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Abstract. In this paper, by means of the method of upper and lower solutions and the monotone
iterative technique, the existence of maximal and minimal solutions of the boundary value
problem for first order parametrized differential equation with piecewise constant arguments is
considered.

1. Introduction

The differential equationswith parameters have numerous applications in the math-
ematical models of controlled process. These equations can be successfully used in
physics, population dynamics and economics. Recently, the equationswere investigated,
and some existence results concerning parametrized boundary value problems were ob-
tained (see Refs [1, 7–10]). M. Feckan studied a class of higher order parametrized
boundary value problems by the Neilsen fixed point theory [1]. R. M. Brown applied an
approachdevelopedof the Neilsen fixed point theory to a class of two order parametrized
equations [7]. T. Jankowski andV. Lakshmikanthamdiscussed the first order differential
equationswith parameters [8, 10]. In this paper we consider the boundary value problem
for first order parametrized differential equation with piecewise constant arguments

⎧⎨
⎩

x′(t) = f (t, x(t), x([t − k]), λ ), t ∈ J = [0, T],
x(−i) = x(0) = x0, i = 1, 2, . . . , k,
G(x(T), λ ) = 0

(1.1)

where x0 ∈ R is a constant, [ · ] designates the greatest integer function and k ∈ N ,
f ∈ C[J × R × R × R, R] , G ∈ (R × R, R) .

Let T =
{

[T] + 1, T �= [T],
T, T = [T], and Ω denote the class of all function

x : J ∪ {−k,−k + 1, . . . ,−1} → R satisfying that (i) x(−i) = x(0) , i = 1, 2, . . . k ;
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(ii) x(t) is continuous for t ∈ J ; (iii) x′(t) exist and is continuous on the intervals
[n, n + 1) (n = 0, 1, . . . , T − 1) and [T − 1, T) .

By a solution of (1.1) we mean a pair (x, λ ) ∈ Ω× R for which problem (1.1) is
satisfied.

The method of upper and lower solutions coupled with the monotone iterative
technique has been widely used in the treatment of nonlinear differential equations in
recent years (see Refs [2–6, 8]). When the method is applied to differential equations
with piecewise constant arguments,it usually needs a suitable differential inequality as
a comparison principle.

Here we establish a differential inequality as a comparison principle. Then, using
the monotone iterative technique and the method of upper and lower solutions we obtain
the existence theorems of extremal solutions for (1.1). This paper extends the results
of [8, 10].

2. Preliminaries

DEFINITION 2.1. A pair (v, a) ∈ Ω× R is called a lower solution of (1.1) if

v′(t) � f (t, v(t), v([t − k]), a), t ∈ J,

v(0) � x0, 0 � G(v(T), a);

an upper solution of (1.1) if the above inequalities are reversed.

Assume that v , w ∈ Ω , a , b ∈ R such that v(t) � w(t) on J and a � b . Let
[v, w] × [a, b] denote the sector {(η, λ ) ∈ Ω× R : v � η � w, a � λ � b} . For any
(ηi, λi) ∈ Ω× R (i = 1, 2) , η1 � η2 , λ1 � λ2 implies (η1, λ1) � (η2, λ2) .

Now we develop a comparison result for later use.

LEMMA 2.1. Suppose that m ∈ Ω such that

m′(t) � −Mm(t) − Nm([t − k]), t ∈ J (2.1)

where M > 0, N � 0 are constants such that

1 − M T � 0, (2.2)

where M = N
M ekM(eM − 1) . Then m(t) � 0 for all t ∈ J if m(0) � 0 .

Proof. Let p(t) = m(t)eMt , then (2.1) reduces to

p′(t) � −Np([t − k])eM(t−[t−k]), (2.3)

hence

p(t) � p(n − 1) − N
M

p(n − k − 1)[eM(t−n+k+1) − eMk], (2.4)

for t ∈ [n − 1, n) (n = 1, 2, . . . , T − 1) , and for t ∈ [T − 1, T) ,

p(t) � p(T − 1) − N
M

p(T − k + 1)[eM(t+k+1−T − eMk]. (2.5)
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Notice that by continuity, (2.4) is satisfied on each interval [n−1, n] (n = 1, 2, . . . , T−
1) . In particular, we have

p(n) � p(n − 1) − Mp(n − k − 1), n = 1, 2, . . . , T − 1. (2.6)

If m(0) � 0 , this implies, that p(t) � 0 for t ∈ [0, 1] since on this interval

p(t) � p(0) − Mp(−k) = (1 − M)p(0).

