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Abstract. In what follows, an operator means a bounded linear operator on a Hilbert space H .
We show a very interesting new relation between Specht ratio S(1) and Kantorovich constant

K(p) : S(1) = eK
′(1) and several applications of this relation are given.

1. Introduction

An operator T is said to be positive (denoted by T � 0 ) if (Tx, x) � 0 and also
T is said to be strictly positive (denoted by T > 0 ) if T is positive and invertible.

DEFINITION 1. Let h > 1 . The Kantorovich constant K(h, p) is defined by

K(h, p) =
(hp − h)

(p − 1)(h − 1)

(
(p − 1)

p
· (hp − 1)
(hp − h)

)p

for any p > 1 or p < 0 (1.1)

and especially K(h, p) for p > 1 can be usually written by

K(h, p) =
(p − 1)p−1

pp
· (hp − 1)p

(h − 1)(hp − h)p−1
for any p > 1 . (1.2)

K(h, p) is sometimes denoted by K(p) briefly. Also K+(m, M, p) is defined by

K+(m, M, p) =
(p − 1)p−1

pp
· (Mp − mp)p

(M − m)(mMp − Mmp)p−1

for M > m > 0 and p > 1.

(1.3)

We remark that K+(m, M, p) in (1.3) just coincides with (1.2) by putting h = M
m > 1

in (1.3).
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DEFINITION 2. Let h > 1 . S(h, p) is defined by

S(h, p) =
h

p
hp−1

e log h
p

hp−1

for any real number p (1.4)

and S(h, p) is sometimesdenoted by S(p) briefly. Especially S(1) = S(h, 1) =
h

1
h−1

e log h
1

h−1

is said to be Specht ratio and S(1) > 1 is well known (see (iv) and (x) of Proposition 1).
We remark that S(hp, 1) = S(h, p) for any real number p by Definition (1.4).

DEFINITION 3. The determinant Δx(A) for strictly positive operator A at a unit
vector x in Hilbert space H is defined by

Δx(A) = exp〈 ((logA)x, x)〉 . (1.5)

Let A be strictly positive operator satisfying MI � A � mI > 0 , where M >
m > 0 . The celebrated Kantorovich inequality asserts that

(Ax, x)(A−1x, x) � (m + M)2

4mM

holds for every unit vector x and this inequality is just equivalent to the following one

(A2x, x) � (m + M)2

4mM
(Ax, x)2

holds for every unit vector x . We remark that K+(m, M, p) in (1.3) is an extension of
(m + M)2

4mM
, in fact, K(m, M, 2) =

(m + M)2

4mM
holds.

Many papers on Kantorovich inequality have been published. Among others, there
is a long research series by Mond-Pečarić, we cite [6] and [7] for examples. An extension
of Kantorovich inequality is given in [Theorem 1.5, 3] and [Theorem 3, 5] as follows.

THEOREM A. (Kantorovich type inequality). Let A be strictly positive operator
satisfying MI � A � mI > 0 , where M > m > 0 . Also let h = M

m > 1 . Then the
following inequality holds for every unit vector x :

K(h, p)(Ax, x)p � (Apx, x) � (Ax, x)p for any p > 1 or p < 0 . (1.6)

The latter half inequality in (1.6) of Theorem A is called Hölder-McCarthy in-
equality and the former one can be considered as the reverse inequality of this latter
one.

The following interesting result is shown in [Corollary, 2].

THEOREM B. Let A be strictly positive operator satisfying MI � A � mI > 0 ,
where M > m > 0 . Also let h = M

m > 1 . Then the following inequality holds for every
unit vector x :

S(h, p)Δx(Ap) � (Apx, x) � Δx(Ap) for any real number p . (1.7)

We state the following result [Theorem 4, 10] related to Theorem A.
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THEOREM C. Let K+(m, M, p) be defined in (1.3). Then

F(p, r, m, M) = K+

(
mr, Mr,

p + r
r

)

is an increasing function of p , r and M and also decreasing function of m for p > 0
and r > 0 .

2. Statement of main results

We state the following Theorem 1 which is our main result and Corollary 2 as an
immediate consequence of Theorem 1.

