (s)g(s)ds �
⎛⎝ ∞∫

0

gp′(s)dϕp′ (s)

⎞⎠
1
p′
⎛⎜⎝ ∞∫

0

⎛⎝ t∫
0

f ds

⎞⎠p−1

f (t)ϕ−p(t)dx

⎞⎟⎠
1
p

. (22)

From (13) and (22) we have:

Jp(ρ, v, g, M) �
⎛⎝ ∞∫

0

gp′(s)dϕp′ (s)

⎞⎠
1
p′

,

which together with (21) gives (20). �

COROLLARY 2. Let the conditions of Theorem 1 be fulfilled. Then:

Q ≡ sup
f �0

∞∫
0

f gds(
∞∫
0

(
t∫

0
f

)p−1

f (t)ϕ−p(t)dx

) 1
p
≈ Jp(ρ, v, g, M) ≈

⎛⎝ ∞∫
0

gp′dϕp′

⎞⎠
1
p′

.

Proof. Indeed, from (13), (20) and (22) we have:⎛⎝ ∞∫
0

gp′dϕp′

⎞⎠
1
p′

� Q �
⎛⎝ ∞∫

0

gp′dϕp′

⎞⎠
1
p′

.

�

REMARK. Let us note that:

Q ≈ Jp(ρ, v, g, M), (23)

although the reverse of the inequality (13) does not hold.

Indeed, let f z(·) = ρ−p′(·)χ(t0,z)(·) , t0 < z < ∞ , where t0 > 0 is a fixed point
and χ(t◦,z)(·) is the characteristic function of (t0, z) , then:

sup
f �0

‖ρf ‖p + ‖vHf ‖p(
∞∫
0

(
t∫

0
f

)p−1

f (t)ϕ−p(t)dx

) 1
p

� sup
t0<z

‖ρf z‖p(
∞∫
0

(
t∫

0
f zds

)p−1

f z(t)ϕ−p(t)dx

) 1
p

� sup
z>t0

(
z∫

t0

ρ−p′ds

) 1
p

(
z∫

t0

ρ−p′ds

) 1
p′
(

z∫
t0

ρ−p′ϕ−pds

) 1
p

� sup
z>t0

ϕ(t0)(
z∫

t0

ρ−p′ds

) 1
p′

= ∞.
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Next we consider the inequality:

‖uTf ‖q � C (‖ρf ‖p + ‖vHf ‖p) , f � 0, (24)

where T is a positive linear operator.

THEOREM 2. Let 1 < p, q < ∞ and the weight functions ρ and v satisfy the
conditions (8) and (9). Let ϕ(0) = 0 and let T∗ be dual to T such that 0 � T∗f ↓
for f � 0 . Then the inequality (24) holds if and only if⎛⎝ ∞∫

0

(uTf )qdx

⎞⎠
1
q

� C1

⎛⎝ ∞∫
0

f pϕ−1

(
dϕ
dt

)1−p

dt

⎞⎠
1
p

, f � 0. (25)

Moreover C ≈ C1 , where C, C1 are the smallest constants in the inequalities (24),
(25) respectively.

Proof. Let C > 0 is the smallest constant of (24). By using (5) and (20), we get:

C = sup
f �0

‖uTf ‖q

‖ρf ‖p + ‖vHf ‖p
= sup

f �0
sup
g�0

∞∫
0

guTf dx

‖g‖q′ (‖ρf ‖p + ‖vHf ‖p)

= sup
g�0

1
‖g‖q′

sup
f �0

∞∫
0

guTf dx

‖ρf ‖p + ‖vHf ‖p
= sup

g�0

1
‖g‖q′

sup
f �0

∞∫
0

f T∗(gu)dx

‖ρf ‖p + ‖vHf ‖p

≈ sup
g�0

(∞∫
0

[T∗(gu)]p
′
dϕp′

) 1
p′

‖g‖q′
= C1.

Therefore the inequality (24) is equivalent to the inequality:⎛⎝ ∞∫
0

[T∗(gu)]p
′
dϕp′

⎞⎠
1
p′

� C1‖g‖q′, g � 0,

which is dual to the inequality (25). �
The paper [7] (cf.also [8]) contains necessary and sufficient conditions for the

validity of the inequalities in the form (3) if the kernel K(x, s) of the operator K
satisfies the following property: there exists the constant d � 1 such that

1
d

(K(x, t) + K(t, s)) � K(x, s) � d (K(x, t) + K(t, s)) (26)

holds for x � t � s � 0 .
From the left – hand side of the inequality (26) we get that dK(x, s) � K(x, t)

if x � t � s . Setting K̃(x, s) = sup
s�t�x

K(x, t) , we have dK(x, s) � K̃(x, s) � K(x, s)
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if x � s � 0 . Also the function K̃(x, s) is non-increasing in the second argument.