In particular, we obtain that
p(1) � (1 − M)p(0). (2.7)

Now assume that for n < T − 1 , one has p(t) � 0 for every t ∈ [n − 1, n] ,

p(t) � (1 − (n − 1)M)p(0).

Let t ∈ [n, n + 1] . If k � T − 1 , by (2.4), it is clearly that p(t) � (1 − nM)p(0) . If
k < T − 1 , by (2.4), we also have

p(t) � (1 − (i − 1)M)p(0)

for t ∈ [i − 1, i] (i = 1, 2, . . . , k + 1) . By (2.4) and (2.7), for t ∈ [k + 1, k + 2] one
has

p(t) � p(k + 1) − Mp(1) � p(k) − Mp(0) − Mp(1)
� p(k − 1) − Mp(−1) − Mp(0) − Mp(1)
= p(k − 1) − 2Mp(0) − Mp(1)
� . . . � p(1) − (k − 1)Mp(0) − Mp(1)
� (1 − M)2p(0) − (k − 1)Mp(0) � (1 − (k + 1)M)p(0).

By (2.4), the hypothesis of induction and a continued application of (2.6), we obtain

p(t) � (1 − nM)p(0) � 0, t ∈ [n, n + 1].

Analogously, we can obtain

p(t) � (1 − T M)p(0) � 0, t ∈ [T − 1, T].

Thus m(t) � 0 for t ∈ J . Hence the proof of the lemma is completed.

3. Main results

In order to develop the monotonemethod for (1.1), we require that f and G satisfy
hypothesis:

(H1 ) (v, a) , (w, b) ∈ E×R are lower and upper solutions of (1.1), respectively,
such that (v, a) � (w, b) ;

(H2 ) f is nondecreasing with respect to the last variable;
(H3 ) There exist constants M, N > 0 such that

f (t, x̄, ȳ, λ ) − f (t, x, y, λ ) � −M(x̄ − x) − N(ȳ − y)
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whenever v(t) � x � x̄ � w(t) , v([t − k]) � y � ȳ � w([t − k]) for t ∈ J , where
λ ∈ [a, b] , x , x̄ , y , ȳ ∈ R .

(H′
3 ) There exist constants M , N > 0 , Q � 0 such that

f (t, x̄, ȳ, λ̄ ) − f (t, x, y, λ ) � −M(x̄ − x) − N(ȳ − y) + Q(λ̄ − λ )

whenever v(t) � x � x̄ � w(t) , v([t − k]) � y � ȳ � w([t − s]) for t ∈ J and
a � λ � λ̄ � b , where λ , λ̄ , x , x̄ , y , ȳ ∈ R .

(H4 ) There exist M1, N1 > 0 such that

G(ū, λ̄ ) − G(u, λ ) � M1(ū − u) − N1(λ̄ − λ )

whenever v(t) � u � ū � w(t) for t ∈ J and a � λ � λ̄ � b , where u , ū , λ ,
λ̄ ∈ R .

(H′
4 ) There exists N1 > 0 such that

G(u, λ̄) − G(u, λ ) � −N1(λ̄ − λ )

whenever v(t) � u � w(t) for t ∈ J and a � λ � λ̄ � b , where u , λ , λ̄ ∈ R ;
(H5 ) G is nondecreasing with respect to the first variable.

THEOREM 3.1. Assume that (H1) − (H4) and (2.2) hold. Then there exist mono-
tone sequence {(vn, an)} and {(wn, bn)} that converge uniformly to the minimal and
maximal solutions (ρ, c) and (r, d) , respectively, of (1.1), that is, if (x,σ) is any
solution of (1.1) in [v, w] × [a, b] , then

(v, a) ≡ (v0, a0) � (v1, a1) � . . . � (vn, an) � (ρ, c) � (x,σ)
� (r, d) � (wn, bn) � . . . � (w1, b1) � (w0, b0) ≡ (w, b).