THEOREM 1. Let A be strictly positive operator satisfying MI � A � mI > 0 ,
where M > m > 0 and h = M

m > 1 . Then the following inequalities hold for every
unit vector x :

(i) (Ax, x) log(Ax, x)+[log S(1)](Ax, x) � ((A logA)x, x) � (Ax, x) log(Ax, x) ;
(ii) ((log A)x, x) + log S(1) � log(Ax, x) � ((log A)x, x) ;

(iii) S(1)(Ax, x) � e
((A log A)x,x)

(Ax,x) � (Ax, x) ;
(iv) S(1)Δx(A) � (Ax, x) � Δx(A) ;

where S(1) = S(h, 1) is Specht ratio defined in Definition 2.

The former inequality of (i) in Theorem 1 is considered as the reverse inequality
of the latter inequality of (i) which is obtained by convex function t log t on [0,∞) and
also the former inequality of (ii) in Theorem 1 is considered as the reverse inequality of
the latter inequality of (ii) which is obtained by concave function log t on [0,∞) (see
Remark 3).

COROLLARY 2. Let A be strictly positive operator satisfying MI � A � mI > 0 ,
where M > m > 0 and h = M

m > 1 . Then the following inequalities hold for every
unit vector x :

(i) (Apx, x) log(Apx, x) + [log S(h, p)](Apx, x) � ((Ap logAp)x, x) � (Apx, x)
log(Apx, x) for any p > 0 ;

(ii) ((logAp)x, x) + log S(h, p) � log(Apx, x) � ((logAp)x, x) for any p > 0 ;

(iii) S(h, p)(Apx, x) � e
((Ap log Ap)x,x)

(Apx,x) � (Apx, x) for any p > 0 ;
(iv) S(h, p)Δx(Ap) � (Apx, x) � Δx(Ap) for any p > 0 ;

where S(h, p) is defined in Definition 2.

We remark that (iv) of Theorem 1 and (iv) of Corollary 2 are both equivalent to
(1.7) of Theorem B (see Remark 1).

3. Basic properties on K(p) and S(p) and especially S(1) = exp〈 [ dK(p)
dp ]p=1〉

Before giving proofs of results in § 2, we state the following fundamental relation
between K(p) and S(p) , especially S(1) = eK′(1) = e−K′(0) which is the central basic
result to give a proof of Theorem 1.
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PROPOSITION 1. The following properties on K(p) and S(p) hold:
(i) K(−p) = K(p + 1) for any p � 0 ;
(ii) K(0) = K(1) = 1 ;
(iii) S(−p) = S(p) for any p � 0 ;
(iv) S(0) = 1 ;
(v) K′(−p) = −K′(p + 1) for any p � 0 ;

(vi) lim
r→+0

K+

(
mr, Mr, 1 +

p
r

)
= S(h, p) for M > m > 0 and h = M

m > 1 ;

(vii) lim
n→∞K

(
1 + 1

n logM

1 + 1
n logm

, np

)
= S(h, p) for M > m > 0 and h = M

m > 1 ;

(viii) S(1) = eK′(1) = e−K′(0) ;
(ix) K(p) is increasing for p > 1 and decreasing for p < 0 ;
(x) S(p) is increasing for p > 0 and decreasing for p < 0 .

Proof. (i) By an easy calculation, we have for any p � 0

K(−p) =
(h−p − h)

(−p − 1)(h − 1)

(
(−p − 1)

−p
· (h−p − 1)
(h−p − h)

)−p

=
(hp+1 − 1)

(p + 1)(h − 1)hp

(
p

(p + 1)
· (hp+1 − 1)

(hp − 1)

)p

=
(hp+1 − h)
p(h − 1)

(
p

(p + 1)
· (hp+1 − 1)
(hp+1 − h)

)p+1

= K(p + 1).

(ii) By L. Hopital’s theorem.
(iii) Obvious.
(iv) By L. Hopital’s theorem.
(v) Differentiate K(p) by p , we obtain K′(p) as follows:

K′(p) =

(
(p−1)

p · (hp−1)
(hp−h)

)p

(h − 1)(hp − 1)(p − 1)
{hp(hp − 1 + p − hp) log h

+(hp − 1)(hp − h) log
(p − 1)(hp − 1)

p(hp − h)

}
.

