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INEQUALITIES DESCRIBING THE GROWTH OF POLYNOMIALS

NOT VANISHING IN A DISK OF PRESCRIBED RADIUS

N. K. GOVIL, M. A. QAZI AND Q. I. RAHMAN

(communicated by J. Pečarić)

Abstract. In this paper we study the growth of polynomials of degree n having no zeros in
|z| < κ , where κ is an arbitrary positive number. Using the notation M(p; t) = max

|z|=t
|p(z)| we

measure the growth of p by estimating M(p; t)/M(p; 1) from above for any t > 1 , and from
below for any t < 1 .

1. Introduction

For any entire function f , and r � 0 , let M(f ; r) := max
|z|=r

|f (z)| . It is well known

that if p is a polynomial of degree at most n , then

M(p; R) < M(p; 1)Rn (R > 1), (1)

M(p′; 1) < M(p; 1)n, (2)

and
M(p; ρ) > M(p; 1)ρn (0 < ρ < 1), (3)

unless p(z) ≡ M(p, 1)eiγ zn, γ ∈ R .
The first inequality is a simple deduction from the maximum modulus principle

(see [12, p. 158, Problem 269]). The second inequality is better known as S. Bernstein’s
inequality, although it first appeared in a paper of M. Riesz [15, p. 357]. Varga [18, p.
44] attributes (3) to E. H. Zarantonello.

Inequalities (1) and (3) are equivalent. For this it suffices to observe that p
is a polynomial of degree at most n if and only if q(z) := znp(1/z) is, and that
M(q; r) = rnM(p; 1/r) for 0 < r < ∞ . It was observed by Bernstein [2] that (2)
can be deduced from (1), making use of the Gauss–Lucas Theorem which says that the
critical points of a polynomial lie in the closed convex hull of its zeros. Few people,
if any, know that (1) can be deduced from (2). So, we shall explain how. This is
interesting since there are proofs of (2) which do not use (1) at all (see [14, p. 34]).
Let p(z) �≡ M(p; 1)eiγ zn for all γ ∈ R . Applying (2) to the polynomial p(ρz) , we
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conclude that ρ|p′(ρz)| < M(p; ρ)n . For any given R > 1 , let M(p; R) = |p(Reiϕ)| .
Then

M(p; R) =
∣∣∣∣p(eiϕ) +

∫ R

1
p′(ρeiϕ)eiϕ dρ

∣∣∣∣ < M(p; 1) +
∫ R

1

n
ρ

M(p; ρ) dρ.

Denoting the right-hand side of the preceding inequality by Φ(R) we see that

d
dR

{R−nΦ(R)} = R−nΦ′(R) − nR−n−1Φ(R) < 0 (R > 1).

Hence, R−nΦ(R) is a decreasing function of R for R > 1 . In particular,

M(p; R) < Φ(R) < Φ(1)Rn = M(p; 1)Rn.

Thus, all the three inequalities are equivalent.
When p(z) �= 0 in |z| < 1 , inequalities (1), (2), and (3) can be replaced by

M(p; R) � M(p; 1)
Rn + 1

2
(R > 1), (4)

M(p′; 1) � M(p; 1)
n
2
, (5)

and

M(p; ρ) � M(p; 1)
(

1 + ρ
2

)n

(0 � ρ < 1), (6)

respectively.
Inequality (4) is due to Ankeny and Rivlin [1, Theorem 1]. It becomes an equality

for polynomials of the form p(z) := c(zn + eiγ ) , c ∈ C , c �= 0 , γ ∈ R . Inequality (5)
was conjectured by P. Erdős. It was proved independently by G. Pólya, and G. Szegö
in the special case where all the zeros of p lie on the unit circle. The two proofs appear
in a paper of Lax [9], who showed how the inequality conjectured by Erdős could be
deduced from the special case settled by Pólya, and Szegö. Inequality (5) becomes
an equality if p is a polynomial of degree n having all its zeros on the unit circle.
Inequality (6) is a result of Rivlin [16]. The bound in (6) is attained for polynomials of
the form p(z) := c(z + eiγ )n , c ∈ C , c �= 0 , γ ∈ R . We wish to emphasize that (6)
and (4) are not equivalent.

