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EQUIVALENT QUASINORMS FOR THE ANISOTROPIC
NIKOL’SKII-BESOV SPACES ON A CONE OF FUNCTIONS
WITH A REGULAR FOURIER TRANSFORM

V. I. BURENKOV AND G. E. GARCIA ALMEIDA

(communicated by L. Pick)

Abstract. We prove the equivalence of the quasinorms of the anisotropic Nikol’skii-Besov spaces
to simpler quasinorms on a cone of functions with positive Fourier transforms satisfying some
regularity conditions.

1. Introduction

The main aim of the article is the proof of the equivalence of the quasinorms of
the anisotropic Nikol’skii-Besov spaces Bf;,e (RN ) to simpler quasinorms, which are
weighted Lg (RN ) quasinorms of the Fourier transforms with power weights, on a cone
of functions with sufficiently smooth positive Fourier transforms satisfying some further
regularity conditions. The theorem proven here is an extension of the result, obtained
by Batyrov & Burenkov [3], [4] for the isotropic Nikol’skii-Besov spaces.

2. Definitions and basic properties

In this section we give main definitions, notation and basic properties that will be
required to prove the main result in the next section.
2.1. Definition of the anisotropic Nikol’skii-Besov spaces

Suppose! that 0 < p, 0 < o0, §= (s1,...,5y), where —o0 < § < 00, and
all s; have the same sign. Thus either §¥ > 0 or ¥ < 0 or § = 0. If § > 0 or

N
. 1 1 1 . s . .
§<0,let — = —Z—. Furthermore, let @ = =, i.e. d = (ay,...,ay), where
s N~ K
j=1
! We assume here and in the sequel that for @ = (ay, . ..,ay) and b= (b1,...,by) the inequalities

—

b, @ < b mean that aj < bj, aj < bj respectively, forall j € {1,...,N}. If b € R, then d < b,

<
< b, d=b meanthat aj <b, aj <b, aj = b respectively forall j € {1,...,N}.
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N
ag=—,j=1,...,N. Note that all ¢; > 0 and ) ag; = N. Thus, s is a
Y £
J j=1
certain mean smoothness and d measures the anisotropy. If § = 0, then s = 0

N
and @ is an arbitrary vector with positive components satisfying » " a; = N. (For

j=1
different @ one gets different spaces.) In the sequel @ will be called the anisotropy
vector. Define the anisotropic distance of ¢ = (¢,...,ty) € RY from the origin as

2

N 2
1. = | D |4 and the anisotropic ball B, = {t € R : [¢]; < r}. Next, for k €
=1

No, let ¢ € C3° (RY), @ > 0, and supp @y C By ; supp ¢« C Byeii \ By for all
k € N. Moreover, let for every multi-index o

sup sup 25 |(D%p,) (1) < oo, 1)
k€No rc RN

where (@, o) = Y a0, and forall 1 € RV 3 ¢ (1) = 1. One defines &7 (RY) as
k=1 k=0
the set of all the collections {¢y},-, with the properties listed above.
DEFINITION 1. (Nikol’skii-Besov spaces). ~One says that f € By o (R) if f €

A (RN ) , the Schwartz space of tempered distributions, and

N

|lf||B;6(RN) = (Z <2ks |F! (ka(f))Hz( N)>> < o0 2)
' k=0 p(R
for 6 < oo or

s sy = 5 (2 = o el (RN)> <0 G)

for 6 = 0o, where {@};2, € @7 (RY).

If 1 <p, 6 < oo, then (2) and (3) are norms, in general case they are quasinorms.
For different collections {¢},~, € ®@ (R) quasinorms (2) (or (3)) are equivalent'.
The norm ||f || B(RY) = I ] B, (BY) is equivalent to

b

Ly (RY)

11y = | (14 108)° 1) )

which for §> 0 is equivalent to
2 s s,
IF gy = (0101 o Jox]™) (BF) (0] vy

Let X be a quasinormed space with the quasinorm |||, , and let the quasinorm |||, be defined on a
subset ¥ C X . One says that ||-||, and ||-||, are equivalent on Y (briefly |||, ~ |||, on Y) if there exist
two constants a, b > 0 such that a||x||, < |lx||, <b|x|, forall x € Y. If ¥ = X, one says that |-,
and |[-||, are equivalent briefly (|||, ~ ||-[|5) -
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and for < 0 to

1y = (4 00 ol 1) 0

Ly (RN) .
If >0 and 1 < p, 0 < oo, then for 6 < co norm (2) is equivalent to

L
0 0

N o0 .

