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AN OPERATOR INEQUALITY ASSOCIATED WITH THE
OPERATOR CONCAVITY OF OPERATOR ENTROPY AlogA~!

TAKAYUKI FURUTA AND JOSIP PECARIC

Dedicated to Professor Masahiro Nakamura
with respect and affection

(communicated by S. Saitoh)

Abstract. In what follows, an operator means a bounded linear operator on a Hilbert space H. We

show an operator inequality associated with the operator concavity of operator entropy Alog A~!
and also we discuss related upper bound.

Let A and B be strictly positive operator satisfying MI > A, B > ml > 0, where
1

h
M>m>0, h= % > 1 and S(1) = ——— which is said to be Specht ratio.
eloghi—=1
Then the following inequalities (i) and (ii) hold for all A € [0, 1]:

(i)
log S(D](1 =A)A+ AB)+ ((1 — A)A+ AB)log((1 —A)A + AB)
(1 —A)AlogA+ ABlogB
((1 =A)A+ AB)log((1 —A)A+ AB),
(i)
Mlogh
h—1

(S(1) = 1) + ((1 — A)A + AB) log((1 — A)A + AB)

(1 —A)AlogA + ABlogB

=
> ((1 = A)A + AB) log((1 — A)A + AB).

Further extensions of (i) and (ii) are obtained as follows: let A; be strictly positive
operator satisfying MI > A; > ml > 0 for j = 1,2,...,n, where M > m > 0 and

h= % > 1. Also A1, A2, ..., A, be any positive numbers such that ) A; = 1. Then
=1
the following inequalities (iii), (iv) and related result (v) hold:
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(iii)
[log S(1 Z?LA Jr(Z?LA)lOg(Z?LA)
> Z AjAjlog Ajz (Z A.iAJ') log (Z A-/'AJ') ’
j=1 j=1 j=1

(iv)

Mhlfglh (ZAA)log(Z/lA)

> Z AjAjlog A;> (Z ﬂtjAj) log (i )LjAj) )
j=1 J=1 J=

(v) [log S(1)] + Z)k logA; > log(i /MA_,-)) iljlogAj.
=1 =1

j=1 = =
Firstly we shall show elementary proofs of these results and secondary we shall
give alternative simple proofs.

1. Introduction

An operator T is said to be positive (denoted by 7 > 0) if (Tx,x) > 0 and also
T is said to be strictly positive (denoted by T > 0) if T is positive and invertible.

DEFINITION 1. Let & > 1. S(h,p) is defined by

P
=
S(h,p) = ————— for any real number p (L.1)
elog hP—1

i

—1
and S(h, p) issometimes denoted by S(p) briefly. Especially S(1) = S(h,1) = ———
elog hh—T

is said to be Specht ratio and S(1) > 1 is well known.

Let h > 1. The generalized Kantorovich constant K(h,p) is defined by

(" — 1) ((P—l) (=1
p—Dh-1)\ p  (#—h

and K(h,p) is sometimes denoted by K(p) briefly. Many papers on Kantorovich
inequality have been published. Among others, there is a long research series by
Mond-Pecaric, we cite [6] and [7] for examples. The following result is shown in [4].

Let A be strictly positive operator satisfying MI > A > ml > 0, where M >
m > 0. Also let h = % > 1. Then the following inequality holds for every unit vector
X:

P
K(h,p) = ) forany p>1lorp<0 (1.2)
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K(p)(Ax,x)" = (APx,x) > (Ax,x)’ forany p>1 or p <O. (1.3)
On the other hand, the following interesting relation among S(1), K'(1) and K’(0) is
shown in [Proposition 1, 5] such that S(1) = exp( [dlfl—ff)]p:ﬁ = exp( [#po’)]p:@ .

PROPOSITION A. [5]. The following properties on K(p) and S(p) hold:
(i) K(—p) =K(p+1) forany p >0,

(i) K(0)=K(1) =1,

(iii) S(=p) = S(p)  forany p >0,

(iv) $(0) =1,

(V) K'(—p)=—-K'(p+1) foranyp >0,

(vi) S(1) = &K'() = ¢=K'(0),

By applying this relation (vi) of Proposition A to (1.3), we have the following
result in [Theorem 1, 5] which is the definitive role to give a proof of Theorem 1.

THEOREM B. [5]. Let A be strictly positive operator satisfying MI > A > ml > 0,
where M > m > 0 and h = % > 1. Then the following inequalities hold for every
unit vector x:

(i) [log S(1)](Ax,x) + (Ax, x)log(Ax,x) > ((AlogA)x,x) > (Ax,x)log(Ax,x).

