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Lp INEQUALITIES FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

N. K. GOVIL

(communicated by R. N. Mohapatra)

Abstract. Let f (z) be an entire function of exponential type τ and for any complex number
ζ , let Dζ [f (z)] = τf (z) + i(1 − ζ)f ′(z) be the polar derivative of f (z) , with respect to ζ .

This definition is due to Rahman and Schmeisser [10]. Since lim
ζ→∞

Dζ [f (z)]

−iζ
= f ′(z) , the polar

derivative is a generalization of the ordinary derivative. In this paper we obtain Lp inequalities
for the polar derivative of entire functions of exponential type satisfying f (z) ≡ eiτz{f (z)} and
for functions satisfying f (z) ≡ eiτzf (−z) . Our results generalize some of the known results.

1. Introduction and statement of results

An entire function f (z) is said to be of exponential type τ if it is of order less
than 1 or it is of order 1 and type less than or equal to τ . We will denote this class of
functions by ετ . For f ∈ ετ , define ‖f ‖ = sup

−∞<x<∞
|f (x)| . The indicator function

hf (θ) of f is defined by

hf (θ) = lim
r→∞ sup

log |f (reiθ )|
r

.

A classical result of Bernstein (see Boas [1, p. 206]) states that if f ∈ ετ and if
‖f ‖ = 1 , then

‖f ′‖ � τ. (1)

It was proved by Boas [2] that if hf (π/2) = 0 and f (x + iy) �= 0 for y > 0 , then (1.1)
can be replaced by

|f ′(x)| � τ/2, −∞ < x < ∞. (2)

For f ∈ ετ , we define with respect to a complex number ζ , the function Dζ [f ] as

Dζ [f (z)] = τf (z) + i(1 − ζ)f ′(z).

The above definition is due to Rahman and Schmeisser [10].

Note that lim
ζ→∞

Dζ [f (z)]
ζ

= −if ′(z) .
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Let Lp(R) , 1 � p < ∞ denote the class of measurable functions f , for which∫ ∞
−∞ |f (x)|p dx is finite. It is well known (see Boas [1, p. 211] that if f (z) is an entire

function of exponential type τ belonging to Lp(R), 1 � p < ∞ , then

‖f ′‖p =
(∫ ∞

−∞
|f ′(x)|p dx

)1/p

� τ
(∫ ∞

−∞
|f (x)|p dx

)1/p

= τ‖f ‖p. (3)

The above inequality is clearly a generalization of inequality (1.1). For generalizations
of inequality (1.3), see Rahman and Schmeisser [11].

As a generalization of the inequality (1.2), Rahman [9, Theorem 2] proved

THEOREM A. If f (z) is an entire function of exponential type τ belonging to
Lp(R), 1 � p < ∞ , hf (π/2) = 0 and f (z) �= 0 for �z > 0 , then for p � 1 , we have

‖f ′‖p � C1/p
p τ ||f ||p, (4)

where Cp = 2π/
∫ 2π

0 |1 + eiα |p dα = 2−p
√
π Γ( 1

2p + 1)/Γ( 1
2p − 1) .

The above inequality for p > 0 was extended by Rahman and Schmeisser [11,
Corollary 3]. The inequality analogous to (1.3) for functions of exponential type not
vanishing in �z > k, (k � 0) was obtained by Govil and Rahman [6, Theorem 8].
For functions of exponential type τ satisfying f (z) ≡ eiτz{f (z)} , Govil and Jain [5,
inequality (6)] proved

THEOREM B. If f (z) is an entire function of exponential type τ belonging to
Lp, (1 � p < ∞) on the real axis, f (z) ≡ eiτz{f (z)} , then for p � 1 ,

τ
2

(∫ ∞

−∞
|f (x)|p dx

)1/p

�
(∫ ∞

−∞
|f ′(x)|p dx

)1/p

� τC1/p
p

(∫ ∞

−∞
|f (x)|p dx

)1/p

,

(5)
where Cp = 2π/

∫ 2π
0 |1 + eiα |pdα .

In this paper, we firstly present the following generalization of Theorem B.

THEOREM 1. Let f (z) be an entire function of exponential type belonging to
Lp (1 � p < ∞) on the real axis. If f (z) ≡ eiτz{f (z)} , then for p � 1 and all complex
numbers ζ ,

τ
2

∣∣|ζ | − 1
∣∣ (∫ ∞

−∞
|f (x)|p dx

)1/p

�
(∫ ∞

−∞
|Dζ [f (x)]|p dx

)1/p

� C1/p
p τ(|ζ | + 1)

(∫ ∞

−∞
|f (x)|p dx

)1/p

(6)

where Cp = 2π/
∫ 2π

0 |1 + eiα |pdα is as defined in Theorem B.