(∗)

By (∗) we have

K′(−p) =

(
(−p−1)

−p · (h−p−1)
(h−p−h)

)−p

(h − 1)(h−p − 1)(−p − 1)

{
h−p(h−p − 1 − p + hp) log h

+ (h−p − 1)(h−p − h) log
(−p − 1)(h−p − 1)

−p(h−p − h)

}

= −
h−p

(
(p+1)

p · (hp−1)
(hp+1−1)

)−p

(h − 1)(hp − 1)(p + 1)

{
− log h − hp(hp − p − 1) log h
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− (hp − 1)(hp+1 − 1) log
(p + 1)(hp − 1)

p(hp+1 − 1)

}

= −
h−p

(
(p+1)

p · (hp−1)
(hp+1−1)

)−p

(h − 1)(hp − 1)(p + 1)

{
hp(hp+1 + p − hp − h) log h

+ (hp − 1)(hp+1 − 1) log
p(hp+1 − 1)

h(p + 1)(hp − 1)

}

= −
(

p(hp+1−1)
h(p+1)(hp−1)

)p

(h − 1)(hp − 1)(p + 1)

{
hp(hp+1 + p − hp − h) log h

+ (hp − 1)(hp+1 − 1) log
p(hp+1 − 1)

h(p + 1)(hp − 1)

}

= −
(

p
(p+1) · (hp+1−1)

(hp+1−h)

)p+1

(h − 1)(hp+1 − 1)p

{
hp+1(hp+1 + p − hp − h) log h

+ (hp+1 − 1)(hp+1 − h) log
p(hp+1 − 1)

(p + 1)(hp+1 − h)

}
= − K′(p + 1)

because the third equality holds by the following obvious relation:

− log h−hp(hp−p−1) log h = hp(hp+1 +p−hp−h) logh− (hp−1)(hp+1−1) log h.

(vi) is shown in [Lemma 11, 10].
(vii) is shown in [Proposition 2, 4] and [Proposition 2, 5].
(viii) We recall K′(p) by (∗) as follows:

K′(p)=

(
(p−1)

p · (hp−1)
(hp−h)

)p

(h−1)(hp−1)

⎧⎨
⎩

hp(hp−1+p−hp) log h+(hp−1)(hp−h) log (p−1)(hp−1)
p(hp−h)

p−1

⎫⎬
⎭ .

(∗)
By using L. Hopital’s theorem to (∗) , we have

lim
p→1

K′(p) =
h − 1
h log h

· 1
(h − 1)2

{
h log h(h log h + 1 − h) + (h − 1)h log h log

[ h − 1
h log h

]}

=
h

h − 1
log h − 1 + log

[ h − 1
h log h

]

= log

[
h

1
h−1

e log h
1

h−1

]

= log S(1)

so that we have S(1) = eK′(1) = e−K′(0) since K′(0) = −K′(1) holds by (v), so we
have (viii).
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(ix) Put r = 1 in Theorem C. Then F(p, 1, m, M) = K+(m, M, p + 1) = K(h, p+
1) = K(p + 1) is increasing for p > 0 , that is, K(p) is increasing for p > 1 and this
fact ensures that K(p) is decreasing for p < 0 by (v).

(x)

S(h, p) = lim
n→∞K

(
1 + 1

n logM

1 + 1
n logm

, np

)
by (vii)

� lim
n→∞K

(
1 + 1

n logM

1 + 1
n logm

, np′
)

for p′ > p > 0 such that np′ > np > 1

� S(h, p′) by (vii)

since the first inequality holds by (ix), so that S(p) is increasing for p > 0 and this
result ensures that S(p) is decreasing for p < 0 by (iii).

