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GEOMETRIC MEAN VIA SPECHT RATIO

MASATOSHI FUJII, SANG HUN LEE, YUKI SEO AND DONGICK JUNG

(communicated by T. Furuta)

Abstract. As an application of Mond-Pečarić method, we shall estimate bounds of operator
convexity for convex functions. Consequently, we obtain some order relations between the
arithmetic mean and the chaotically geometric one A♦αB of positive operators A and B , i.e.,
A♦αB = e(1−α) log A+α log B for α ∈ [0, 1] . Among others, we show that if 0 < m � A, B �
M for some scalars m < M and h = M

m , then

Mh(1)−1A ♦α B � A ∇α B � Mh(1)A ♦α B

holds for all α ∈ [0, 1] , where the Specht ratio Mh(1) is defined as

Mh(1) =
h

1
h−1

e log h
1

h−1

(h > 1) and M1(1) = 1.

1. Introduction

A continuous function f on an interval I is called operator concave on I if

f ((1 − α)A + αB) � (1 − α)f (A) + αf (B) (1)

holds for α ∈ [0, 1] and selfadjoint operators A and B whose spectra are contained in
I . Also it is called operator convex on I if the reverse inequality of (1) holds. Typical
examples of such functions are as follows: log t is operator concave on (0,∞) , tr

is operator concave for 0 � r � 1 and tr is operator convex for 1 � r � 2 or
−1 � r � 0 ([12, 3]).

Very recently, the following inequality is shown by Tominaga [14] as a reverse of
the arithmetic-geometric mean inequality:

(1 − α)a + αb � Mh(1)a1−αbα (2)

for α ∈ [0, 1] and 0 < a < b , where h = b
a and Mh(1) is the Specht ratio ([13, 2]);

Mh(1) =
h

1
h−1

e log h
1

h−1

(h > 1) and M1(1) = 1. (3)
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Let us recall that the geometric mean and arithmetic mean of positive operators A
and B are defined as

A �α B = A
1
2 (A− 1

2 BA− 1
2 )αA

1
2 ,

and

A ∇α B = (1 − α)A + αB,

where α ∈ [0, 1] . Tominaga pointed out that (2) holds for positive operators A and B
satisfying 0 < m � A , B � M for some scalars m < M , i.e.,

A ∇α B � Mh(1)A �α B, (4)

where h = M
m . It is a reverse inequality of the noncommutative arithmetic-geometric

mean inequality

A �α B � A ∇α B (5)

for A, B � 0 and α ∈ [0, 1] .
On the other hand, Nakamoto and one of the authors discussed the monotonicity

of a family of power means in [4] recently. For fixed A, B > 0 , we put

F(r) =
{

(Ar ∇α Br)
1
r (r �= 0),

elog A ∇α log B (r = 0).
(6)

Then F(r) is monotone increasing under the chaotic order, X � Y , i.e., logX � logY
for X, Y > 0 [7]. In particular, A ♦α B = elog A ∇α log B is called the chaotically
α -geometric mean. In general, it does not coincide with A �α B .

The main purpose in this note is to consider some order relations between the
arithmetic mean and the chaotically geometric mean. As a matter of fact, we show that
if 0 < m � A, B � M and h = M

m , then

Mh(1)−1A ♦α B � A ∇α B � Mh(1)A ♦α B

holds for all α ∈ [0, 1] . Equivalently, we have

Mh(1)−1A ∇α B � A ♦α B � Mh(1)A ∇α B.

This says that (4) holds for the chaotically geometric mean.
Next we discuss reverse inequalities of ratio type among the family {F(r); r ∈ R} .

