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17 INEQUALITIES FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

N. K. GovIL

(communicated by R. N. Mohapatra)

Abstract. Let f(z) be an entire function of exponential type 7 and for any complex number
C.let Delf(2)] = 7/ (2) +i(1 - {)f'(z) be the polar derivative of f(z), with respect to ¢ .

. L i . - Dlf(2)]
This definition is due to Rahman and Schmeisser [10]. Since Chm 7
—00 —1
derivative is a generalization of the ordinary derivative. In this paper we obtain [P inequalities
for the polar derivative of entire functions of exponential type satisfying f (z) = ¢/"*{f (z)} and
for functions satisfying f (z) = €'"%f (—z) . Our results generalize some of the known results.

=£"(z), the polar

1. Introduction and statement of results

An entire function f (z) is said to be of exponential type 7 if it is of order less
than 1 or it is of order 1 and type less than or equal to 7. We will denote this class of
functions by &;. For f € &, define ||f|| = sup |f(x)|. The indicator function

—0o0<x<0o0
hy(0) of f is defined by

hy(6) = lim sup M~
A classical result of Bernstein (see Boas [1, p. 200]) states that if f € & and if
IIf || =1, then
Il < = ()
It was proved by Boas [2] that if s (7/2) = 0 and f (x+iy) # 0 for y > 0, then (1.1)
can be replaced by
If'(x)] < 7/2, —00 < x< 0. (2)

For f € &, we define with respect to a complex number {, the function D¢[f] as

D¢lf (2)] = 7f (2) +i(1 = O)f '(2).

The above definition is due to Rahman and Schmeisser [10].

Note that lim Dr@l _ —if'(2).

{—oo  §
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Let I/(R), 1 < p < oo denote the class of measurable functions f , for which
S5 If (x)[P dx is finite. It is well known (see Boas [1, p. 211] that if £ (z) is an entire
function of exponential type 7 belonging to I”(R),1 < p < oo, then

= V’<x>"dx)l/p <o([ ror dx)l/p T e

The above inequality is clearly a generalization of inequality (1.1). For generalizations
of inequality (1.3), see Rahman and Schmeisser [11].
As a generalization of the inequality (1.2), Rahman [9, Theorem 2| proved

THEOREM A. If f(z) is an entire function of exponential type T belonging to
DPR),1<p<oo, he(n/2) =0 and f(z) # 0 for Sz > 0, then for p > 1, we have
Il < G 2 1IF 4)

where C, =21/ [ |1+ [P da = 27P\/AT(5p + 1)/T(Lp — 1).

The above inequality for p > 0 was extended by Rahman and Schmeisser [11,
Corollary 3]. The inequality analogous to (1.3) for functions of exponential type not
vanishing in Sz > &, (k < 0) was obtained by Govil and Rahman [6, Theorem 8].
For functions of exponential type 7 satisfying f(z) = ¢™{f (z)}, Govil and Jain [5,
inequality (6)] proved

THEOREM B. If f(z) is an entire function of exponential type T belonging to
17, (1 < p < o) onthe real axis, f(z) = ¢™{f ()}, thenfor p > 1,

([ vora) "< ([vtors) e ([ yora)”

(5)
where C, =21/ fOZﬂ 11+ e“Pda.
In this paper, we firstly present the following generalization of Theorem B.

THEOREM 1. Let f(z) be an entire function of exponential type belonging to
L7 (1 < p < 00) onthe real axis. If f (z) = ¢™{f ()}, thenfor p > 1 and all complex
numbers C,

el ([ rera)” < ([T warcopar)”
< et o ([ rora)” ©

where C, =21/ fozn |1 + e®|Pda is as defined in Theorem B.

Theorem B is clearly a special case of Theorem 1, because if we divide throughout
by |{] in (1.6) and make |{| — oo, we get (1.5). Theorem B can also be obtained
from Theorem 1, by takmg {=0in (1 6) and noting that f (z) = ¢/%{f (7)} , implies
P = 15 (x) + i )] = (DL ]} .

Since lim C,, = 1/2,if we make p — oo in (1.6), we get
p—00
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COROLLARY 1. Let f(z) be an entire function of exponential type T and let
IfFl = sup |f(x)|. Iff(z) = e™{f ()}, then for all complex numbers §,

—oo<x<0o0

1S = 171 < Il < 5381+ DI ™

Dividing (1.7) by |{| and making |{| — oo, we get

COROLLARY 2. Let f(z) be an entire function of exponential type T and let

Il = sup |f(0)]. If f(2) satisfies f (z) = €™{f (Z)}, then

—oo<x<0o0

7'l = 3If1 (®)

Again, the Corollary 2 can also be obtained from Corollary 1, if we take ¢ =
0 in (1. 7) and note that f(z) = €™{f(z)}, implies |[f'(x)| = |7f (x) + if'(x)| =
{|D clf (x |}g ()

If p(z) = Z ayz’ is a polynomial of degree n, satisfying p(z) = 2"p(1/Z) , then

v=0
f(z) = p(&®) is an entire function of exponential type n, satisfying f (z) = ¢™{f ()},
and thus if we apply Corollary 2 to the function f (z) = p(e”), we get

n
COROLLARY 3. If p(z) = Y. ayz" is a polynomial of degree n, satisfying p(z) =
v=0

7'p(1/7), then

~—

ﬁal\p()\Zgﬁ%Ip(Z)\- ©

The above result is due to Govil [4], O’Hara and Rodriguez [8], and Saff and
Sheil-Small [12]. Also see Milovanovié, Mitrinovi¢ and Rassias [7, p. 679, Lemma
3.1.10].