Therefore, if we set K̃f (x) =
x∫
0

K̃(x, s)f (s)ds , then Kf ≈ K̃f for all f � 0 . Since

0 � K̃∗f ↓ for all f � 0 , where K̃∗f (s) =
∞∫
s

K̃(x, s)f (x)dx , by Theorem 2 and

Kf ≈ K̃f we obtain that the inequality (1) with the condition (26) is equivalent to
the inequality (3). This conclusion and results of the paper [7] yield the following two
Theorems:

THEOREM 3. Let 1 < p � q < ∞ and the weight functions u , v and ρ satisfy
the conditions (8) and (9). Let ϕ(0) = 0 and the kernel K(x, s) of the operator K
satisfies the condition (26). Then the inequality (1) holds if and only if

A1 = sup
x>0

ϕ(x)

⎛⎝ ∞∫
x

uq(s)Kq(s, x)ds

⎞⎠
1
q

< ∞,

A2 = sup
x>0

⎛⎝ x∫
0

Kp′(x, s)dϕp′ (s)

⎞⎠
1
p
⎛⎝ ∞∫

x

uq(s)ds

⎞⎠
1
q

< ∞.

Moreover C ≈ max{A1, A2} , where C is the smallest constant in the inequality (1).

THEOREM 4. Let 1 < q < p < ∞ and the weight functions u , v and ρ satisfy
the conditions (8) and (9). Let ϕ(0) = 0 and the kernel K(x, s) of the operator K
satisfies the condition (26). Then the inequality (1) holds if and only if

B1 =

⎡⎢⎣ ∞∫
0

⎛⎝ ∞∫
x

uq(s)Kq(s, x)ds

⎞⎠
p

p−q

dϕ
pq

p−q (x)

⎤⎥⎦
p−q
pq

< ∞,

B2 =

⎡⎢⎣ ∞∫
0

⎛⎝ ∞∫
x

uq(s)ds

⎞⎠
p

p−q
⎛⎝ x∫

0

Kp′(x, s)dϕp′ (s)

⎞⎠
q(p−1)
p−q

uq(x)dx

⎤⎥⎦
p−q
pq

< ∞.

Moreover C ≈ max{B1, B2} , where C is the smallest constant in the inequality (1).

4. Example

To illustrate Theorem 3 and Theorem 4 consider the inequality (2) for u(x) = xγ ,
ρ(x) = xμ , v(x) = xλ . In this case (2) is rewritten in the following form:⎛⎝ ∞∫

0

|xλ y(k)(x)|qdx

⎞⎠
1
q

�C

⎡⎢⎣
⎛⎝ ∞∫

0

(xμy(n)(x))pdx

⎞⎠
1
p

+

⎛⎝ ∞∫
0

(xλ y(n−1)(x))pdx

⎞⎠
1
p
⎤⎥⎦ ,

(27)
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where

y(n)(·) � 0, y(i)(0) = 0, k � i � n − 1, n � 1, 0 � k � n − 1. (28)

Setting y(n)(x) = f (x) in (27), we have that (27) and (28) are equivalent to the
inequality:⎛⎝ ∞∫

0

(
xλRkf (x)

)q
dx

⎞⎠
1
q

� C

⎡⎢⎣
⎛⎝ ∞∫

0

(xμ f (x))pdx

⎞⎠
1
p

(29)

+

⎛⎝ ∞∫
0

⎛⎝xλ
x∫

0

f (s)ds

⎞⎠p

dx

⎞⎠
1
p
⎤⎥⎦ , f � 0,

where

Rkf (x) =

x∫
0

(x − s)n−k−1f (s)ds.

For ρ(x) = xμ the condition (8) is satisfied for any μ . For u(x) = xγ , v(x) = xλ

the condition (9) reduces to the condition:

γ + n − k − 1 +
1
q

< 0, λ +
1
p

< 0. (30)

In this case ϕ(x) =
[

inf
0<t<x

g(t, x)
]−1

, where

g(t, x) =

⎛⎝ x∫
t

x−p′μ

⎞⎠− 1
p′

+ C0 tλ+ 1
p , C0 = |λp + 1|− 1

p .