For this, we need the reverse inequality for the Hölder-McCarthy inequality, due to
Furuta [6]. As a consequence, we have some relations between (A �α B)r and Ar �α Br

for r > 0 .
Concluding this section, we have to mention that almost all results in this note are

based on our privious result [9, Corollary 4] coming from the Mond-Pečarić method
[10]. Namely this note might be understood as an application of the Mond-Pečarić
method.
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2. Preliminary on Mond-Pečarić method

Let A be a positive operator on a Hilbert space H satisfying 0 < m � A � M
for some scalars m < M , and let f (t) be a real valued continuous convex function on
[m, M] . Mond and Pečarić [10] proved that

f ((Ax, x)) � (f (A)x, x) � λ (m, M, f )f ((Ax, x)) (1)

holds for every unit vector x ∈ H , where

λ (m, M, f ) = max

{
1

f (t)

(
f (M) − f (m)

M − m
(t − m) + f (m)

)
; t ∈ [m, M]

}
. (2)

The following result is a generalization of (1) and based on the idea due to Furuta’s
work [5, 6]. We here cite it for convenience:

THEOREM A . ([9]) Let Aj (j = 1, 2, . . . , k) be positive operators on a Hilbert
space H satisfying 0 < m � Aj � M for some scalars m < M . Let f (t) be a real
valued continuous convex function on [m, M] , and let x1, . . . , xk be vectors in H with
k∑

j=1
‖xj‖2 = 1 . If f (t) satisfies either ( i ) f (t) > 0 or ( ii ) f (t) < 0 on [m, M] , then

k∑
j=1

(f (Aj)xj, xj) � λ f (
k∑

j=1

(Ajxj, xj)) (3)

holds for some λ � 1 in case ( i ) , or 0 < λ � 1 in case ( ii ) , where a value of λ is,
in each case, λ (m, M, f ) defined as (2).

We note that (3) in Theorem A gives a reverse inequality of the following known
inequality, eg. [11]: With notations as in Theorem A

f (
k∑

j=1

(Ajxj, xj)) �
k∑

j=1

(f (Aj)xj, xj). (4)

For the function f (t) = tp , we know the following fact by Furuta [6], which gives
a reverse inequality of the Hölder-McCarthy inequality:

THEOREM B . Let A be a positive operator on a Hilbert space H satisfying
0 < m � A � M for some scalars m < M and put h = M

m . Then for each p > 1

(Apx, x) � K+(h, p)(Ax, x)p (5)

holds for every unit vector x ∈ H where the Ky Fan-Furuta constant K+(h, p) ([8, 6])
is defined as

K+(h, p) =
(p − 1)p−1

pp
· (hp − 1)p

(h − 1)(hp − h)p−1
. (6)
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We obtain a complement of Theorem B by itself.

PROPOSITION 2.1. Assume that the conditions of Theorem B hold. If 0 < p < 1 ,
then

K+

(
hp,

1
p

)−p

(Ax, x)p � (Apx, x) � (Ax, x)p

holds for every unit vector x ∈ H .

Proof. Since 0 < p < 1 , we have 1 < 1
p and so Theorem B implies that

(A1/px, x) � K+(h, 1/p)(Ax, x)1/p.

Replacing A by Ap , we have (Ax, x) � K+(hp, 1/p)(Apx, x)1/p and by raising all terms
to the power p we obtain the desired result. �

Moreover, by Theorem B, Furuta [6] showed the following Kantorovich type order
preserving inequality.

THEOREM C . Let A and B be positive operators on a Hilbert space H satisfying
0 < m � A � M or 0 < m � A � M for some scalars m < M . If 0 � A � B , then

Ap � K+(h, p)Bp for all p � 1 ,

where h = M
m .

3. Reverse inequalities on operator convexity

In this section, by virtue of TheoremA, we shall estimate the boundsof the operator
convexity for convex functions.

THEOREM 3.1. Let A and B be positive operators on a Hilbert space H satisfying
0 < m � A , B � M for some scalars m < M . If f (t) is a positive real valued
continuous convex function on [m, M] , then for each 0 � α � 1

1
λ (m, M, f )

f (A∇αB) � f (A)∇α f (B) � λ (m, M, f )f (A∇αB), (1)

where λ (m, M, f ) is defined as (2).