Theorem B is clearly a special case of Theorem 1, because if we divide throughout
by |ζ | in (1.6) and make |ζ | → ∞ , we get (1.5). Theorem B can also be obtained
from Theorem 1, by taking ζ = 0 in (1.6) and noting that f (z) ≡ eiτz{f (z)} , implies
|f ′(x)| = |τf (x) + if ′(x)| =

{|Dζ [f (x)]|}ζ=0
.

Since lim
p→∞Cp = 1/2 , if we make p → ∞ in (1.6), we get
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COROLLARY 1. Let f (z) be an entire function of exponential type τ and let
‖f ‖ = sup

−∞<x<∞
|f (x)| . If f (z) ≡ eiτz{f (z)} , then for all complex numbers ζ ,

τ
2

∣∣|ζ | − 1
∣∣‖f ‖ � ‖Dζ [f ]‖ � τ

2
(|ζ | + 1)‖f ‖. (7)

Dividing (1.7) by |ζ | and making |ζ | → ∞ , we get

COROLLARY 2. Let f (z) be an entire function of exponential type τ and let
‖f ‖ = sup

−∞<x<∞
|f (x)| . If f (z) satisfies f (z) ≡ eiτz{f (z)} , then

‖f ′‖ =
τ
2
‖f ‖. (8)

Again, the Corollary 2 can also be obtained from Corollary 1, if we take ζ =
0 in (1.7) and note that f (z) ≡ eiτz{f (z)} , implies |f ′(x)| = |τf (x) + if ′(x)| ={|Dζ [f (x)]|}ζ=0

.

If p(z) =
n∑

ν=0
aνzν is a polynomial of degree n , satisfying p(z) ≡ znp(1/z) , then

f (z) = p(eiz) is an entire function of exponential type n , satisfying f (z) ≡ einz{f (z)} ,
and thus if we apply Corollary 2 to the function f (z) = p(eiz) , we get

COROLLARY 3. If p(z) =
n∑

ν=0
aνzν is a polynomial of degree n , satisfying p(z) ≡

znp(1/z) , then

max
|z|=1

|p′(z)| =
n
2

max
|z|=1

|p(z)|. (9)

The above result is due to Govil [4], O’Hara and Rodriguez [8], and Saff and
Sheil-Small [12]. Also see Milovanović, Mitrinović and Rassias [7, p. 679, Lemma
3.1.10].

For functions satisfying f (z) ≡ eiτzf (−z) , we are only able to prove

THEOREM 2. Let f (z) be an entire function of exponential type τ belonging to
Lp (1 � p < ∞) on the real axis. If f (z) ≡ eiτzf (−z) , then for p � 1 and all complex
numbers ζ ,

(∫ ∞

−∞
|Dζ [f (x)]|p dx

)1/p

� τ
2

∣∣|ζ | − 1
∣∣ (∫ ∞

−∞
|f (x)|p dx

)1/p

. (10)

If we divide (1.10) by |ζ | and make |ζ | → ∞ , we get

COROLLARY 4. Let f (z) be an entire function of exponential type τ belonging to
Lp (1 � p < ∞) on the real axis. If f (z) ≡ eiτzf (−z) , then for p � 1

(∫ ∞

−∞
|f ′(x)|p dx

)1/p

� τ
2

(∫ ∞

−∞
|f (x)|p dx

)1/p

. (11)
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The inequality is sharp and becomes equality for f (z) = eiτz/2 .

Note that Corollary 4 can also be obtained from Theorem 2 by setting ζ = 0 in
(1.10), because, as is easy to verify, f (z) = eiτzf (−z) implies that for −∞ < x < ∞ ,
one has |f ′(−x)| = |τf (x) + if ′(x)| =

{|Dζ [f (x)]|}ζ=0
, and observing the fact that(∫ ∞

−∞ |f ′(−x)|p dx
)1/p

=
(∫ ∞

−∞ |f ′(x)|p dx
)1/p

.