Due to Lemma 2:

ϕ(x) � min
{

x
1
p′ −μ

, x|λ+ 1
p |
}

for μ <
1
p′

, (31)

ϕ(x) � x|λ+ 1
p | for μ � 1

p′
. (32)

By the definition of the function ϕ we have that:

ϕ−1(x) � g

(
1
2
x, x

)
= x

μ− 1
p′

⎛⎜⎝ 1∫
1
2

s−p′μ

⎞⎟⎠
− 1

p

+ C0 2|λ+ 1
p |xλ+ 1

p

≈ max
{

x
μ− 1

p′ , xλ+ 1
p

}
,
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i.e.:
ϕ(x) � min

{
x

1
p′ −μ

, x|λ+ 1
p |
}

. (33)

If μ < 1
p′ from (31) and (33) we get:

ϕ(x) ≈ min
{

x
1
p′ −μ

, x|λ+ 1
p |
}

, ∀x ∈ R+. (34)

From (32) and (33) we have:

ϕ(x) ≈ x|λ+ 1
p | for μ � 1

p′
and x < 1. (35)

For μ � 1
p′ and x > 1 we obtain:

ϕ−1(x) = min

{
inf

0<t�1
g(t, x), inf

1�t<x
g(t, x)

}
� min

⎧⎪⎨⎪⎩1,

⎛⎝ x∫
1

x−p′μ

⎞⎠− 1
p′
⎫⎪⎬⎪⎭ .

Hence

ϕ(x) � | ln x|
1
p′ for μ =

1
p′

, (36)

ϕ(x) � 1 for μ >
1
p′

. (37)

PROPOSITION 1. Let 1 < p � q < ∞ and the condition (30) be fullfiled. Then the
inequality (27) under the condition (28) or the inequality (29) holds if and only if

γ − λ + n − k − 1 +
1
q
− 1

p
� 0 for μ � 1

p′
, (38)

max

{
μ−1

p
, λ+

1
p

}
�γ+n−k−1+

1
q
� min

{
μ−1

p
, λ+

1
p

}
for μ <

1
p′

. (39)

Proof. The kernel of the operator Rk satisfies the condition (26) and by (34), (35)
we have ϕ(0) = 0 . Therefore, by Theorem 3 the validity of (29) is equivalent to the
validity of the following conditions:

lim
x→∞ϕ(x)xγ+n−k−1+ 1

q < ∞, (40)

lim
x→0

ϕ(x)xγ+n−k−1+ 1
q < ∞, (41)

lim
x→∞ xγ+ 1

q

⎛⎝ x∫
0

(x − s)p′(n−k−1)dϕp′(s)

⎞⎠
1
p′

< ∞, (42)

lim
x→0

xγ+ 1
q

⎛⎝ x∫
0

(x − s)p′(n−k−1)dϕp′(s)

⎞⎠
1
p′

< ∞. (43)
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For μ � 1
p′ by (35) and (36) the limits (40) and (42) are equal to zero. From (38)

the limits (41) and (43) are finite.
For μ < 1

p′ the conditions (40) and (42) are equivalent to the validity of the left
– hand side of (39). The conditions (41) and (43) are equivalent to the validity of the
right hand – side of (39). �

Similarly, by obtaining the finiteness of integrals in B1 and B2 at x = 0 and
x = ∞ , we prove the following:

PROPOSITION 2. Let 1 < q < p < ∞ and the condition (30) be fullfiled. Then the
inequality (27) under the condition (28) or the inequality (29) holds if and only if

γ − λ + n − k − 1 +
1
q
− 1

p
> 0 for μ � 1

p′
,

max

{
μ − 1

p
, λ +

1
p

}
> γ + n − k − 1 +

1
q

> min

{
μ − 1

p
, λ +

1
p

}
for μ <

1
p′

.

5. Appendix

Consider the inequality

‖uK∗f ‖q � C (‖ρf ‖p + ‖vH∗‖p) , f � 0, (44)

where K∗f (s) =
∞∫
s

K(x, s)f (x)dx , H∗f (x) =
∞∫
x

f (s)ds .

In this case instead of (9) we use the condition:

v ∈ Lp(0, t), u ∈ Lq(0, t), u(·)K(t, ·) ∈ Lq(0, t), ∀t > 0. (45)

Instead of the function ϕ we use the function:

ϕ∗(x) =

⎡⎢⎣ inf
x<t<∞

⎡⎢⎣
⎛⎝ t∫

x

ρ−p′ds

⎞⎠− 1
p′

+

⎛⎝ t∫
0

vpdt

⎞⎠
1
p
⎤⎥⎦
⎤⎥⎦
−1

.

Note that the function ϕ∗ is positive, strictly decreasing, locally absolutely
continuous. Moreover:

ρp(x)ϕ∗(x)
∣∣∣∣dϕ∗

dx

∣∣∣∣p−1

� 1,

ϕ∗(x) � min

⎧⎪⎨⎪⎩
⎛⎝ ∞∫

x

ρ−p′ds

⎞⎠
1
p′

,

⎛⎝ x∫
0

vpds

⎞⎠− 1
p
⎫⎪⎬⎪⎭ .