An entire function f is said to be of exponential type τ if for any ε > 0 ,

|f (z)| = O(e(τ+ε)|z|) (|z| → ∞).

If p is a polynomial of degree at most n , then f (z) := p(eiz) is an entire function of
exponential type n . Therefore, the preceding inequalities suggest generalizations to
such functions. Let f be an entire function of exponential type τ , bounded on the real
axis, and let M (f ; y) := sup

x∈R

|f (x + iy)| . Then

M (f ; y) � M (f ; 0)eτ|y| (y ∈ R), (7)

M (f ′; 0) � M (f ; 0)τ, (8)
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and
M (f ; y) � M (f ; 0)e−τ|y| (y ∈ R). (9)

Inequality (7), which is a generalization of (1), is a consequence of the Phragmén–
Lindelöf principle (for references see [3, p. 82]). Inequality (8), which extends (2), is
Bernstein’s generalization [3, Chapter 11] of (2). Inequality (9) is equivalent to (7).

Looking for analogous generalizations of (4) and (5), Boas [4] observed that if
p(z) �= 0 for |z| < 1 , then f (z) := p(eiz) �= 0 in the open upper half-plane, and

hf

(π
2

)
:= lim sup

y→∞
log |f (iy)|

y
= 0.

He proved that if f is an entire function of exponential type τ , bounded on the real axis,
not vanishing in the open upper half-plane with hf (π/2) = 0 , then (see [4, Theorems 1
and 2])

M (f ; y) � M (f ; 0)
eτ|y| + 1

2
(y < 0), (10)

M (f ′; 0) � M (f ; 0)
τ
2
. (11)

Inequalities (4) and (5) are contained in (10) and (11), respectively. It is no wonder
that [4] does not contain any reference to (6), since it was not known at the time. For
another generalization of (4) and an Lp(R) analogue of (10), the reader may look up
[5] and [6].

In 1958, the late Prof. R. P. Boas, Jr. proposed to one of us to extend (4) and (5) by
obtaining the sharp upper bounds for M(p; R)/M(p; 1) , R > 1 , and M(p′; 1)/M(p; 1)
under the assumption that p(z) �= 0 in |z| < κ , where κ is a given positive number; and
then obtain the corresponding extensions (see [7, p. 502, lines 1–5]) of his inequalities
(10) and (11). It was independently shown in [7] and [10] that if p is a polynomial of
degree at most n such that p(z) �= 0 for |z| < κ , where κ � 1 , then

M(p′; 1) � M(p; 1)
n

1 + κ
, (12)

with equality for polynomials of the form c(z + κeiγ )n , c ∈ C , c �= 0 , γ ∈ R . An
extension of this inequality to entire functions of exponential type not vanishing in the
half-plane �z > η , for some η � 0 , was also obtained in [7]. Thus, the proposed
problem concerning (5) has been solved in the case where κ � 1 . However, to the best
of our knowledge, little of any value is known as to how large M(p; R)/M(p; 1) can be
for R > 1 , and how small M(p; ρ)/M(p; 1) can be for ρ < 1 , if p is a polynomial of
degree at most n not vanishing in |z| < κ , where κ is a given positive number. The
purpose of this paper is to present certain observations concerning this problem.

2. Statement of the main results

Our first result is a partial extension of (4) for polynomials not vanishing in
D(0; κ) := {z ∈ C : |z| < κ} for some κ � 1 .
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THEOREM 1. Let p(z) :=
n∑

ν=0
aνzν �= 0 for |z| < κ , where κ � 1 , and let

λ = λ (κ) := κa1/(na0) . Then

M(p; R) �
(

R2 + 2|λ |Rκ + κ2

1 + 2|λ |κ + κ2

)n/2

M(p; 1) (1 � R � κ2). (13)

It is easily seen that |λ | � 1 , and so for any n , inequality (13) may be replaced
by the known estimate ([7, Theorem 1], [14, Theorem 4.23])

M(p; R) �
(

R + κ
κ + 1

)n

M(p; 1) (1 � R � κ2), (14)

where the bound is attained if p(z) := c(zeiβ + κ)n , c ∈ C , c �= 0 , β ∈ R .
In the case where n is even, (13) becomes an equality for polynomials of the form
c(z2e2iβ + 2κzeiβ cosα + κ2)n/2 , c ∈ C , c �= 0 , α ∈ R , β ∈ R .