If in (1.10), we make p → ∞ , we get

COROLLARY 5. Let f (z) be an entire function of exponential type τ and let
‖f ‖ = sup

−∞<x<∞
|f (x)| . If f (z) satisfies f (z) ≡ eiτzf (−z) , then for all complex

numbers ζ , we have

‖Dζ [f ]‖ � τ
2
|(|ζ | − 1)| ‖f ‖. (12)

If we divide both the sides of the above inequality by |ζ | and make |ζ | → ∞ , we
will get

COROLLARY 6. Let f (z) be an entire function of exponential type τ and let
‖f ‖ = sup

−∞<x<∞
|f (x)| . If f (z) satisfies f (z) ≡ eiτzf (−z) , then

‖f ′‖ � τ
2
‖f ‖. (13)

The above result, which can also be obtained from Corollary 4 by making p → ∞ ,
includes as a special case the following result due to Dewan and Govil [3].

COROLLARY 7. If p(z) =
n∑

ν=0
aνzν is a polynomial of degree n , satisfying p(z) ≡

znp(1/z) , then

max
|z|=1

|p′(z)| � n
2

max
|z|=1

|p(z)|. (14)

2. Lemmas

We will need the following lemmas.

LEMMA 1. Let f (z) be an entire function of exponential type τ , belonging to
Lp (1 � p < ∞) on the real axis. If f (z) ≡ eiτz{f (z)} , then for p � 1

(∫ ∞

−∞
|f ′(x)|p dx

)1/p

� τ C1/p
p

(∫ ∞

−∞
|f (x)|p dx

)1/p

, (1)

where Cp = 2π/
∫ 2π

0 |1 + eiα |pdα is as defined in Theorem B.

The above result is due to Govil and Jain [5, inequality (6)].
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LEMMA 2. If f (z) is an entire function of exponential type τ satisfying f (z) ≡
eiτz{f (z)} , then for −∞ < x < ∞

|f ′(x)| � τ
2
|f (x)|. (2)

Proof. Because f (z) = eiτz{f (z)} , therefore

|f ′(z)| = |eiτz{f ′(z)} + iτeiτz{f (z)}|.
Hence, for −∞ < x < ∞ ,

|f ′(x)| = |f ′(x) − iτf (x)| (3)
� τ|f (x)| − |f ′(x)|,

from which (2.2) follows. �

LEMMA 3. If f (z) is an entire function of exponential type τ satisfying f (z) ≡
eiτzf (−z) , then for −∞ < x < ∞

|f ′(−x)| = |τf (x) + if ′(x)|. (4)

Proof. Since f (z) ≡ eiτzf (−z) , we get for −∞ < x < ∞ ,

|f ′(x)| = |iτeiτxf (−x) − eiτxf ′(−x)|
= |τf (−x) + if ′(−x)|, (5)

and on replacing x by −x , the relation (2.4) follows. �

LEMMA 4. Let f (z) be an entire function of exponential type τ . If f (z) ≡
eiτzf (−z) then for −∞ < x < ∞ and p � 1

(∫ ∞

−∞
|f ′(x)|p dx

)1/p

� τ
2

(∫ ∞

−∞
|f (x)|p dx

)1/p

. (6)

The inequality is sharp and becomes equality for f (z) = eiτz/2 .

Proof. Because f (z) ≡ eiτzf (−z) , we have for −∞ < x < ∞ ,

|f ′(x)| = |τf (−x) + if ′(−x)|, by (2.5)
� τ|f (−x)| − |f ′(−x)|,

which is equivalent to
τ|f (−x)| � |f ′(x)| + |f ′(−x)|. (7)

Inequality (2.7) clearly implies that for p � 1

τ
(∫ ∞

−∞
|f (−x)|p dx

)1/p

�
(∫ ∞

−∞
{ |f ′(x)| + |f ′(−x)| }p dx

)1/p

,
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which on applying Minkowski’s Inequality and noting that
(∫ ∞

−∞ |f (−x)|p dx
)1/p

=(∫ ∞
−∞ |f (x)|p dx

)1/p
, gives for p � 1

τ
(∫ ∞

−∞
|f (x)|p dx

)1/p

�
(∫ ∞

−∞
|f ′(x)|p dx

)1/p

+
(∫ ∞

−∞
|f ′(−x)|p dx

)1/p

=
(∫ ∞

−∞
|f ′(x)|p dx

)1/p

+
(∫ ∞

−∞
|f ′(x)|p dx

)1/p

= 2

(∫ ∞

−∞
|f ′(x)|p

)1/p

,

from which (2.6) follows. �

3. Proofs of the theorems

Proof of Theorem 1. Since f (z) is an entire function of exponential type τ ,
satisfying f (z) ≡ eiτz{f (z)} , hence for any complex number ζ and −∞ < x < ∞ ,
we have

|Dζ [f (x)]| = |τf (x) + i(1 − ζ)f ′(x)|
� |ζ | |f ′(x)| + |τf (x) + if ′(x)|
= |ζ | |f ′(x)| + |f ′(x) − iτf (x)|
= |ζ | |f ′(x)| + |f ′(x)|, by (2.3)
= (|ζ | + 1) |f ′(x)|,

which implies ∫ ∞

−∞
|Dζ [f (x)]|p dx � (|ζ | + 1)p

∫ ∞

−∞
|f ′(x)|p dx. (1)