(4) — —Y 2 a]f @

|V||B§‘6(RN) = HfHLp(RN) + Z / hY || A (8){]' A
' =1 \) 7/ L, (RY)
and norm (3) is equivalent to
N .
, o'if
IF 11 = Il vy + 2_sup | A7 Aﬁ( r~>
B} oo (RY) Lp (BY) FZI >0 ! 8xjf Ly (V)

Here 7; is the greatest integer which is less than s;, y; = s; — 13 A} =f (x + 2he;) —
2f (x+ he;) +f (x), where h € R and ¢; is the j* unit vector in RV, the one with 1

-
are weak derivatives.

in the j place and 0 in the other places; and 7
X :
j

When s; = - -+ = sy = s we have the isotropic case, and we write B; 0 (RN ) for

By (RY).

2.2. Embedding theorems for the anisotropic Nikol’skii-Besov spaces

Let 0 < p, O < 00, —00 < §< oo and all the components of 5 have the same
sign. Then the following embeddings are valid:

b0 (RY) < B,y (RY) 4)
where 6 < 0; < 0}

By (RY) < B (RY) < By (RY), (5)

where & > 0 is proportional to 5, 0 < 0, 6, < c0;

B,y (RY) < B, (RY), (6)
o o 1 1\ N R o
wherep<q<oo,p:%s,%:1—(———)—. (If ¥ = 0, then p =
P 4q9) s

1 1\ N 5
- (— — —) — , where 4 is the anisotropy vector defining B) 5 (RV). If §# 0 and
p 4/ a ’
)

» =0, hence 0 = 0, then the anisotropy vector defining Bgﬂ (RN ) is equal to

“Lil «

Here continuous embedding C— is defined as follows:
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DEFINITION 2. Let X, Y be two quasinormed spaces. If X C Y and in addition
there exists ¢ > 0 such that

Il < e [hell

by all x € X, where |||y, |||y are the quasinormsin Y, X respectively, then it is
said that the continuous embedding

XD Y

holds.

For more details about Nikol’skii-Besov spaces see Nikol’skii [6], Besov, II’in and
Nikol’skii [1], Triebel [8]-[11], Schmeisser and Triebel [7], Burenkov [2].

3. Equivalent quasinorms on a cone of functions with a regular Fourier
transform

THEOREM. Assume that 0 < p, 6 < 0o, —00 < § < 00, and all the components
- . - S oo - - .
of § have the same sign. Let d = =, if §# 0. If §= 0, let d be an arbitrary vector
s

N
with positive components, satisfying > a; = N. Moreover, for A > 1, let A (A, d,p)
j=1
denote the cone of all functions f € S’ (RN ) satisfying the following conditions:
1) (Ff)(&) >0 forall £ € RY,
2) for £, neRY

1 _[Ela 1 _(Ff)(©)
PYR a X 2 T X A@
2 STl <27 S o S 7
3) forall a € NY satisfying
1
<-+1 8
o] < >t (8)

the derivatives D*Ff are continuous on RN and

~ (do)
I(D“Ff)(é)\él(lﬂélé) TN (&) ©)
Then forall A > 1
Fllge cay ~ (1+é|§)5(“’_’+y) (Ff) (&) (10)
" Lo (RN)

1 1
A(A,d, p), where = + — = 1.
on A(A,d, p) weree+9,
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In the isotropic case 5= (s,...,s),hence d = 1= (1,...,1), and (10) reduces
to the equivalence

N

(1 N é|z)%(sl—)+9

2=

)

(Ff)(S) (11)

‘VHB;‘O(RN) ~

Lo(RN)
on A ()k, 1, p) , which has been established in Batyrov & Burenkov [3], [4].

Proof.

Step 1. Note that without loss of generality we can choose {@},cy, € ©* (RY)
given in the definition of the anisotropic Nikol’skii-Besov spaces satisfying the following
conditions:

o (x) =1 for x € B \sz% and supp @ C B .z \szf% for k € N;

@ (x) =1 forx € B, and supp ¢y C B 3 .

Step 2. Let f € A(A,d,p), then for all ¢; > 2 there exists ¢, > 0, depending
onlyon ¢, A and &, such that

- F
Tt s <o =o' < ) <o (12)
Il (Ff) (n)
This follows by condition 2). First, by induction one can prove that for all m € N
Nl (Ef) (n)

Indeed, for m = 1 this is condition 2). Assume that (13) holds for m = k and let

—k—1 < |§‘Zi <2k+1.