Theorem 1 does not say anything about M(p; R)/M(p; 1) for R > κ2 . From (13)
it follows that

M(p; κ) � κn

(
2 + 2|λ |

1 + 2|λ |κ + κ2

)n/2

M(p; 1) �
(

2κ
κ + 1

)n

M(p; 1)

since |λ | = κ |a1/(na0)| � 1 . Now let pκ(z) := p(κz) . Then pκ(z) �= 0 for
|z| < 1 , and M(pκ ; 1) = M(p; κ) . Hence, if R > κ , then writing R = Sκ , where
S := R/κ > 1 , we may apply (4) to pκ and use the above estimate for M(p; κ) to
conclude that for any R > κ , we have

M(p; R) = M(pκ ; S) � Sn + 1
2

M(p; κ) � 2n−1 Rn + κn

(1 + κ)n
M(p; 1).

Although, this inequality can be seen as a generalization of (4) to which it reduces
if we put κ = 1 , it is not satisfactory for large values of κ , since

2n−1 Rn + κn

(1 + κ)n
M(p; 1) ∼ 2n−1 Rn + κn

1 + κn
M(p; 1) as κ → ∞.

The following complement to Theorem 1 shows that the factor 2n−1 in this last
(asymptotic) estimate is out of place.

THEOREM 2. Let p(z) :=
n∑

ν=0
aνzν �= 0 for |z| < κ , where κ > 1 . Then,

M(p; R) � Rn

κn

(
κn

κn + 1

)(R−κ2)/(R+κ2)

M(p; 1) (R � κ2). (15)

REMARK 1. Note that the right-hand side of (15) agrees with that of (13) for
R = κ2 , and for R > κ2 it is strictly less than (Rn/κn)M(p; 1) . More precisely, if
R > κ2 , then (

κn

κn + 1

)(R−κ2)/(R+κ2)

< 1 − R − κ2

R + κ2
· 1
κn + 1

,
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and so for R > κ2 , we have

M(p; R) <
Rn + κn

κn + 1
M(p; 1) +

1
κn + 1

{
2

κn−2

Rn

R + κ2
− κn

}
M(p; 1).

The example p(z) := zn +κn shows that M(p; R)/M(p; 1) can be at least as large
as (Rn + κn)/(κn + 1) if not larger.

Our next result is an extension of (6) to polynomials not vanishing in |z| < κ , for
some κ � 1 .

THEOREM 3. Let p(z) :=
n∑

ν=0
aνzν �= 0 for |z| < κ , where κ � 1 , and let

λ = λ (κ) := κa1/(na0) . Then

M(p; ρ) �
(
κ2 + 2κ |λ |ρ + ρ2

κ2 + 2κ |λ |+ 1

)n/2

M(p; 1) (0 � ρ < 1). (16)

In the case where n is even, (16) becomes an equality for polynomials of the form

c
(
κ2 + 2κzeiβ cosα + z2e2iβ)n/2

, c ∈ C , c �= 0 , α ∈ R , β ∈ R .
For any n , inequality (16) may be replaced by

M(p; ρ) �
(
ρ + κ
κ + 1

)n

M(p; 1) (0 � ρ < 1), (17)

where the bound is attained if p(z) := c
(
zeiβ + κ

)n
, c ∈ C , c �= 0 , β ∈ R . It may

be noted that even (17) is a generalization of (6).

Assuming that p(z) :=
n∑

ν=0
aνzν �= 0 in D(0; κ) := {z ∈ C : |z| < κ} for some

κ � 1 , we prove the following complement to Theorem 3.

THEOREM 4. Let p(z) :=
n∑

ν=0
aνzν �= 0 for |z| < κ , where κ ∈ (0, 1] , and let

λ = λ (κ) := κa1/(na0) . Then

M(p; ρ) �
(
κ2 + 2|λ |κρ + ρ2

κ2 + 2|λ |κ + 1

)n/2

M(p; 1) (0 � ρ � κ2). (18)

In the case where n is even, (18) becomes an equality for polynomials of the form

c
(
z2e2iβ + 2κzeiβ cosα + κ2

)n/2
, c ∈ C , c �= 0 , α ∈ R , β ∈ R .