Proof. Let (η, λ ) ∈ [v, w] × [a, b] , we consider the linear systems

p′(t) = f (t,η(t),η([t − k]), λ ) − M(p(t) − η(t))
−N(p([t − k]) − η([t − k])), t ∈ J,

(3.1)

p(−i) = x0, i = 1, 2, . . . , k, (3.2)

0 = G(η(T), λ ) − N1(μ − λ ) + M1(u(T) − η(T)). (3.3)

It is not difficulty to see that for given (η, λ ) ∈ [v, w] × [a, b] the system (3.1),
(3.2) and (3.3) admits a unique solution (p,μ) . Thus for (η, λ ) ∈ [v, w] × [a, b] , it is
not difficult to see that we can define the mapping A by

A(η, λ ) = (p,μ)

where (p,μ) is the unique solution of (3.1), (3.2) and (3.3).
We shall show that the mapping A satisfies:
(i) (v, a) � A(v, a), A(w, b) � (w, b) ;
(ii) A is monotone nondecreasing on [v, w] × [a, b] , i.e., for any (η1, λ1) ,

(η2, λ2) ∈ [v, w] × [a, b] , (η1, λ1) � (η2, λ2) implies A(η1, λ1) � A(η2, λ2) .
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To prove (i) we set A(v, a) = (v1, a1) and A(w, b) = (w1, b1) we only prove
(v, a) � (v1, a1) and (w, b) � (w1, a1) can be proved similarly. Setting m0(t) =
v(t) − v1(t), q0 = a − a1 . Then we have from (H1) , (H3) and (3.1), (3.2)

m′
0(t) � f (t, v(t), v([t − k]), a) − f (t, v(t), v([t − k]), a) + M(v1(t) − v(t))

+ N(v([t − k]) − v1([t − k]) = −Mm0(t) − Nm0([t − k]), t ∈ J

and m0(−i) = v(−i)−v1(−i) � 0 , i = 1, 2, . . . , k , by Lemma 2.1, we have m0(t) � 0
on J . So v(t) � v1(t) . On the other hand, we have from (3.3) and (H1)

0 = G(v(T), a) − N1(a1 − a) + M1(v1(T) − v(T)) � −N(a1 − a) = Nq0,

so q0 � 0 and hence a � a1 . That is (v, a) � A(v, a) .
To prove (ii), let A(ηi, λi) = (pi,μi) (i = 1, 2) , m1(t) = p1(t) − p2(t) and

q1 = μ1 − μ2 . Then, in view of (H1) , (H2) and (H3) we obtain,

m′
1(t) = f (t,η1,η1([t − k]), λ1) − M(p1(t) − η1(t)) − N(u1([t − k]) − η1([t − k]))

−f (t,η2,η2([t − k]), λ2) + M(p2(t) − η2(t)) + N(u2([t − k]) − η2([t − k]))
� −Mm1(t) − Nm1([t − k]).

Since m1(−i) ≡ 0 for i = 1, 2, . . . , k , it follows from Lemma 2.1 that m1(t) � 0 on
J , and p1(t) � p2(t) on J . Further, from (3.3) and (H1) , (H4)

0 = G(η1(T), λ1) − N1(μ1 − λ1) + M1(p1(T) − η1(T))
−G(η2(T), λ2) + N1(μ2 − λ2) − M1(p2(T) − η2(T))

= G(η1(T), λ1) − G(η2(T), λ2) + N1(λ1 − λ2)
−M1(η1(T) − η2(T)) − N1q1 + Q(p1(T) − p2(T)) � −N1q1,

so q1 � 0 and hence μ1 � μ2 . Therefore (ii) holds.
Let v0 ≡ v , w0 ≡ w , a0 = a , b0 = b , we construct sequences {(vn, an)} and

{(wn, bn)} by

(vn, an) = A(vn−1, an−1), (wn, bn) = A(wn−1, bn−1), n = 1, 2, . . . .

We get that

v0 � v1 � . . . � vn � wn � . . . � w1 � w0,

a0 � a1 � . . . � an � bn � . . . � b1 � b0.

Employing standard techniques ([3]), it can be shown that the sequence {(vn, an)} and
{(wn, bn)} converge uniformly and monotonically to (ρ, c) and (r, d) , respectively.
Indeed, (ρ, c) , (r, d) are solutions of (1.1) in view of the continuity of f and G , and
the definition of the above sequences.