Proof. For each 0 < α < 1 and unit vector x ∈ H , put A1 = A , A2 = B ,
x1 =

√
1 − αx and x2 =

√
αx in Theorem A. Then we have

(1 − α)(f (A)x, x) + α(f (B)x, x) � λ (m, M, f )f ((1 − α)(Ax, x) + α(Bx, x)).

Hence it follows that

(((1 − α)f (A) + αf (B))x, x) � λ (m, M, f )f ((1 − α)A + αB)x, x))
� λ (m, M, f ) (f ((1 − α)A + αB)x, x)
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and the last inequality holds by the convexity of f (t) . Therefore we have

f (A)∇α f (B) � λ (m, M, f )f (A ∇α B).

Next, since f (t) is convex, it follows from (4) that

(1 − α)(f (A)x, x) + α(f (B)x, x) � f ((1 − α)(Ax, x) + α(Bx, x)).

Since 0 < m � (1 − α)A + αB � M , it follows from (1) that

f ((1 − α)(Ax, x) + α(Bx, x)) = f (((A ∇α B)x, x))

� 1
λ (m, M, f )

(f (A ∇α B)x, x).

Therefore we have

1
λ (m, M, f )

f (A∇αB) � f (A)∇α f (B). �

We have the following complementary result of Theorem3.1 for concave functions.

THEOREM 3.2. Let A and B be positive operators on a Hilbert space H satisfying
0 < m � A , B � M for some scalars m < M . If f (t) is a real valued continuous
concave function on [m, M] such that f (t) > 0 on [m, M] , then for each 0 � α � 1

1
μ(m, M, f )

f (A∇αB) � f (A)∇α f (B) � μ(m, M, f )f (A∇αB), (2)

where

μ(m, M, f ) = min

{
1

f (t)

(
f (M) − f (m)

M − m
(t − m) + f (m)

)
; t ∈ [m, M]

}
.

Next, consider the function f (t) = tr on [0,∞) . Then f (t) is operator concave
if 0 � r � 1 , operator convex if 1 � r � 2 and f (t) is not operator convex though
f (t) is convex if r � 2 [3]. By Theorems 3.1 and 3.2, we obtain reverse inequalities
on operator convexity and operator concavity for f (t) = tr .

THEOREM 3.3. Let A and B be positive operators on a Hilbert space H satisfying
0 < m � A , B � M for some scalars m < M . Let 0 � α � 1 .

( i ) If 0 < r � 1 , then

(A∇αB)r � Ar∇αBr � K+

(
hr,

1
r

)−r

(A∇αB)r.

( ii ) If 1 � r � 2 , then

(A∇αB)r � Ar∇αBr � K+(h, r)(A∇αB)r.

( iii ) If r > 2 , then

1
K+(h, r)

(A∇αB)r � Ar∇αBr � K+(h, r)(A∇αB)r,

where h = M
m and K+(h, r) is defined as (6).
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Proof. Put f (t) = tr for r > 1 in Theorem 3.1, then we obtain λ (m, M, f ) =
K+(h, r) . Also, in the case of 0 < r � 1 , we have μ(m, M, f ) = K+(hr, 1/r)−r in
Theorem 3.2. �

Though F(r) defined in (6) is monotone increasing under the chaotic order, F(r)
is not monotone increasing for 0 < r < 1 under the usual order. By virtue of Theorem
3.3, we see that F(r) is monotone increasing for r > 0 in the following sense:

COROLLARY 3.4. Let A and B be positive operators on a Hilbert space H
satisfying 0 < m � A , B � M for some scalars m < M . Let 0 < r � s and
0 � α � 1 .

( i ) If 0 < r � 1 , then

K+

(
hr,

1
r

)−1

K+(hr,
s
r
)−1/sF(s) � F(r) � K+

(
hr,

1
r

)
F(s).