For any n , inequality (18) may be replaced by

M(p; ρ) �
(
ρ + κ
κ + 1

)n

M(p; 1) (0 � ρ � κ2), (19)

where the bound is attained if p(z) := c(zeiβ + κ)n , c ∈ C , c �= 0 , β ∈ R .
Inequality (19) extends and refines a result of Jain [8, inequality (1.4)], who had

obtained it under the assumption that all the zeros of p lie on the circle |z| = κ .
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3. Auxiliary results

The following lemma (see [13, p. 340, Corollary 1]; also see [11, p. 444, Theorem
1.7.6) is in fact an extension of (6). We shall not prove it here for obvious reasons.

LEMMA 1. Let p(z) :=
n∑

ν=0
aνzν �= 0 in D(0; 1) := {z ∈ C : |z| < 1} , and let

λ := a1/(na0) . Then, we have

M(p; ρ1) �
(

1 + 2|λ |ρ1 + ρ2
1

1 + 2|λ |ρ2 + ρ2
2

)n/2

M(p; ρ2) (0 � ρ1 < ρ2 � 1). (20)

The next lemma is also an extension of (6).

LEMMA 2. Let p be a polynomial of degree at most n such that p(z) �= 0 in
D(0; �) := {z ∈ C : |z| < �} for some � > 0 . Then

M(p; ρ) �
(
ρ + �

1 + �

)n

M(p; 1)
(
0 � ρ � min{1, �2}).

Proof. Let zν = rνeiθν , and z = ρeiθ . Then,

∣∣∣∣ z − zν
eiθ − zν

∣∣∣∣
2

=
(ρ + rν)2 − 2ρrν

(
1 + cos(θ − θν)

)
(1 + rν)2 − 2rν

(
1 + cos(θ − θν)

) �
(
ρ + rν
1 + rν

)2

,

where the inequality holds only if (1 − ρ)(r2
ν − ρ) � 0 . Thus, if rν � � , then

∣∣∣∣ z − zν
eiθ − zν

∣∣∣∣ � ρ + rν
1 + rν

� ρ + �

1 + �
if 0 � ρ � min{1, �2}.

Hence, if the polynomial p(z) := am

m∏
ν=1

(z− zν), am �= 0 , has no zeros in |z| < � , then

∣∣∣∣p(ρeiθ)
p(eiθ)

∣∣∣∣ �
(
ρ + �

1 + �

)m

for − π � θ � π if 0 � ρ � min{1, �2}.

Consequently, if θ0 is such that |p(eiθ0)| = M(p; 1) , then

M(p; ρ) � |p(eiθ0)| �
(
ρ + �

1 + �

)m

M(p; 1) if 0 � ρ � min{1, �2}. �
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4. Proofs of the main results

We shall first prove Theorem 4, since it is used in the proof of Theorem 1. After
that we shall present the proofs of Theorems 1, 2, and 3, respectively.

Proof of Theorem 4. Let pκ(z) := p(κz) = a0 + a1κz + · · · + anκnzn . Then
pκ(z) �= 0 for |z| < 1 . Hence, Lemma 1 may be applied to pκ taking ρ1 = ρ/κ and
ρ2 = κ to obtain

M(p; ρ) = M
(
pκ ;

ρ
κ

)
�

(
1 + 2|λ |ρκ−1 + ρ2κ−2

1 + 2|λ |κ + κ2

)n/2

M(pκ ; κ)

=
(
κ2 + 2|λ |κρ + ρ2

1 + 2|λ |κ + κ2

)n/2

κ−nM(p; κ2)

�
(
κ2 + 2|λ |κρ + ρ2

1 + 2|λ |κ + κ2

)n/2

M(p; 1),

since M(p; κ2) � κnM(p; 1) by Lemma 2. �

Proof of Theorem 1. First, let 1 � R � κ . Then

pκ(z) := p(κz) =
n∑

ν=0

aνκνzν �= 0 for |z| < 1.