For functions satisfying f (z) = €™ (—z), we are only able to prove

THEOREM 2. Let f (z) be an entire function of exponential type T belonging to
I (1 < p < 00) onthe real axis. If f (z) = '"*f (—z), then for p > 1 and all complex
numbers C,

(/Z |D§[f(x)]pdx>l/p > %\m -1 (/Z V(X)I”dx>l/p. (10)

If we divide (1.10) by |{| and make |{| — oo, we get

COROLLARY 4. Let f(z) be an entire function of exponential type T belonging to
17 (1 < p < 00) on the real axis. If f () = €'™f (—z), thenfor p > 1

(/_O; V’(x)lpdx>l/p>%(/_O;v(x)wdx)l/p. (11)
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The inequality is sharp and becomes equality for f (z) = €'%/2.

Note that Corollary 4 can also be obtained from Theorem 2 by setting { = 0 in
(1.10), because, as is easy to Verify, f(z) = €'%f (—z) implies that for —oco < x < o0,
one has |[f'(—x)| = |’L'f( ) +if'(x)| = {|ID¢[f (x |}C _o and observing the fact that

/p
(S |de) = (S ) )
Ifin (1.10), we make p — oo, we get

COROLLARY 5. Let f(z) be an entire function of exponential type T and let

Ifl = sup |[f(x)|. If f(z) satisfies f(z) = e'%f(—z), then for all complex
numbers gj vte?ave
ID[FIl = > 2 5 ST = DI (12)

If we divide both the sides of the above inequality by |{| and make |{| — oo, we
will get

COROLLARY 6. Let f(z) be an entire function of exponential type T and let

Ifll="sup |f(x)]. If f(2) satisfies f(z) = €™f (—z), then

—oo<x<00

TR (13)

The above result, which can also be obtained from Corollary 4 by making p — oo,
includes as a special case the following result due to Dewan and Govil [3].

n
COROLLARY 7. If p(z) = Y. ayz" is a polynomial of degree n, satisfying p(z) =
v=0
7'p(1/z), then

max /()] > § max p(o). (14)

2. Lemmas

We will need the following lemmas.

LEMMA 1. Let f(z) be an entire function of exponential type T, belonging to
L7 (1 < p < o0) on the real axis. If f (z) = €™{f ()}, then for p > 1

([ vewra)” <eqr ([ rara)”. m

where C, =21/ fozn |1 + ¢®|Pda is as defined in Theorem B.

The above result is due to Govil and Jain [3, inequality (6)].
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LEMMA 2. If f(z) is an entire function of exponential type T satisfying f (z) =
e{f ()}, then for —o0 < x < 00

=
/\\
=
-
Y,

N
=
=
—
>

Proof. Because f (z) = ™{f (Z)}, therefore
@) = [e{f' @)} + ite™{f @)}.

Hence, for —o0o < x < o0,

F'@F = If'(x) —itf (x)] 3)
Tlf ()] = IF' (),

from which (2.2) follows. O

LEMMA 3. If f(z) is an entire function of exponential type T satisfying f (z) =
e'f (—z), then for —o0o < x < 00

' (=0)] = I7f (x) + if ()] (

o~
=

Proof. Since f(z) = '™f (—z), we get for —co < x < o0,
') = lite™f (—x) — &' ()]
= |t (=) +if"(—x)], (5)

and on replacing x by —x, the relation (2.4) follows. [

LEMMA 4. Let f(z) be an entire function of exponential type t. If f(z) =
e'f (—z) then for —oo < x < 0o and p > 1

(/_O; V’(x)l”dx>l/p> % </_O;V(x)|pdx>l/p. 6)

The inequality is sharp and becomes equality for f (z) = '™ /2.
Proof. Because f(z) = €™f (—z), we have for —oco < x < oo,
F'@) = 17 (=x) +if"(=x)|, by (2.5)
tlf ()| = If" (=),
which is equivalent to

tlf (=0l < )]+ [ (=21 (7)
Inequality (2.7) clearly implies that for p > 1

([ v<x>|de)l/p < ([ tron+re) }de)l/p7
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/p
which on applying Minkowski’s Inequality and noting that ( f If (—x)IP dx) =