�

0 p

S(p)

K(p)

1
2

1

S(p)

K(p)

K ′(1)

S(1) = eK ′(1)

(1, 1)1

Figure 1. Relation between K(p) and S(p)

4. Proofs of Theorem 1 and Corollary 2 in § 2

Proof of Theorem 1.
(i) Define f 1(p) as follows: f 1(p) = (Apx, x) − (Ax, x)p for p � 1 . Obviously

f 1(1) = 0 holds. As f 1(p) � 0 for any p > 1 by the latter half inequality of (1.6) of
Theorem A, we have f ′

1(1) � 0 , that is,

f ′
1(1) = ((A logA)x, x) − (Ax, x) log(Ax, x) � 0

so that we have the latter half inequality.
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Also define g1(p) as follows: g1(p) = K(p)(Ax, x)p − (Apx, x) for p � 1 . Then
we have

g1(1) = K(1)(Ax, x) − (Ax, x) = 0

holds since K(1) = 1 by (ii) of Proposition 1.
As g1(p) � 0 for any p > 1 by the former half inequality of (1.6) of Theorem A,

we have g′1(1) � 0 , that is,

g′1(1) = K(1)(Ax, x) log(Ax, x) + K′(1)(Ax, x) − ((A logA)x, x) � 0

so that we have the former half inequality because K(1) = 1 and K′(1) = log S(1) by
(ii) and (viii) of Proposition 1 respectively.

(ii) Define f 2(p) as follows: f 2(p) = (Apx, x) − (Ax, x)p for p � 0 . Obviously
f 2(0) = 0 holds. As f 2(p) � 0 for any p < 0 by the latter half inequality of (1.6) of
Theorem K, we have f ′

2(0) � 0 , that is,

f ′
2(0) = ((log A)x, x) − log(Ax, x) � 0

so that we have the latter half inequality.
Also define g2(p) as follows: g2(p) = K(p)(Ax, x)p − (Apx, x) for p � 0 . Then

we have
g2(0) = K(0)(Ax, x)0 − (A0x, x) = 0

holds since K(0) = 1 by (ii) of Proposition 1.
As g2(p) � 0 for any p < 0 by the former half inequality of (1.6) of Theorem K,

we have g′2(0) � 0 , that is,

g′2(0) = K(0)(Ax, x)0 log(Ax, x) + K′(0)(Ax, x)0 − ((A0 logA)x, x)
= log(Ax, x) − log S(1) − ((log A)x, x) � 0

so that we have the former half inequality because K(0) = 1 and K′(0) = − log S(1)
by (ii) and (viii) of Proposition 1 respectively.

(iii) Deviding the each term of (i) by (Ax, x) , we have

log(Ax, x) + log S(1) � ((A logA)x, x)
(Ax, x)

� log(Ax, x)

so that we have (iii).
(iv) (ii) of Theorem 1 easily yields (iv) by Δx(A) in (1.5) of Definition 3.
Whence the proof of Theorem 1 is complete.

Proof of Corollary 2.
The hypotheses imply that MpI � Ap � mpI > 0 and also hp = Mp

mp > 1 for any
p > 0 . Applying Theorem 1 for Ap , we have Corollary 2 since S(hp, 1) = S(h, p)
holds stated in the definition 2.

REMARK 1. We remark that (iv) of Theorem1 and (iv) ofCorollary 2 are equivalent
to (1.7) of Theorem B, that is,

S(h, 1)Δx(A) � (Ax, x) � Δx(A). (p1)
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S(h, p)Δx(Ap) � (Apx, x) � Δx(Ap) for any p > 0 . (p+)

S(h, p)Δx(Ap) � (Apx, x) � Δx(Ap) for any p < 0 . (p−)

In fact (p+) =⇒ (p1) is obvious, so we show (p1) =⇒ (p+) . Replacing A by
Ap in (p1) , then MpI � Ap � mpI > 0 and

S(hp, 1)Δx(Ap) � (Apx, x) � Δx(Ap) for any p > 0 by (p1)

so we have (p+) since S(hp, 1) = S(h, p) , that is, (p1) =⇒ (p+) .
Next, replacing A by A−1 in (p+) , then m−1I � A−1 � M−1I > 0 and

S

(
m−1

M−1
, p

)
Δx(A−p) � (A−px, x) � Δx(A−p) for any p > 0 by (p+)

so we have (p−) since S
(

m−1

M−1 , p
)

= S(h, p) = S(h,−p) by (iii) of Proposition 1,

that is, (p+) =⇒ (p−) and the reverse implication is trivial. Remark 1 is essentially
shown in the proof of [Corollary, 2].

REMARK 2. We remark that (iii) of Theorem 1 can be rewritten as follows:
(iii1) S(1)(Ax, x) � Δy(A) � (Ax, x) where y is unit vector such that y =

A
1
2 x

||A 1
2 x||

.