Besides,
M(pκ ; ρ2) = M(p; R) and M(pκ ; ρ1) = M(p; 1),

where ρ2 = R/κ and ρ1 = 1/κ . Since R ∈ (1, κ ] , we see that 0 < ρ1 < ρ2 � 1 and
so from (20) we obtain

M(p; 1) �
(

1 + 2|λ |κ−1 + κ−2

1 + 2|λ |Rκ−1 + R2κ−2

)n/2

M(p; R) (1 < R � κ),

which is the same as (13) for 1 < R � κ .
Next let κ � R � κ2 . Then pR(z) := p(Rz) �= 0 for |z| < κ/R . Since κ/R � 1

and 1/R � κ2/R2 we may apply Theorem 4 to the polynomial pR with κ/R instead
of κ and ρ = 1/R to obtain

M(p; R) = max
|z|=1

|p(Rz)|

�
(

κ2 + 2|λ |κ + 1
κ2 + 2|λ |κρ + ρ2

)n/2

max
|z|=1/R

|p(Rz)|

=
(

R2 + 2|λ |Rκ + κ2

1 + 2|λ |κ + κ2

)n/2

M(p; 1) (κ � R � κ2),

which gives us the desired inequality for κ � R � κ2 . �



460 N. K. GOVIL, M. A. QAZI AND Q. I. RAHMAN

Proof of Theorem 2. Without loss of generality we may assume that p is of degree
n , and that M(p; 1) = 1 . From (13) it follows that

M(p; κ2) � κnM(p; 1) = κn. (21)

Hence, if g(z) := p(κ2z) = a0 + κ2a1z + · · ·+ κ2nanzn , then |g(z)| � κn for |z| = 1 .
Besides, g(z) �= 0 for |z| < 1/κ . Setting

G(z) := κ−nzng(1/z) = κ−na0z
n + κ−n+2a1z

n−1 + · · · + κnan,

we see that |G(z)| � 1 for |z| = 1 and that G has all its zeros in the closed disk
|z| � κ .

Since |p(z)| � 1 for |z| = 1 it follows from an inequality of Visser [19] that

|a0| + |an| � 1.

Hence, writing p(z) := an

n∏
ν=1

(z − zν) , where |zν| � κ for 1 � ν � n we see that

|ao| � κn|an| , and so

|an| � 1
κn + 1

,

which implies that

|G(0)| = |κnan| � κn

κn + 1
. (22)

Now, let us suppose that G(z) �= 0 for |z| � 1 . Then applying Poisson’s integral
formula [17, p. 124] to Log |G(z)| , we obtain

Log
∣∣G(reiθ)

∣∣ =
1
2π

∫ π

−π

1 − r2

1 − 2r cos (θ − ϕ) + r2
Log |G(eiϕ)| dϕ (0 � r < 1).

Since Log |G(eiϕ)| � 0 we conclude that for 0 � r < 1 , we have

Log
∣∣G(reiθ)

∣∣ � 1 − r
1 + r

· 1
2π

∫ π

−π
Log |G(eiϕ)| dϕ =

1 − r
1 + r

Log |G(0)|,

that is
|G(z)| � |G(0)|(1−|z|)/(1+|z|) (0 � |z| � 1),

which when combined with (22) gives

|G(z)| �
(

κn

κn + 1

)(1−|z|)/(1+|z|)
(0 � |z| � 1). (23)

Next, we shall show that (23) remains true even if G has some zeros in |z| < 1 ,
say κ2/z1, . . . , κ2/zm . In such a case

|a0| � |an|κn−m
m∏

μ=1

|zμ |,
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and from Visser’s inequality [19] it follows that

|an| � 1

1 + κn−m
m∏

μ=1
|zμ |

,

and that

|G(0)| � κn

1 + κn−m
m∏

μ=1
|zμ |

.

Now, let

G∗(z) := G(z)
m∏

μ=1

κ2z/zμ − 1
z − κ2/zμ

= G(z)
m∏

μ=1

(
zμ
zμ

· κ
2z − zμ

zμz − κ2

)
.

Then

|G∗(0)| �
κn−2m

m∏
μ=1

|zμ |

1 + κn−m
m∏

μ=1
|zμ |

.

Since |G∗(z)| � 1 for |z| = 1 and G∗(z) �= 0 for |z| < 1 , we may again use Poisson’s
formula to conclude that

|G∗(z)| �

⎛
⎜⎜⎜⎝

κn−2m
m∏

μ=1
|zμ |

1 + κn−m
m∏

μ=1
|zμ |

⎞
⎟⎟⎟⎠

(1−|z|)/(1+|z|)

(|z| < 1).