(ii) [logS(1)] + ((logA)x,x) > log(Ax,x) > ((logA)x,x).

We need the following result [6] by Mond and Pecari¢ to give a proof of Theorem 2.

THEOREM C. [6]. Let A be a strictly positive operator satisfying MI > A > ml >
0, where M > m > 0 and f € C[m,M] be a convex function. Then

(i) (f(A)x,x) = f((Ax,x)) holds for every unit vector x. Moreover, let g €
C([m,M)). Then for any real number o

(il) ag((Ax,x)) + B = (f(A)x,x) holds for every unit vector x, where 3 =
max {f (m) + L8220 (1 — m) — g (1)}
m<t<M

2. An operator inequality and the upper bound related to the operator
convexity of AlogA

At first we shall state an operator inequality associated with the operator concavity
of operator entropy AlogA~!, equivalently the operator convexity of AlogA.

THEOREM 1. Let A and B be strictly positive operator satisfying MI > A,
B > ml >0, where M > m > 0 and h = % > 1. Then the following inequality
holds:

[logS(1)]((1 —A)A+AB) + ((1 — A)A + AB)log((1 — A)A + AB)
> (1 —-A)AlogA + ABlogB
> ((1-=A)A+ AB)log((1 —A)A+ AB)
forall A €0,1], where S(1) is defined in (1.1).

Secondary we shall state the upper bound associated with the operator concavity
of operator entropy A log A~!, equivalently the operator convexity of AlogA.



534 TAKAYUKI FURUTA AND JOSIP PECARIC

THEOREM 2. Let A and B be strictly positive operator satisfying MI > A,
B > ml >0, where M > m >0 and h = % > 1. Then the following inequality
holds:
Mlogh
h—1

(S(1) = 1)+ (1 — A)A + AB)log((1 — A)A + AB)

(1 —A)AlogA + ABlogB

>
> ((1 — A)A + AB)log((1 — A)A + AB)

Sforall A €0,1], where S(1) is defined in (1.1).
REMARK 1. Let SV, T is defined by
SV T =(1—-A)S+ AT foroperators S and T . (2.1)

Although the arithmetic mean SV T is usually defined for positive operators A
and B, weemploy SV, T for notnecessary positive operators A and B for convenience.
By using this notation, Theorem 1 and Theorem 2 can be briefly expressed as follows
respectively.

THEOREM 1. Let A and B be strictly positive operator satisfying MI > A,
B > ml >0, where M > m >0 and h = % > 1. Then the following inequality

holds:
[log S(1)]JAV B + (AVB)log(AV,B) > (AlogA)V, (BlogB)

(AV,B)log(AV, B)

AVAR\Y

forall A €[0,1], where S(1) are SV, T are defined in (1.1) and (2.1) respectively.

THEOREM 2°. Let A and B be strictly positive operator satisfying MI > A,
B > ml >0, where M > m >0 and h = % > 1. Then the following inequality
holds:

Mlogh

1 (S(1) — 1) + (AV,B) log(AV,B) > (AlogA)V, (BlogB)

> (AV,B)log(AV,B)
forall A € (0,1], where S(1) are SV, T are defined in (1.1) and (2.1) respectively.

3. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. First of all, we state the following well known operator
inequality as the operator concavity of the operator entropy Alog A~!, equivalently the
operator convexity of AlogA ([1][8] and [3]):

(1—A)AlogA + ABlogB > ((1 — A)A + AB)log((1 — A)A + AB). (3.1)

In Theorem B, we replace A by A @ B, and also replace x by vVAx @ /1 — Ax
for some fixed A € [0,1]. Then we have
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logS(1)((1 —A)A + AB)x,x)

— log S(D[((1 = A)(Ax, %) + A(Bx,)]

> (1 = A)(AlogAx, x) + A(Blog Bx, x)

— [(1 = A)(Ax,x) + A (Bx, x)]log[(1 — A)(Ax,x) + A(Bx, x)] by Theorem B

(((1 —A)AlogA + ABlogB)x, x)
—((1 =A)A+ AB)x,x)log(((1 — A)A + AB)x, x)
(((1 —A)AlogA + ABlog B)x, x)
— ([((1 = A)A + AB) log((1 — 2)A + AB)]x, )
>0 by(3.1)

and the second inequality follows by (T log Tx,x) > (Tx, x) log(Tx,x) whichis derived
from (i) of Theorem C since ¢log? is convex function. Whence the proof is complete.

WV

We state the following result to give a proof of Theorem 2.