1/p
(f_ x)|P dx) , gives for p > 1

o[ v dx)l/p < ([ ror dx)l/p ([ rreor dx)l/p
(o
(

| wer dx)l/p ([ dx)l/p

N V’<x>P)W,

— 00

=2

from which (2.6) follows. [

3. Proofs of the theorems

Proof of Theorem 1. Since f(z) is an entire function of exponential type T,
satisfying f (z) = ¢™{f (7)}, hence for any complex number ¢ and —oo < x < oo,
we have

DA = [ () +il1 — £
< L @1+ 17 )+ i)
= JEI1 )]+ 1)~ i (o)
= JEl @]+ @), by (23
= 121+ DI,
which implies
| pdrwra<qay [ irwpas 0

Since f (z) satisfies f (z) = ¢/%{f (Z)}, if we combine (3.1) with Lemma 1, we get for
any { and p > 1,

(L paera) "< ([ vera) "

and thus the inequality on the right hand side of (1.6) is established.
To prove the inequality on the left hand side of (1.6), note that for any complex
number &,

|87 (x) +itf (x) = f' (%))
ST ) = 1" (x) = ief ()]
S @) ='W, by (2.3)
161 = 11" ()

[IDe[f ()]

WV
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Thus for any complex number

IDlf (0] = [18] = 1] (x 2)

Inequality (3.2), when combined with Lemma 2, gives for —oo < x < oo and for
any complex number {,

IDelf (%) —HCI—le 3)

from which the inequality on the left hand side of (1.6) follows. This completes the
proof of Theorem 1.

Proof of Theorem 2. Since f (z) is an entire function of exponential type 7 and
satisfies f (z) = €'™f (—z), we have for any complex number ¢, and —oco < x < 00

IDe[f @I = |7 () +i(1 = {)f ' ()]
[T ] = 17f (x) + if " ()]
[ ST @I =" (=x)], by (24).

The above inequality is clearly equivalent to

[ SIF ) < IDE[f QN+ I (=),

which implies for p > 1 and for any complex number {,

([ rwra)” < ([ omawisreora)” @

If we apply Minkowski’s inequality to the right hand side of (3.4), we easily get for

p=2land || >1,
a( [ vwra) - ([ rcora)”

(] warcara)”
—1¢1( ) rere) " ([ wwr dx.)l/p7
which is equivalent to

([ warera) = az-n ([ rwra)” o

and this when combined with Lemma 4 gives

(/_Z Ing‘(x)]de>l/p >2(¢1-1) (/_Z [f(x)pdx.>l/p. ©)

Similarly, one can prove that for | {| < 1, we have

([ warera) = 2a-ieo ([T vera)” o

AV

WV
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If we combine (3.6) and (3.7), we will get

(/Z 'DcV(x””dX>l/p > Si-1¢l] (/i v<x>|f’dx>l/p, ®

which is (1.10), and the proof of the Theorem 2 is thus complete.

REFERENCES

[1] R.P. Boas, JR., Entire functions, Academic Press, New York, 1954.
[2] R.P.BOAS, Inequalities for asymmetric entire functions, Illinois J. Math. 1 (1957), 94-97.
[3] K. K. DEWAN AND N. K. GOVIL, An inequality for the derivative of self-inversive polynomials, Bull.
Austral. Math. Soc. 27 (1983), 403-406.
[4] N.K. GOVIL, On the derivative of a polynomial, Proc. Amer. Math. Soc. 41 (1973), 543-546.
| N. K. GoviL AND V. K. JAIN, An integral inequality for entire functions of exponential type, Annales
Univ. Mariae Curie-Sklodowska, Section A 39 (1985), 57-60.
[6] N.K.GovIL AND Q. I. RAHMAN, Functions of exponential type not vanishing in a half-plane and related
polynomials, Trans. Amer. Math. Soc. 137 (1969), 501-517.
[7] G. V. MiLovANOVIC, D. S. MITRINOVIC AND TH. M. RASSIAS, “Topics in Polynomials: Extremal
Problems, Inequalities, Zeros”, World Scientific, Singapore, 1994.
[8] P.J. O’HARA AND R. S. RODRIGUEZ, Some properties of self-inversive polynomials, Proc. Amer. Math.
Soc. 44 (1974), 331-335.
[9] Q.I RAHMAN, Functions of exponential type, Trans. Amer. Math. Soc. 135 (1969), 295-309.
[10] Q.I.RAHMAN AND G. SCHMEISSER, Extension of a theorem of Laguerre to entire functions of exponential
type, J. Math. Anal. Appl. 122 (1987), 463-468.
[11] Q. I. RAHMAN AND G. SCHMEISSER, LP inequalities for entire functions of exponential type, Trans.
Amer. Math. Soc. 320 (1990), 91-103.
[12] E.B.SAFFAND T. SHIEL-SMALL, Coefficient and integral mean estimates for algebraic and trigonometric
polynomials with restricted zeros, J. London Math. Soc. 9 (1974), 16-22.

(Received March 25, 2002) N. K. Govil
Department of Mathematics

Auburn University

Auburn, Al 36849-5310

U.S.A.

e-mail: govilnk@auburn.edu

Mathematical Inequalities & Applications