Hence,

|G(z)| �

⎛
⎜⎜⎜⎝

κn−2m
m∏

μ=1
|zμ |

1 + κn−m
m∏

μ=1
|zμ |

⎞
⎟⎟⎟⎠

(1−|z|)/(1+|z|)
m∏

μ=1

∣∣∣∣∣∣
z − κ2

zμ
κ2

zμ
z − 1

∣∣∣∣∣∣

�

⎛
⎜⎜⎜⎝

κn−2m
m∏

μ=1
|zμ |

1 + κn−m
m∏

μ=1
|zμ |

⎞
⎟⎟⎟⎠

(1−|z|)/(1+|z|)
m∏

μ=1

|z| + κ2

|zμ |
κ2

|zμ | |z| + 1
(|z| < 1).

Setting tμ := κ2/|zμ | for 1 � μ � m we see that for |z| < 1 , we have

|G(z)| � ψ(t1, . . . , tm) :=
(

κn

t1 · · · tm + κn+m

)(1−|z|)/(1+|z|) m∏
μ=1

|z| + tμ
tμ |z| + 1

.
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Setting

Λ :=
1

κn+m + t1 · · · tm
and

Aν := (κn)
1−|z|
1+|z|

m∏
μ=1,μ �=ν

|z| + tμ
tμ |z| + 1

(1 � ν � m),

we see that for any ν ∈ {1, . . . , m} , the partial derivatives

∂ψ
∂tν

= Aν

{
1 − |z|2

(tν|z| + 1)2
Λ

1−|z|
1+|z| − |z| + tν

tν|z| + 1
1 − |z|
1 + |z|Λ

2
1+|z| t1 · · · tm

tν

}

are positive if and only if

(1 + |z|)2 > (|z| + tν)(tν|z| + 1)
(

1
κn+m + t1 · · · tm

)
t1 · · · tm

tν
,

which is indeed true since tμ < 1 for 1 � μ � m and κ � 1 . Hence,

ψ(t1, . . . , tm) � ψ(1, . . . , 1) =
(

κn

κn+m + 1

)(1−|z|)/(1+|z|)
(|z| < 1),

and so (23) holds even if G has some zeros in the open disk |z| < 1 .
From (23) we conclude that∣∣∣∣p

(
κ2

z

)∣∣∣∣ � κn

|z|n
(

κn

κn + 1

)(1−|z|)/(1+|z|)
(0 < |z| � 1).

This implies that

|p(ζ)| � |ζ |n
κn

(
κn

κn + 1

)(|ζ |−κ2)/(|ζ |+κ2)

(|ζ | > κ2),

which is equivalent to (15). �
Proof of Theorem 3. Let

pκ(z) = p(κz) := a0 + κa1z + · · · + κnanz
n.

Then pκ(z) �= 0 for |z| < 1 . Applying Lemma 1 to pκ taking ρ1 := ρ/κ , and
ρ2 := 1/κ , we obtain

M(p; ρ) = M(pκ ; ρ1)

�
(

1 + 2|κa1/(na0)|ρ1 + ρ2
1

1 + 2|κa1/(na0)|ρ2 + ρ2
2

)n/2

M(pκ ; ρ2)

=
(

1 + 2|λ |ρ/κ + ρ2/κ2

1 + 2|λ |/κ + 1/κ2

)n/2

M(p; 1) (0 � ρ < 1),

which is equivalent to (16). �
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5. Some additional results

Looking at Theorem 4, one might wonder how small M(p; ρ)/M(p; 1) can be if
ρ ∈ (κ2, 1) . The next result contains a lower bound for this quantity in the case where
ρ ∈ (κ2, κ) .