PROPOSITION 3. Let A be a strictly positive operator satisfying MI > A > ml > 0,
where M > m > 0 and h = % > 1. Then the following inequality holds for every unit
vector x:

Mlogh
%(5(1) ~ 1) + (Ax, x) log(Ax,x) > (Alog Ax, x)
> (Ax, x) log(Ax, x),

where S(1) is defind in (1.1).

Proof of Proposition 3. We put f (1) = g(¢r) = tlogt which is a convex function
in Theorem C. Also put o = 1 in Theorem C. Then we have

B— max {f(m)+M(tm) ag<r>}

m<t<M M—m

= max {mlogm + MIOgAA;I:ZIOgm(t —m) — tlogt}
= max {h(r)}
where h(f) = hit —m)logh + Elhjll)t(logm — log) . By an easy differential calcu-
lation we have g'(f9) = 0 and g" (1) = —ﬁh% <0 for 1ty = %hh}%l , so that
B = h(ty) = %W (th - eloghﬁ) - ]Zlfglh(s(l) —1).

Whence the proof is complete by (i) and (ii) of Theorem C.

Proof of Theorem 2. By the same way as in the proof of Theorem 1 by Theorem
B, we have Theorem 2 by Proposition 3, that is, we have only to replace [log S(1)((1 —
A)A + AB] by A/;lfglh (S(1) — 1) in the proof of Theorem 1, swe omit its proof in detail.
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4. Further extensions of Theorem 1 and Theorem 2

In this section, we shall state further extensions of Theorem 1 and Theorem 2 as
follows.

THEOREM 4. Let A; be strictly positive operator satisfying MI > A; > ml > 0
forj=1,2,....n, where M >m >0 and h = % > 1. Also Ay, A, ..., A, be any

positive numbers such that ) A; = 1. Then the following inequalities hold:

()
[log S(1 Z/lA +<Z/lA)log(Z?LA)

> Z AiAjlog A

J=1

> (3 o) log(3 4
j=1 j=1

k
(ii) [logS(1)] + Z/l logA;> log(Z/lA) Z/ljlogAj
=1
where S(1) = S(h, ) is Specht ratio deﬁned in Definition (1.1).

THEOREM 5. Let A; be strictly positive operator satisfying MI > A; > ml > 0
forj=1,2,....n, where M >m >0 and h = % > 1. Also Ay, A, ..., A, be any

positive numbers such that Y, A; = 1. Then the following inequalities hold:

j=1
(i)

j=1 =

2 Z AJ'AJ' IOgAJ'

J=1

> (Zn: %’Aj) log (Zn: %’Aj)
j=1 J=1

where S(1) = S(h, 1) is Specht ratio defined in Definition (1.1).

In order to give proofs of Theorem 4 and Theorem 5, we prepare the following
results.
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THEOREM B’. Let A; be strictly positive operator satisfying MI > A; = ml > 0
for j=1,2,....n, where M >m>0and h =7 > 1 and also let x1,x3,...,%,
n

be any finite number of vectors such that Z ||xj||* = 1. Then the following inequality

j=1
holds:

(i)

flog S(1] 3 (Apw ) + (- (A1,3) ) 1og (D (475,3)

j=1 Jj=1 j=1

> ((45log A))x;, x;)
j=1
( Ajx;, X;j )IOg(Z jXj, Xj )
j=1 j=1

(ii) log (1) + > (log Apy, x)) > log(Zijj,xj) >3 (log Ap, x,).
=1

j=1 J=1

=

M;

Proof of Theorem B’. We have onlytoput A = A A, @ ... DA, and x =

X1 P d...®x, for Z ||xj||* = 1 in (i) and (ii) of Theorem B.
=1

PROPOSITION 3°. Let A; be strictly positive operatorsatlsfymg MI>A; >ml>0
for j=1,2,....n, where M > m > 0 and h = E > 1 and also let x1,x2, ..

'7}1

n
be any finite number of vectors such that Z ||xj||* = 1. Then the following inequality

j=1
holds:

(i)

n

% )+ (i (Ajx;, x; )log<Z( JxJ7XJ))

J=1 J=1

> "((AjlogA))x;, x))

Jj=1

=

n

(Ajxj, x; log(Z(AJx]7xj)>'

J=1 j=1

M:

Proof of Proposition 3°. We have only to put A = A DA, ... B A, and

n
Xx=x1Dx2B...0x, for > ||xj||* = 1 in Proposition 3, so the proof is complete.
=1
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PROPOSITION D. Let f (f) be an operator convex function and A, Ay, ..., A, be

n
any positive numbers such that y , A; = 1. Then
j=1

Z%f >f(Z?tA) (.1)

Although Proposition D is almost well known, we state a proof for the sake of
completeness and reader’s convenience.