To prove that (ρ, c) , (r, d) are extremal solutions of (1.1), let (p̄, μ̄) ∈ [v, w] ×
[a, b] be any solution of (1.1). Suppose that there exists a positive integer n such that
vn(t) � p̄(t) � wn(t) on J and an � μ̄ � bn . Then, setting m(t) = vn+1(t)− ū(t), q =
an+1 − μ̄ , we have
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m′(t) � f (t, vn(t), vn([t − k]), an) − M(vn+1(t) − vn(t))
−N(vn+1([t − k]) − vn([t − k])) − f (t, p̄(t), p̄([t − k]), μ̄)

� f (t, vn(t), vn([t − k]), μ̄) − f (t, p̄(t), p̄([t − k]), μ̄) + M(vn(t) − p̄(t))
+N(vn([t − k]) − p̄([t − k])) − Mm(t) − Nm([t − k])

� −Mm(t) − Nm([t − k]).

Since m(−i) = 0 for i = 1, 2, . . . , k, it follow from Lemma 2.1 that m(t) � 0 on J ,
and vn+1(t) � p̄(t) on J . Further, we have that, from (3.3) and (H4 ),

0 = G(vn(T), an) − N1(an+1 − an) + M1(vn+1(T) − vn(T)) − G(p̄(T), μ̄)
� M1(vn(T) − p̄(T)) − N1(an − μ̄) − N1(an+1 − an) + M1(vn+1(T) − vn(T))
� −Nq,

so q � 0 , and hence an+1 � μ̄ . That is, (vn+1, an+1) � (ū, μ̄) . Similarly, we
obtain (p̄, μ̄) ∈ (wn+1, bn+1) . Since (p̄, μ̄) ∈ [v, w] × [a, b] , by induction we get
(p̄, μ̄) ∈ [vn, wn] × [an, bn] for every n . Therefore, (p̄, μ̄) ∈ [ρ, r] × [c, d] by taking
limit as n → ∞ . The proof of the theorem is complete.

THEOREM 3.2. Assume that (H1) , (H′
3) , (H′

4) , (H5) and (2.2) hold. Then the
conclusion of Theorem 3.1 is valid.

Proof. Let (η, λ ) ∈ [v, w] × [a, b] , we consider the linear systems

0 = G(η(T), λ ) − p1(μ − λ ), (3.4)

p′(t) = f (t,η(t),η([t − s]), λ ) − M(p(t) − η(t))
−N(p([t − k]) − η([t − k])]) + Q(μ − λ ), (3.5)

p(−i) = x0, i = 1, 2, . . . , k. (3.6)

It is obviously, that (3.4), (3.5) and (3.6) has a unique solution (p,μ) . Thus for any
(η, λ ) ∈ [v, w] × [a, b] , we can define the mapping A by

A(η, λ ) = (p,μ).

Thus for (η, λ ) ∈ [v, w] × [a, b] , we can define the mapping A by

A(η, λ ) = (p,μ)

where (p,μ) is the unique solution of (3.4), (3.5) and (3.6).
We shall show that the mapping A satisfies:
(i) (v, a) � A(v, a), A(w, b) � (w, b) ;
(ii) A is monotone nondecreasing on [v, w] × [a, b] , i.e., for any (η1, λ1) ,

(η2, λ2) ∈ [v, w] × [a, b] , (η1, λ1) � (η2, λ2) implies A(η1, λ1) � A(η2, λ2) .
To prove (i) we set A(v, a) = (v1, a1) and A(w, b) = (w1, b1) we only prove

(v, a) � (v1, a1) and (w, b) � (w1, a1) can be proved similarly. Setting m0(t) =
v(t) − v1(t), q0 = a − a1 . First we have from (3.4) and (H1)

0 = G(v(T), a) − N1(a1 − a) � −N(a1 − a) = Nq0,
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so q0 � 0 and hence
a � a1. (3.7)

On the other hand, from (H1) , (H′
3) , (3.5), (3.6) and (3.7), we have

m′
0(t) � f (t, v(t), v([t − k]), a) − f (t, v(t), v([t − k]), a) + M(v1(t) − v(t))