PROPOSITION 1. Let p be a polynomial of degree n such that p(z) �= 0 in
D(0; κ) := {z ∈ C : |z| < κ} for some κ ∈ (0, 1) . Then

M(p; ρ) � κn

(
κn + ρn

κn

)(ρ−κ2)/(ρ+κ2)

M(p; 1) (κ2 � ρ � κ). (24)

Proof. Let pρ(z) := p(ρz) . Then pρ(z) �= 0 for |z| < κ/ρ . Observe that
κ/ρ � 1 since ρ � κ and that R := 1/ρ � κ2/ρ2 since ρ � κ2 . Hence, applying
(15) to pρ with κ/ρ instead of κ and R := 1/ρ , we obtain

M(p; 1) = M

(
pρ;

1
ρ

)
� 1

κn

(
(κ/ρ)n

(κ/ρ)n + 1

) (1/ρ)−(κ2/ρ2)

(1/ρ)+(κ2/ρ2 )

M(pρ; 1)

=
1
κn

(
κn

κn + ρn

) ρ−κ2

ρ+κ2

M(p; ρ) (κ2 � ρ � κ),

which is equivalent to (24). �

REMARK 2. The right-hand side of (24) agrees with that of (18) for ρ = κ2 . For
ρ = κ , inequality (24) reduces to

M(p; κ) � 2κn

22κ/(1+κ) M(p; 1),

which is not precise. We can replace it by the sharp estimate

M(p; κ) � 2κn

1 + κn
M(p; 1). (25)

Indeed, pκ(z) := p(κz) �= 0 for |z| < 1 , and hence, applying (4) to pκ taking
R = 1/κ , we obtain

M(p; 1) = M

(
pκ ;

1
κ

)
� κ−n + 1

2
M(pκ ; 1) =

1 + κn

2κn
M(p; κ).

In (25), equality holds for p(z) := c(zn + κn) , c �= 0 .

The next result can be seen as a supplement to Proposition 1.

PROPOSITION 2. Let p be a polynomial of degree n such that p(z) �= 0 in
D(0; κ) := {z ∈ C : |z| < κ} for some κ ∈ (0, 1) . Then

M(p; ρ) �
(

2κn

1 + κn

)(log ρ)/(log κ)

M(p; 1) (κ2 � ρ � κ). (26)
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Proof. Recall that logM(p; r) is a convex function of log r . Hence, by the
definition of convexity, if 0 < ρ < κ < 1 , then

logM(p; 1) − logM(p; κ)
log 1 − logκ

� logM(p; κ) − logM(p; ρ)
logκ − logρ

,

that is
{M(p; κ)}log (1/ρ) � {M(p; ρ)}log (1/κ){M(p; 1)}log (κ/ρ).

Thus, in view of (25), we have(
2κn

1 + κn

)log (1/ρ)

{M(p; 1)}log (1/ρ) � {M(p; ρ)}log (1/κ){M(p; 1)}log (κ/ρ),

and so

M(p; ρ) �
(

2κn

1 + κn

)(log ρ)/(log κ)

M(p; 1) (0 < ρ < κ < 1). �

REMARK 3. Note that (26) agrees with (25) for ρ = κ . However, neither of the
two preceding results contains the other. In fact, comparing themwe see that Proposition
1 gives a better lower bound for M(p; ρ) near κ2 whereas Proposition 2 does the same
near κ . Together, they say that if p is as in Proposition 1, then for κ2 � ρ � κ , we
have

M(p; ρ) � max

{
κn

(
κn + ρn

κn

)(ρ−κ2)/(ρ+κ2)

,

(
2κn

1 + κn

)(log ρ)/(log κ)
}

M(p; 1).

The following result gives a lower bound for M(p; ρ)/M(p; 1) in the remaining
case where κ < ρ < 1 .

PROPOSITION 3. Let p(z) := an

n∏
ν=1

(z− zν) be a polynomial of degree n such that(
n∏

ν=1
|zν|

)1/n

� κ for some κ ∈ [0, 1] . Then

M(p; ρ) � kn +
√
κ2n + 4(1 + κn)ρ2

2(1 + κn)
ρn−1M(p; 1) (0 � ρ � 1). (27)

In particular, (27) holds if p(z) �= 0 for |z| < κ for some κ ∈ (0, 1) .

Proof. Let p(z) :=
n∑

ν=0
aνzν . Then |a0|/|an| � κn , so that by Visser’s inequality

[19], we have
|an|κn + |an| � |ao| + |an| � M(p; 1),

that is

|an| � M(p; 1)
1 + κn

. (28)
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Let q(z) := znp(1/z) , and

ΦR(z) :=
q(Rz)

M(q; R)
(R > 1).