( ii ) If r � 1 , then

K+

(
hr,

s
r

)−1/s
F(s) � F(r) � F(s),

where h = M
m and K+(h, r) is defined as (6).

Proof. Since 0 < r
s � 1 and ms � As , Bs � Ms , we apply Theorem 3.3 (i) to

obtain the following inequality

(As∇αBs)
r
s � Ar∇αBr � K+

(
hr,

s
r

)− r
s
(As∇αBs)

r
s . (3)

If r � 1 , then 1 � 1
r > 0 and by raising all terms of (3) to the power 1

r it follows
from Löwner-Heinz Theorem that

(As∇αBs)
1
s � (Ar∇αBr)1/r � K+

(
hr,

s
r

)− 1
s
(As∇αBs)

1
s .

Also if 0 < r � 1 , then 1
r � 1 and by raising all terms of (3) to the power 1

r it follows
from Theorem C that

K+

(
hr,

1
r

)
(As∇αBs)

1
s � (Ar∇αBr)1/r � K+

(
hr,

1
r

)−1

K+

(
hr,

s
r

)− 1
s
(As∇αBs)

1
s .

�
Though f (t) = et is not operator convex, we have the following result.

COROLLARY 3.5. Let A and B be selfadjoint operators on a Hilbert space H
satisfying m � A , B � M for some scalars 0 < m < M . Then for each 0 � α � 1

1
Mh(1)

e(1−α)A+αB � (1 − α)eA + αeB � Mh(1)e(1−α)A+αB,

where h = eM−m and Mh(1) is defined as (3).
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Proof. Applying Theorem 3.1 to f (t) = et , we have this corollary. In fact, we
have

λ (m, M, f ) =
1
et0

(
eM − em

M − m
(t0 − m) + em

)

where

t0 =
(m + 1)eM − (M + 1)em

eM − em
.

Therefore, if we put h = eM−m , then

λ (m, M, f ) = e
− (m+1)eM−(M+1)em

eM−em

(
eM − em

M − m

)
= e−1+ M−m

h−1

(
h − 1
log h

)

=
h

1
h−1 (h − 1)
e log h

= Mh(1). �

4. Comparison between (A �α B)r and Ar �α Br

In this section, we consider some order relations on the geometricmean, which will
be used in the next section (Theorem 5.3) to give a comparison between the geometric
mean and the chaotically geometric one. Ando and Hiai [1] showed the following result
in terms of the log-majorization.

THEOREM D . For every A, B � 0 and 0 � α � 1

(A�αB)r 
(log) Ar�αBr for r � 1

or equivalently

(Aq�αBq)1/q 
(log) (Ap�αBp)1/p for 0 < q � p .

On the other hand, (A�αB)r and Ar�αBr have no relation under the usual order.
As an application of Theorem 3.3, we have the following result.

THEOREM 4.1. Let A and B be positive operators on a Hilbert space H satisfying
0 < m � A, B � M for some scalars m < M . Let 0 � α � 1 .

( i ) If 0 < r � 1 , then

1

K+
(
hr, 1

r

)r
Mh(r)

(A�αB)r � Ar�αBr � Mh(1)r(A�αB)r. (1)

( ii ) If 1 � r � 2 , then

1
K+(h, r)Mh(r)

(A�αB)r � Ar�αBr � K+(h, r)2Mh(1)r(A�αB)r. (2)

( iii ) If r � 2 , then

1
K+(h, r)2Mh(r)

(A�αB)r � Ar�αBr � K+(h, r)2Mh(1)r(A�αB)r (3)

where h = M
m , K+(h, r) is defined as (6) and Mh(1) is defined as (3).
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Proof. Suppose that 0 < r � 1 . By (4) and (5) we have

Mh(1)A�αB � A∇αB � A�αB. (4)

By raising all terms of (4) to the power r , it follows from Löwner-Heinz Theorem,
operator concavity of tr (0 < r � 1) and the arithmetic-geometric mean inequality
that

Mh(1)r(A�αB)r � (A∇αB)r � Ar∇αBr � Ar�αBr.