Proof. Assume (4.1). Let A1, A2,...,A, 41 be any positive numbers such that
n+l ) n+1
Y Ai=1.Alsolet y; = 1j—]/11 forj=2,...,n,n+1.Then ) ;=1 and
j=1 j=2

f(MAL+ A+ 4 A1 Ang)
=f(MA+ (1 = A1) (tAs + ... + Un1Ant1))
SAf(AD) + (1= 2)(f (A2 + .+ Mng1Ans))
SAf(A) + (1= A)(taf (A2) + - + Wi f (Ani1)))
— Mf (AL) 4 af (A2) + .+ Do f (Any)
since the first inequality follows by the operator convexity and the second one follows

by the assumption of (4.1) and the last equality follows by A; = (1 — A;)y; for
j=2,...,n+ 1, so the proof is complete by mathematical induction.

Proof of Theorem 4. Proof of (i). Although we have only to trace a proof of
Theorem 1, we state its proof for the sake of completeness. As (TlogTx,x) >
(Tx,x)log(Tx,x) holds for every unit vector x. Since zlogs is a convex function,

sowe put T =) A;A;. Then we have the following (4.2)
=1

n n n n

([(3 2) 108 (3- 2345 ) > (0 (Rsaye ) ) tog (3R, ). (42)

J=1 j=1 j=1 J=1

Put ; = \/4; for j = 1,2,...,n. We recall that ZHu]xHZ = > Al]xl[*> =1 for
Jj=1 j=1
every unit vector x. Then we have

llog S(1 (Z AiAsx, x)

= [log S(1)] > (A, ix)
=1

> (Ajlog Ay, pyx) — (Z(AJHJX> Hjx)) IOg(Z(AJHJX> Hjx))

J=1 j=1 j=1
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by (i) of Theorem B’

= ((izl AiA; IOgAj)x,x) — (i(/lejx X ) log(izl (AAjx, x )
> ((Z:: AA; logA_/)x,x) — ([(Z:: )L,Aj) log(i: A./A_/)}x,X)
>0

and the second inequality follows by (4.2) and the last inequality follows by (4.1) of
Proposition D since 7logz is an operator convex function by [1][8] and [3].

Proof of (ii). As the reverse inequality to (4.1) of Proposition D holds for an
operator concave function by tracing the proof of Proposition D, so that the latter
inequality of (ii) holds since f (f) = log¢ is an operator concave function. Next we
show the former half inequality of (ii). We recall the following inequality by (ii) of
Theorem B’:

log S(1 +Zlogij],x] > log (Y A.). (4.3)
J=1 j

Put x; = \/Aix for j=1,2,...,n. Werecall that Z |lx;|1> = Z/l ||x]|?> = 1 forevery
j=1 j=1
unit vector x. Then we have the following (4.4) by refining (4.3)

e 5(1) + (3 A loe ). x) > tog( (3 44 )x.x) > ((logéxﬁ,)x,x

J=1 J=1
(4.4)
and the last inequality of (4.4) holds since f (f) = logt is concave function. (4.4)
implies the former inequality of (ii). Whence the proof is complete.

REMARK 2. It is interesting to point out interesting contrast between (i) of The-
orem 4 and (ii) of Theorem 4, that is, (ii) of Theorem 4 is derived from the operator
concavity of logt, (i) of Theorem 4 is derived from the operator concavity of tlogz~!,
equivalently the operator convexity of ¢logz.

We remark that (ii) of Theorem 4 in the case n = 2 is shown in [2] by nice
considering of operator concavity of logz.

Proofof Theorem 5. We have only to trace a proof of Theorem 2, that is, by applying
Proposition 3’ instead of Proposition 3, we have only to replace [logS(1)(" 4;4;)] by
J=1

%(5(1) — 1) in the proof of Theorem 4, swe omit its proof in detail.
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5. Alternative simple proof of Theorem 4

We state an elementary proof of Theorem 4 in § 4, here we shall give an alternative
simple proof of Theorem 4. We need following result in [9] by using Mond-Pecaric
method.