X m X
If [n|; < |€|., take n; € RY such that |ny|; = 2|n|.. Then
[3F

<2k
1]

<

N =

Q

and by (13) with m =k and m =1

ATENES) () S ATE(ES) (m) < (BF) (&) < A(EF) (i) S AMHH(ES) () -
If [n|,; > |&|,. then a similar argument works if one takes 1, € R" such that |n,|; =
1
B Nz
For arbitrary ¢; > 2 we choose m € N such that 2" < ¢; < 2l e m =

1

L%J . Then (12) follows with ¢; = A", Here |x| denotes the integer part of x.
n

Step 3. Let f € A(A,d,p). Then forall ¢; > 2 there exists ¢; > 0, depending

onlyon ¢y, A, d and N, such that
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< ) (E)
‘5|a7‘n‘ <cr=>c¢ < < 0. (14)

= S E
This follows by condition 3) with |a| = 1. Indeed, | — n;| < 2¢¢,j=1,...,N,

where a = max_a; and
j=1,..N

((InFf) (&) — (InEf) (n)]

Il
M=
—
gw
|
S
o~

1(8;1;’f)< Fr(E—m)d

OIn Ff
( Ox; ) ‘

OFf
) (%)
<2Nc1 max_sup ——L—— < 2NAc.

L T

Hence

—ZN}»L‘? (Ff) (é) eZN}»c‘f
S EHm SO

Step 4. There exist ¢z, ¢4 > 0 such that
[(F~geFf) (x)| < 32t (FF) (2’“7) (15)
forall f € A(A,d,p), k € Ny and x € RY, where 2/ = (2ka ..., 2%V and
[(F'0uFf) ()] > ea2™ (FF) (249) (16)
forall f € A(A,d,p), k € Ny and x € R" satisfying

x|, S NTB2F (17)
where b = min a;.
J=1,N
Indeed, by the properties of the functions @ (see Section 2.1 and Step 1) for all
x€RV

(F'ouFf) ()] = 2m) ¥ / i (&) (FF) (€) dé
RN
<@n* / (Ff) (£) dE.

where A9 = B, and Ay = Byii \ Byx—1 for k € N. Since

Ecdy = €], |T]= < max{z \F}

a



503

EQUIVALENT QUASINORMS FOR THE ANISOTROPIC NIKOL’SKII-BESOV SPACES . . .

where I = (1,...,1),and for k € N
1 g _ 181z _ 2

éEAk:Z\/— ‘2]“1 \/_Zk < \/—7
by Steps 2 and 3 it follows that, for some c¢s > 0
S EF) (249) < (FF) (8) < es () (249) (18)

forall k € Ny and £ € A;. Hence (15) follows.
On the other hand

|(F~'oueFf) ()]
— (n) ¥ / cosx - & g (&) (FF) () dE + i / sinx- & i (8) (FF) (£) dE

A Ay

> n) % / cosx - Eqx (&) (Ff) (€) dé|

A

If x| < N~527%=1 and & € A, , hence €] <281 then [xj| < N™ Fo-alkt)
151 < 2905 and

N N
Y
b &l <D lolIgl < D oNTT
= P
Hence cosx - & > cos 1 and by applying (18) we get

(F o) (x)] > (2m) ¥ cos 1 / 0 (E) (Ef) (8) dE

where ¢¢ = c;1(27r)_¥ cosl.
Since @ (&) =1 for £ € B s \szf% , we have

/(pk (&) d& > meas By —measB, . = kN (2% - 2*¥) meas By,
Ak
because, by the scaling argument, it follows that

meas B, = r"" " T%meas B; = r"meas By, r > 0.

Hence inequality (16) follows.
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Step 5. There exist ¢s, ¢ > 0 such that

o . o R
es27 (Ff) (27) < |F7 ek |, awy < 62 (F) (29) (19)
forall f € A(A,d,p) and k € Ny.
From (15), (16) and (17) it follows that for some ¢7, ¢g > 0

2™ (5r) (29) < [P | )< es2? (r) (29)

L,,( r\a<N7%2*k*1
forall f € A(A,d,p) and k € Ny.

So it remains to estimate HF (PkaH (I N Bo—k—1

) above.

Step 6. Note that

L
a;

r :
=1,...,N=[x[;<r

<_7
VN

Hence if we define cuboids Q, as

o]

Q,:{XGRN:|xj\<r“f,j:1,...,N}7

then
__ CB,.
Qm v
In particular
Q0'27k C BN7%2*’<*17
1
where ¢ = —N"5~%. For v = (Vi,...,w),where v, =0o0r 1, j=1,...,N, we

define cuboids
0" ={xeR": |y <o27™if vy=0; || > 027" if v; =1},
where 0; = 0%, j=1,...,N. Then Q° = Q, « and

N N 0 __ v

RY\B 1 CR'\Q"= U 0.
o<v<l
[v|>0

Therefore
" q)kaH (\x\ SN Bo—k— 1) s (2 v ) > lIF (kafHL ) (20
o<l
|v[>0
where (a), = max{a,0}.