Applying (4) to Ar and Br , we have

Mh(r)Ar�αBr � Ar∇αBr � K+

(
hr,

1
r

)−r

(A∇αB)r � K+

(
hr,

1
r

)−r

(A�αB)r,

because Mhr(1) = Mh(r) and the second inequality holds by (i) of Theorem 3.3. Hence
we have

Ar�αBr � 1

K+
(
hr, 1

r

)r
Mh(r)

(A�αB)r.

Suppose that r � 1 . By raising all terms of the first inequality of (4) to the power r
(� 1) , it follows from Theorem C that

K+(h, r)Mh(1)r(A�αB)r � (A∇αB)r.

By Theorem 3.3 we have

(A∇αB)r � 1
K+(h, r)

Ar∇αBr � 1
K+(h, r)

Ar�αBr.

Applying the first inequality of (4) to Ar and Br , operator convexity of tr , we
have

Mh(r)Ar�αBr � Ar∇αBr � (A∇αB)r � K+(h, r)−1(A�αB)r if 1 � r � 2 ,

and

Mh(r)Ar�αBr � Ar∇αBr � K+(h, r)−1(A∇αB)r � K+(h, r)−2(A�αB)r if r � 2 .

�

COROLLARY 4.2. Let A and B be positive operators on a Hilbert space H
satisfying 0 < m � A, B � M for some scalars m < M . Let 0 < r � s .

( i ) If 0 < r � 1 , then

1

K+
(
hr, 1

r

)
K+

(
hr, s

r

)1/s
Mh(r)1/r

(As�αBs)1/s � (Ar�αBr)1/r (5)

� K+

(
hr,

1
r

)
Mh(s)1/s(As�αBs)1/s.

( ii ) If r � 1 , then

1

K+
(
hr, s

r

)1/s
Mh(r)1/r

(As�αBs)1/s � (Ar�αBr)1/r � Mh(s)1/s(As�αBs)1/s. (6)
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Proof. Since 0 < r
s � 1 , by (i) of Theorem 4.1 we have

1

K+(h
r
s , s

r )
r/sMh( r

s)
(A�αB)r/s � A

r
s �αB

r
s � Mh(1)r/s(A�αB)r/s.

Replacing A and B by As and Bs respectively, we have

1

K+
(
hr, s

r

)r/s
Mh(r)

(As�αBs)r/s � Ar�αBr � Mh(s)r/s(As�αBs)r/s. (7)

If r � 1 , then by raising all terms of (7) to the power 1
r � 1 , we have (6) from

Löwner-Heinz Theorem.
If 0 < r � 1 , then by raising all terms of (7) to the power 1

r � 1 , we have (5)
from Theorem C. �

5. Comparison between arithmetic and chaotically geometric means

Nakamoto and one of the authors showed some properties of the chaotically geo-
metric mean A♦αB . The operator function F(r) is monotone increasing under the
chaotic order and F(r) converges to A♦αB as r → +0 in the strong operator topol-
ogy. Moreover, by using it, they showed that both (Ar !α Br)1/r and (Ar�αBr)1/r

converge to A♦αB as r → +0 in the strong operator topology.
In this section, we shall consider some order relations between the chaotically

geometric mean and the geometric one, which are applications of the results in the
previous sections 3 and 4. First, by Corollary 3.5 we obtain an order relation between
the chaotically geometric mean and arithmetic one. The obtained inequality A∇αB �
Mh(1)A♦αB is understood as a variant of the reverse Young inequality A∇αB �
Mh(1)A�αB due to Tominaga [14].