It is interesting contrast between (iii1) and (iv) of Theorem 1:

S(1)Δx(A) � (Ax, x) � Δx(A).

Also (iii) of Corollary 2 can be rewritten as follows:
(iiip) S(h, p)(Apx, x) � Δy(Ap) � (Apx, x) where y is unit vector such that

y = A
p
2 x

||A
p
2 x||

.

It is interesting contrast between (iiip) and (iv) of Corollary 2:

S(h, p)Δx(Ap) � (Apx, x) � Δx(Ap).

5. Relations between Theorem 1, convex functions and concave functions

In this section, we discuss some relations between Theorem 1, convex functions
and and concave functions. First of all we state the following result in [1, p. 281]:

THEOREM D. Let A be positive operator and also let x be unit vector. Then
(i) (g(A)x, x) � g((Ax, x)) for convex function g(t) on [0,∞) .
(ii) h((Ax, x)) � (h(A)x, x) for concave function h(t) on [0,∞) .

We recall the latter half inequality of (i) in Theorem 1 and also the latter half
inequality of (ii), that is, let A be strictly positive operator and also let x be unit vector.

(i’) ((A logA)x, x) � (Ax, x) log(Ax, x) .
(ii’) log(Ax, x) � ((logA)x, x) .
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In fact, by using Theorem D, we easily obtain (i’) since f (t) = t log t is convex
function on [0,∞) and also we have (ii’) since f (t) = log t is concave function on
[0,∞) .

REMARK 3. We recall (i) and (ii) of Theorem 1:
Let A be strictly positive operator satisfying MI � A � mI > 0 , where M >

m > 0 and h = M
m > 1 . Then the following inequalities hold for every unit vector x :

(i) (Ax, x) log(Ax, x) + [log S(1)](Ax, x) � ((A logA)x, x) � (Ax, x) log(Ax, x) .
(ii) ((log A)x, x) + log S(1) � log(Ax, x) � ((logA)x, x) .
The former inequality in (i) can be considered as the reverse inequality of the

latter obtained in (i’) one and also the former inequality in (ii) can be considered as the
reverse inequality of the latter one obtained in (ii’). Similar results to Theorem 1 for
convex functions are shown in [6].

6. Another proof of Theorem B via Theorem A.

As stated in Remark 1 in § 4, we show a proof of Theorem B via Corollary
2 obtained by using Theorem A, here we shall show a direct and simple proof of
Theorem B via Theorem A faithfully along the definition Δx(A) in (1.5).

Direct proof of Theorem B via Theorem A. The hypothesis MI � A � mI > 0
implies M1I � A1 � m1I > 0 where M1 = I + log M

n , A1 = I + log A
n , m1 = I + log m

n
for sufficiently large nutural number n respectively, so that replacing M by M1 , A by
A1 and m by m1 in Theorem A, we have the following inequalities for p > 0 such
that np > 1

K

(
M1

m1
, np

)
(A1x, x)np � (Anp

1 x, x) � (A1x, x)np

that is,

K

(
1 + 1

n logM

1 + 1
n logm

, np

)((
I +

logA
n

)
x, x

)np

�
((

I +
logA

n

)np
x, x

)

�
((

I +
logA

n

)
x, x

)np

.

(6.1)

We recall((
I +

logA
n

)
x, x
)np

=
(
1 +

((log A)x, x)
n

)np
=⇒ e((log A)x,x)p = Δx(Ap)

as n → ∞ by (1.5)((
I +

logA
n

)np
x, x
)

=⇒ (Apx, x) as n → ∞

and

K

(
1 + 1

n logM

1 + 1
n logm

, np

)
=⇒ S(h, p) as n → ∞ by (vii) of Proposition 1
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so that (1.7) for p > 0 is complete by (6.1) and a proof for p < 0 is also obtained by
Remark 1, so the proof of (1.7) is complete since the case p = 0 is obvious by (iv) of
Proposition 1.

We remark that the proof stated above is a direct proof faithfully along the definition
(1.5) by tracing the idea of [Theorem 2, 4] based on [8] and another proof of Theorem B
via Theorem A is given in [9].
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