Then by (28),

|ΦR(0)| =
|an|

M(q; R)
� M(p; 1)

(1 + κn)M(q; R)
.

Since |ΦR(z)| � 1 , we may apply Schwarz’s lemma [17, p. 212 ] to conclude that for
any θ ∈ (−π, π] , we have

|ΦR(R−1eiθ)| � R−1 + {(1 + κn)M(q; R)}−1M(p; 1)
{(1 + κn)M(q; R)}−1M(p; 1)R−1 + 1

=
(1 + κn)M(q; R) + RM(p; 1)
M(p; 1) + (1 + κn)M(q; R)R

(R > 1).

Hence, if θ is such that |q(R · R−1eiθ )| = |p(eiθ)| = M(p; 1) , then

M(p; 1)
M(q; R)

� (1 + κn)M(q; R) + RM(p; 1)
M(p; 1) + (1 + κn)M(q; R)R

.

Setting η := (1 + κn)M(q; R)/M(p; 1) , we conclude that

1 + κn � η
η + R
1 + Rη

.

Hence, if

η1 :=
κnR − √

κ2nR2 + 4(1 + κn)
2

and η2 :=
κnR +

√
κ2nR2 + 4(1 + κn)

2
,

then
(η − η1)(η − η2) � 0,

and so, η must belong to (−∞,η1] ∪ [η2,∞) . Since η1 < 0 whereas η > 0 , we
conclude that η ∈ [η2,∞) . Thus

M(q; R) � κnR +
√
κ2nR2 + 4(1 + κn)
2(1 + κn)

M(p; 1) (R > 1). (29)

Now note that if 0 < ρ < 1 and R := 1/ρ , then

|q(Reiθ)| = Rn
∣∣∣p(R−1eiθ)

∣∣∣ = ρ−n
∣∣p(ρeiθ)

∣∣ ,

which implies that
M(q; R) = ρ−nM(p; ρ).

Hence (29) says that

M(p; ρ) � κn +
√
κ2n + 4(1 + κn)ρ2

2(1 + κn)
ρn−1M(p; 1) (0 < ρ < 1). �
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REMARK 4. Proposition 3, which always applies with κ = 0 , may be seen as
extension of (3). In fact, (27) reduces to (3) for κ = 0 . It is easily checked that the
right-hand side of (27) is larger than ρnM(p; 1) for all ρ ∈ (0, 1) if κ ∈ (0, 1) .

Inequality (4), Theorem 1 and Theorem 2 deal with the upper bound for the ratio
M(p; R)/
M(p; 1) , R > 1 , when p is a polynomial of degree at most n not vanishing in
|z| < κ ∈ [1,∞) . What can we say in the case where p(z) �= 0 in |z| < κ for some
κ < 1 ? An answer to this question is contained in the following result.

PROPOSITION 4. Let p(z) := an

n∏
ν=1

(z− zν) be a polynomial of degree n such that(
n∏

ν=1
|zν|

)1/n

� κ for some positive κ . Then,

M(p; R) � Rn R + (1 + κn)
(1 + κn)R + 1

M(p; 1) (R > 1). (30)

Proof. Let p(z) :=
n∑

ν=0
aνzν . Then

q(z) := znp(1/z) = an + an−1z + · · · + a0z
n,

and by (28),

|q(0)| = |an| � M(p; 1)
1 + κn

.

Since M(q; 1) = M(p; 1) , wemay apply Schwarz’s lemma to the polynomial q(z)/M(p; 1)
to conclude that

∣∣∣znp(1/z)
∣∣∣ = |q(z)| � M(p; 1)

|z| + 1/(1 + κn)
|z|/(1 + κn) + 1

(|z| < 1),

and so

|p(z)| � M(p; 1)
1 + κn + |z|

1 + (1 + κn)|z| |z|
n (|z| > 1),

which is equivalent to (30). �

REMARK 5. Note that the right-hand side of (30) is strictly less than RnM(p; 1) .
It may also be mentioned that

Rn R + (1 + κn)
(1 + κn)R + 1

<
Rn

1 + κn
+ 2

κn

1 + κn
Rn−1.
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