Step 7. Forall m € N and 0 < v < 1, |v| > 0, there exist ¢g > 0 such that for
all f e A(A,d,p), ke N and x € 0¥

‘(F71¢ka) (X)’ < ¢ ‘xfmv’ 2k (d,mv) ( f) (Zkﬁ) ) (21)
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Indeed (1) and condition 3) imply that
[(F~ oeff) ()] = | (i)™ (F~H (0™ () ()|
<eule ™| [ 10" (oufr) ()] 2

> <anh| [|(00) @] (o ter) o) ag

0L<p<my

505

_{a
<enf™ 3 / 2B (14 e2) T (R (e

ogﬁgvak

Seapom] 3 a2 (2e0) T ) @ag

o<p<my Ay

<enlem2 i [ () ) ae,

Ay

where cjo, ¢11, €12, c13 > 0 areindependentof f, k and x. Since for n = 2’“7 and all
& € A the left-hand side inequality in (14) for k = 0 and the left-hand side inequality
in (12) for k € N are satisfied with some ¢; > 2 independent of k, inequality (21)

follows by applying (14) and (12).
Step 8. Let m = BJ 4 1. Then

H —mv C142k(<17i,mv> 7%)

)

leyi01

where cj4 > 0 is independent of k € Ny .
Indeed, if p = oo, then m =1 and

H —mv” — max x !l = Cis H okaj 0152/((&,\/}7
Loo (QY) —ka: 7
jv=1%2062 jvi=1

where c¢;5 > 0 is independent of k. If p < oo, then mp > 1 and

7ka

GjZ
—mv||P __ AN fmp .
e =2 I [ a9 1T [ s
Jjvi=0 Jvj —
J 0 ] 0_2 ka

J

_ 01627k(a1+~4+a1v) H okamp _ 6162k(<2i,mv)p—N)’

Jvi=1
where cj¢ > 0 is independent of k.
Inequalities (20), (21) and (22) imply that

[ gukr| )< cn2? (Ff) (249),

_1
Lp (|X|5>N bo—k—1
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where c¢j7 > 0 is independent of f and k, and inequality (19) follows.
Step 9. If 0 < oo, inequality (19) implies that

1
o\ 0

e k(s+ﬂ,) o
- ~ 14 kd
Il ) ~ | 22 (2 (#1) (2 )) (23)
on A(A,d,p).
To accomplish the proof it suffices to verify that also
+8) (4) (o)) )
% s—=ptor i k| s+ o
| (L+ER) " En©] ~ (X (2 ") () (zk“)>
LQ(RN) k=0
(24)
on A(A,d,p).
Indeed,

where Dy = By, Dy = By \ By—1, k € N. Moreover, there exist ¢z, ¢j9 > 0 such
that forall & € Dy, k € Ny

1

c152* < (1 + |’§\27) < c192*
and, by Steps 2, 3,

s (FF) (2) < (1) (&) < e (8F) (29)

This implies (24).
The case 6 = oo is similar.
Thus, the theorem is proved. [J

REMARK. For 0 < p, O < 00, —00 < § < oo let us consider another space
describing anisotropic smoothness:

< 0
Lo (RN)

7o (RY) = {f €' (RY): ’ (1+ é|§)%(“—’+y) (Ff) (&)

Then the statement of the theorem proved above may be written as

b0 (RY) NA(4,d,p) =Gy (RY) NA(A,d. p) (25)



EQUIVALENT QUASINORMS FOR THE ANISOTROPIC NIKOL’SKII-BESOV SPACES . . . 507

for A > 1.
Consider the embedding theorem for the anisotropic Nikol’skii-Besov spaces

To (RY) & By (RY), (26)

= N /1 1

where 0 < p<g<o0,0<0< 00, p=12x5 and}rzl——<———). (See
S A\P 4

Section 2.2.) The theorem implies that under the same assumptions on the parameters

forany A > 1

e (RY) NA(A,d,p) =By (RY) NA(A,d.p), (27)

where d =

“il «
/F\

k)
~_

I3
Indeed, first assume that §# 0 and g # 0. Then G;’Q (RY) = Gg o (RY) since

N N
s——=p—— and i,: f—; Moreover, A (A,d,p) C A(A,d,q) since p < q.
q S
Therefore

5)‘,0 (RN)HA(A,,C_I”[]): ;:,9 (RN)HA(AHELP)
= Gie (]RN) NA(A,d,g)NA(A,d,p)
— B, (RY) N A(%,d.p).
If =0 or 0 =0 the proof is similar. One should take into account the comments in
Section 2.2. related to these cases.
Note that relation (27) immediately implies that the embedding (26) is sharp, i.e.
it is impossible to replace p by ¢+ & where € > 0 and € > 0 for at least one j.
Finally we recall one of the statements of type (25) obtained previously by C. S.

Herz [5]. For the cone C of positive decreasing functions of |x|, in [5] Proposition 1.8,
it was proved for the isotropic case that

(R NC=L,6(RV)NC

1
for 0 < s < — , where L, g (RN ) is the Lorentz space.
p
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