THEOREM 5.1. Let A and B be positive operators on a Hilbert space H satisfying
0 < m � A , B � M for some scalars m < M . Then for each 0 � α � 1

1
Mh(1)

A∇αB � A♦αB � Mh(1)A∇αB

where h = M
m .

Proof. Replacing A and B by logA and logB respectively in Corollary 3.5, we
have, for h = elog M−log m = M

m ,

1
Mh(1)

e(1−α) log A+α log B � (1 − α)elog A + αelog B � Mh(1)e(1−α) log A+α log B,

which imply the desired inequalities. �

The operator function F(s) is not generally monotone increasing on (0, 1] under
the usual order. However, we have the following result.
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THEOREM 5.2. Let A and B be positive operators on a Hilbert space H satisfying
0 < m � A , B � M for some scalars m < M . Then for each 0 � α � 1

1
Mh(1)Mh(s)1/s

F(s) � A♦αB � Mh(1)F(s) for s > 0 .

Proof. By (i) of Corollary 3.4, if 0 < r � s and 0 < r < 1 , then we have

K+

(
hr,

1
r

)−1

K+(hr,
s
r
)−1/sF(s) � F(r) � K+

(
hr,

1
r

)
F(s). (1)

Since lim
r→+0

K+
(
hr, s

r

)
= Mh(s) which is shown in [15, Proposition 14], we have the

desired result as r → +0 in (1). �
Next, we see an order relation between the chaotically geometric mean and the

geometric one.

THEOREM 5.3. Let A and B be positive operators on a Hilbert space H satisfying
0 < m � A , B � M for some scalars m < M . Then for each 0 � α � 1

1
Mh(1)Mh(s)1/s

(As�αBs)1/s � A♦αB � Mh(1)Mh(s)1/s(As�αBs)1/s for s > 0 ,

where h = M
m .

Proof. By Corollary 4.2, if 0 < r � s and 0 < r � 1 , then we have

1

K+
(
hr, 1

r

)
K+

(
hr, s

r

)1/s
Mh(r)1/r

(As�αBs)1/s � (Ar�αBr)1/r (2)

� K+

(
hr,

1
r

)
Mh(s)1/s(As�αBs)1/s.

Since lim
r→+0

K+
(
hr, s

r

)
= Mh(s) and lim

r→+0
Mh(r)1/r = 1 , we have the desired result as

r → +0 in (2). �
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[10] B. MOND AND J. E. PEČARIĆ, Convex inequalities in Hilbert spaces, Houston J. Math., 19 (1993),

405–420.
[11] B. MOND AND J. E. PEČARIĆ, Convex inequalities for several positive operators in Hilbert space, Indian

J. Math., 35 (1993), 121–135.
[12] G. K. PEDERSEN, Some operator monotone functions, Proc. Amer. Math. Soc., 36 (1972), 309–310.
[13] W. SPECHT, Zur Theorie der elementaren Mittel, Math. Z., 74 (1960), 91–98.
[14] M. TOMINAGA, Specht’s ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583–588.
[15] T. YAMAZAKI AND M. YANAGIDA, Characterizations of chaotic order associated with Kantorovich

inequality, Sci. Math., 2 (1999), 37–50.

(Received March 1, 2002) Masatoshi Fujii
Department of Mathematics

Osaka Kyoiku University
Kashiwara, Osaka 582–8582

Japan
e-mail: mfujii@cc.osaka-kyoiku.ac.jp

Sang Hun Lee
Department of Mathematics

Kyungpook National University
Taegu, 702–701

Korea
e-mail: sanghlee@knu.ac.kr

Yuki Seo
Tennoji Branch

Senior Highschool
Osaka Kyoiku University
Tennoji, Osaka 543–0054

Japan
e-mail: yukis@cc.osaka-kyoiku.ac.jp

Dongick Jung
Department of Mathematics

Kyungpook National University
Taegu, 702–701

Korea
e-mail: dongickjung@hanmail.net

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