THEOREM E. [9]. Let A be strictly positive operator satisfying MI > A > ml > 0,
where M > m > 0. Also let h =2 > 1 and A; € R, suchthat > A; = 1. Then the
=
Jfollowing inequality holds for p € R:

%(55%A0pgjiaﬁfga(§é@@y< (5.1)
j=1 j=1 J=1

with
Kp)™' ifp<—lor p>2
o = 1 if —1<p<O0or1<pg2
K(p) ififo<p<l
and

K(p) if p<0orp>1
oG =
! 1 ifif 0 <p<1
where K(p) is defined by in Definition (1.1) as follows :

o (e ey

K(p) = K(h,p) = = p (W —h)

Alternative proof of Theorem 4. At first we recall (5.1) of Theorem E:

az(éAjAj) Z/lA” al(Z/lA) (5.1)

Let f (p) and g(p) be defined respectively as follows:
n p n
() = o (3 ay) — D 4]
=1 =1

and

Then we have the following (5.2) and (5.3) by easy differential calculus:

_dn (ZAA) + o (i}szj)plog(ixjA,) —Zn;xjAflogAj (5.2)
j= Jj= Jj=
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and

= ]Z::)LjAf logA; — C;—j? (é )LjAj)p — (é )LjA) log(z/lA) (5.3)

Proof of (i). We consider p such that 2 > p > 1. In this case, it turns out that
=K(p) and op = 1 by Theorem E:

Obviously £ (1 Z?LA > " AA; =0 holds since K(1) = 1 by (i) of

j=1
Proposition A. As f(p) > 0 for any p suchthat 2 > p > 1 by the latter half inequality
of (5.1), we have f’/(1) > 0, that is, we have

(1) (i AJ'AJ') + KU)(i AJ'AJ') log(i )tjAj) - iﬂjAj logA; > 0.
j=1 j=1 —1

=1

(5.4)
So that (5.4) implies the former inequality of (i) in Theorem 4 since K’(1) = log S(1)
by (vi) of Proposition A and K(1) = 1 by (ii) of Proposition A.

Obviously g(1) = Z/lA Z/lA =0. As g(p) > 0 for any p such that
j=1

j=1
2 > p > 1 by the former half inequality of (5.1), we have g’(1) > 0, that is, we have

dop
the following (5.5) since di =0 holdsby o = 1:
P

Jj=1 Jj=1

j=1

(5.5) is the latter inequality of (i) in Theorem 4.

Proof of (ii). We consider p such that 1 > p > 0. In this case it turns out that
oy =1 and 0 = K(p) by TheoremE

Obviously f(0) =1 — Z/l =0. As f(p) > 0 forany p suchthat 1 >p >0
=1
by the latter half inequality 0f (5.1), we have f/(0) > 0, that is, we have we have the

following (5.6) since % =0 holdsby oy = 1:
14

- 1og(§: )LjAj) - anxj logA; >0 (5.6)
=1 =1

so that (5.6) implies the latter inequality of (ii) in Theorem 4.
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Obviously g(0) = Z)Lj — K(0) =0 since K(0) = 1 by (ii) of Proposition A.

=
As g(p) > 0 for any p such that 1 > p > 0 by the former half inequality of (5.1), we
have g’(0) > 0, that is,

Z/l logA; — K'(0) log(Z/lA) (5.7)

j=1

and (5.7) is the former inequality of (ii) in Theorem 4 since —K'(0) = log S(1) by (vi)
of Proposition A and K(0) = 1 by (ii) of Proposition A. Whence an alternative proof
of Theorem 4 is complete.

REMARK 3. Although we state a proof of (i) of Theorem 4 by considering the case
2 > p > 1 and also we state a proof of (ii) of Theorem 4 by considering the case
1 > p > 0, it suffices to consider the case 1 > p > 0 to give a proof of (i), that is, we
have only to consider the case 1 > p > 0 to show both (i) and (ii). In fact, oy = 1
and op = K(p) incase 1 >p >0, f(p) 20 for 1 >p >0 and f(1) = 0, so that
f'(1 —=0) <0, that s,

—0) = (Z )L,Aj) log(z )LjAj) — > AAjlogA; <0 (58)
j=1 Jj=1 Jj=1

and (5.8) is the latter half inequality of (i). Also g(p) >0 for 1 >p > 0and g(1) =0
since K(1) =1 by (ii) of Proposition A, so that g’'(1 — 0) < 0, that is,

g1-0)= i%f» logA; — K'(1) (Zn: %’Aj) —K(1) (Zn: %Aj) log(zn: %Aj) <0
=1 =1 = =

(5.9)
and (5.9) is the former half inequality of (ii) since K'(1) = logS(1) by (vi) of
Proposition A and K(1) = 1 by (ii) of Proposition A.

REMARK 4. It is interesting to remark that an alternative simple proof of (ii) of
Theorem 4 in § 5 is a direct one of the operator concavity of the operator entropy
f(A) = —AlogA shown in [1][8] and [3].
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