From the last inequality we have ϕ∗(∞) ≡ lim
x→∞ϕ∗(x) = 0 if only one of the

conditions ρ−1 ∈ Lp(t, +∞) , t > 0 or v �∈ Lp(R+) holds.
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The inequalities (14) and (18) reduce to the following two inequalities:⎛⎜⎝ ∞∫
0

⎛⎝ ∞∫
t

f ds

⎞⎠p−1

f (t)ϕ−p
∗ (t)dx

⎞⎟⎠
1
p

� 8 (‖ρf ‖p + ‖vH∗f ‖p) , f � 0, (46)

‖ρf ‖p + ‖vH∗f ‖p �
⎛⎝ ∞∫

0

|f |pϕ−1
∗

∣∣∣∣dϕ∗
dt

∣∣∣∣1−p

dt

⎞⎠
1
p

. (47)

Thus, by (7), (46) and (47) we prove:

THEOREM 5. Let 1 < p < ∞ , 0 � q ↑ and the weight functions ρ and v satisfy
the conditions (8), (45). Let ϕ∗(∞) = 0 , then

sup
f �0

∞∫
0

f (s)g(s)ds

‖ρf ‖p + ‖vH∗f ‖p
≈
⎛⎝ ∞∫

0

gp′(s)d(−ϕp′
∗ (s))

⎞⎠
1
p′

. (48)

From (48) and (5) we get:

THEOREM 6. Let 1 < p, q < ∞ and the weight functions ρ and v satisfy the
conditions (8), (45). Let ϕ∗(∞) = 0 and let T∗ be dual to T such that 0 � T∗f ↑ for
f � 0 . Then the inequality

‖uTf ‖q � C (‖ρf ‖p + ‖vH∗f ‖p) , f � 0 (49)

holds if and only if⎛⎝ ∞∫
0

(uTf )qdx

⎞⎠
1
q

� C1

⎛⎝ ∞∫
0

f pϕ−1
∗

∣∣∣∣dϕ∗
dt

∣∣∣∣1−p

dt

⎞⎠
1
p

, f � 0 . (50)

Moreover C ≈ C1 , where C, C1 are the smallest constants in (49), (50) respectively.

Let K(x, s) satisfies the condition (26). Setting K(x, s) = sup
s�t�x

K(t, s) , we have

dK(x, s) � K(x, s) � K(x, s) if x � s � 0 . Therefore, K∗f ≈ K
∗
f and 0 � Kf ↑

for f � 0 , where K ≡ (K∗)∗ , K
∗
f (s) =

∞∫
s

K(x, s)f (x)dx . Thus, by Theorem 6 and

results of the paper [7] we have:

THEOREM 7. Let 1 < p � q < ∞ and the weight functions u , v and ρ satisfy
the conditions (8), (45). Let ϕ∗(∞) = 0 and K(x, s) satisfies the condition (26). Then
the inequality (44) holds if and only if

A∗
1 = sup

x>0
ϕ∗(x)

⎛⎝ x∫
0

uq(s)Kq(x, s)ds

⎞⎠
1
q

< ∞,
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A∗
2 = sup

x>0

⎛⎝ ∞∫
x

Kp′(s, x)d(−ϕp′
∗ (s))

⎞⎠
1
p′
⎛⎝ x∫

0

uq(s)ds

⎞⎠
1
q

< ∞.

Moreover C ≈ max{A∗
1 , A

∗
2} , where C is the smallest constant in (44).

THEOREM 8. Let 1 < q < p < ∞ and the weight functions u , v and ρ satisfy
the conditions (8), (45). Let ϕ∗(∞) = 0 and K(x, s) satisfies the condition (26). Then
the inequality (44) holds if and only if

B∗
1 =

⎡⎢⎣ ∞∫
0

⎛⎝ x∫
0

uq(s)Kq(x, s)ds

⎞⎠
p

p−q

d

(
−ϕ

pq
p−q
∗ (x)

)⎤⎥⎦
p−q
pq

< ∞,

B∗
2 =

⎡⎢⎣ ∞∫
0

⎛⎝ x∫
0

uq(s)ds

⎞⎠
p

p−q
⎛⎝ ∞∫

x

Kp′(s, x)d(ϕp′
∗ (s))

⎞⎠
q(p−1)
p−q

uq(x)dx

⎤⎥⎦
p−q
pq

< ∞.

Moreover C ≈ max{B∗
1 , B

∗
2} , where C is the smallest constant in (44).
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