Since f (z) satisfies f (z) ≡ eiτz{f (z)} , if we combine (3.1) with Lemma 1, we get for
any ζ and p � 1 ,

(∫ ∞

−∞
|Dζ [f (x)]|p dx

)1/p

� (|ζ | + 1)τ C1/p
p

(∫ ∞

−∞
|f (x)|p dx

)1/p

,

and thus the inequality on the right hand side of (1.6) is established.
To prove the inequality on the left hand side of (1.6), note that for any complex

number ζ ,

|Dζ [f (x)]| = |ζ f ′(x) + iτf (x) − f ′(x)|
�

∣∣|ζ | |f ′(x)| − |f ′(x) − iτf (x)|∣∣
=

∣∣ζ | |f ′(x)| − |f ′(x)|∣∣, by (2.3)

=
∣∣|ζ | − 1

∣∣ |f ′(x)|.
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Thus for any complex number ζ ,

|Dζ [f (x)]| �
∣∣|ζ | − 1

∣∣f ′(x)|. (2)

Inequality (3.2), when combined with Lemma 2, gives for −∞ < x < ∞ and for
any complex number ζ ,

|Dζ [f (x)]| � τ
2

∣∣|ζ | − 1
∣∣ |f (x)|, (3)

from which the inequality on the left hand side of (1.6) follows. This completes the
proof of Theorem 1.

Proof of Theorem 2. Since f (z) is an entire function of exponential type τ and
satisfies f (z) ≡ eiτzf (−z) , we have for any complex number ζ , and −∞ < x < ∞

|Dζ [f (x)]| = | τf (x) + i(1 − ζ)f ′(x)|
� | ζ | |f ′(x)| − |τf (x) + if ′(x)|
= | ζ | |f ′(x)| − |f ′(−x)|, by (2.4).

The above inequality is clearly equivalent to

| ζ ||f ′(x)| � |Dζ [f (x)]| + |f ′(−x)|,
which implies for p � 1 and for any complex number ζ ,

| ζ |
(∫ ∞

−∞
|f ′(x)|p dx

)1/p

�
(∫ ∞

−∞
{|Dζ [f (x)]| + |f ′(−x)|}p dx

)1/p

. (4)

If we apply Minkowski’s inequality to the right hand side of (3.4), we easily get for
p � 1 and | ζ | � 1 ,
(∫ ∞

−∞
|Dζ [f (x)]|p dx

)1/p

� | ζ |
(∫ ∞

−∞
|f ′(x)|p dx

)1/p

−
(∫ ∞

−∞
|f ′(−x)|p dx

)1/p

= | ζ |
(∫ ∞

−∞
|f ′(x)|p dx

)1/p

−
(∫ ∞

−∞
|f ′(x)|p dx.

)1/p

,

which is equivalent to
(∫ ∞

−∞
|Dζ [f (x)]|p dx

)1/p

� ( | ζ | − 1)
(∫ ∞

−∞
|f ′(x)|p dx

)1/p

, (5)

and this when combined with Lemma 4 gives
(∫ ∞

−∞
|Dζ [f (x)]|p dx

)1/p

� τ
2
(| ζ | − 1)

(∫ ∞

−∞
|f (x)|p dx.

)1/p

. (6)

Similarly, one can prove that for | ζ | � 1 , we have
(∫ ∞

−∞
|Dζ [f (x)]|p dx

)1/p

� τ
2
(1 − | ζ |)

(∫ ∞

−∞
|f (x)|p dx

)1/p

. (7)
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If we combine (3.6) and (3.7), we will get

(∫ ∞

−∞
|Dζ [f (x)]|p dx

)1/p

� τ
2

∣∣1 − | ζ |∣∣
(∫ ∞

−∞
|f (x)|p dx

)1/p

, (8)

which is (1.10), and the proof of the Theorem 2 is thus complete.
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