+N(v([t − k]) − v1([t − k])) + Q(a1 − a)
= −Mm0(t) − Nm0([t − k]), t ∈ J,

m0(−i) = v(−i) − v1(−i) � 0, i = 1, 2, . . . , k,

by Lemma 2.1, we have m0(t) � 0 on J . So v(t) � v1(t) . That is (v, a) � A(v, a) .
To prove (ii), let A(ηi, λi) = (pi,μi) (i = 1, 2) , m1(t) = p1(t) − p2(t) and

q1 = μ1 − μ2 . Then, from (3.4) and (H1) , (H′
4) and (H5) , we have

0 = G(η1(T), λ1) − N1(μ1 − λ1) + M1(p1(T) − η1(T))
−G(η2(T), λ2) + N1(μ2 − λ2) − M1(p2(T) − η2(T))

= G(η1(T), λ1) − G(η2(T), λ2) + N1(λ1 − λ2)
−M1(η1(T) − η2(T)) − N1q1 + Q(p1(T) − p2(T))

� −N1q1,

so q1 � 0 and hence
μ1 � μ2. (3.8)

Further, in view of (H1) , (H′
3) and (3.8) we obtain,

m′
1(t) = f (t,η1,η1([t − k]), λ1) − M(p1(t) − η1(t)) − N(u1([t − k]) − η1([t − k]))

−f (t,η2,η2([t − k]), λ2) + M(p2(t) − η2(t)) + N(u2([t − k]) − η2([t − k]))
+Q(μ1 − η1 + μ2 − η2)

� −Mm1(t) − Nm1([t − k]).

Since m1(−i) ≡ 0 for i = 1, 2, . . . , k , it follows from Lemma 2.1 that m1(t) � 0 on
J , and p1(t) � p2(t) on J . Therefore (ii) holds.

The further proof is analogous to that of Theorem 3.1 and Therefore we omit it.
The proof is complete.

RE F ER EN C ES

[1] M.FECKAN, Parametrized singular boundary value problem, J.Math. Anal. Appl., 188 (1994), 417–425.
[2] S. LEELA, M. N. OGUZTORELI, Periodic boundary value problem for differential equations with delay

and monotone iterative method, J. Math. Anal. Appl., 122 (1987), 301–307.
[3] G. S. LADDE, V. LAKSHMIKANTHAM, A. S. VATSALA, Monotone Iterative Techniques for Nonlinear

Differential Equations, Pitman, Boston, 1985.
[4] H. XU, E. LIZ, Boundary value problems for functional differential equations, Nonlinear Analysis, 41

(2000), 971–988.
[5] J. J. NIETO, J. YU, J. YAN, Monotone iterative methods for functional differential equations, Nonlinear

Analysis, 32 (1998), 741–747.
[6] F. ZHANG, Z. MA, J. YAN, Periodic boundary value problems and monotone iterative methods for

first order impulsive differential equations with delay, Indian J. Pure and Applied Math., 32 (2001),
1695–1707.

[7] R. F. BROWN, Topological identification of multiple solutions to parametrized nonlinear equations,
Pacific J. Math., 131 (1988), 51–69.



476 ZHANG FENGQIN, MA ZHIEN AND YAN JURANG

[8] T. JANKOWSKI AND V. LAKSHMIKANTHAM, Monotone iterations for differential equations with a param-
eter, J. Appl. Math. Stoch. Anal. 10 (1997), 273–278.

[9] S. STANK, On a class of functional boundary value problems for the equation x′′ = f (t, x, x′, x′′, λ) ,
Ann. Pol. Math., 59 (1994), 225–237.

[10] T. JANKOWSKI, Monotone iterations for first order differential equations with a parameter, Acta Math.
Hungar., 84 (1999), 65–80.

(Received January 15, 2002) Zhang Fengqin
Dept. of Appl. Math. Xi’an Jiantong University

Xi’an 710049, China
Dept. of Math. Yuncheng College
Yuncheng Shanxi 044000, China

e-mail: zhafq@263.net

Ma Zhien
Dept. of Appl. Math. Xi’an Jiantong University

Xi’an 710049, China

Yan Jurang
Dept. of Math. Shanxi University

Taiyuan Shanxi 030006, China

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


