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Abstract. In what follows, an operator means a bounded linear operator on a Hilbert space H. We
show an operator inequality associated with the operator concavity of operator entropy A log A−1

and also we discuss related upper bound.

Let A and B be strictly positive operator satisfying MI � A, B � mI > 0 , where

M > m > 0 , h = M
m > 1 and S(1) =

h
1

h−1

e log h
1

h−1

which is said to be Specht ratio.

Then the following inequalities (i) and (ii) hold for all λ ∈ [0, 1] :
(i)

[log S(1)]((1 − λ )A + λB) + ((1 − λ )A + λB) log((1 − λ )A + λB)
� (1 − λ )A logA + λB logB

� ((1 − λ )A + λB) log((1 − λ )A + λB),

(ii)

M log h
h − 1

(S(1) − 1) + ((1 − λ )A + λB) log((1 − λ )A + λB)

� (1 − λ )A logA + λB logB

� ((1 − λ )A + λB) log((1 − λ )A + λB).

Further extensions of (i) and (ii) are obtained as follows: let Aj be strictly positive
operator satisfying MI � Aj � mI > 0 for j = 1, 2, . . . , n , where M > m > 0 and

h = M
m > 1 . Also λ1 , λ2 , . . . ,λn be any positive numbers such that

n∑
j=1

λj = 1 . Then

the following inequalities (iii), (iv) and related result (v) hold:
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(iii)

[log S(1)]
n∑

j=1

λjAj +
( n∑

j=1

λjAj

)
log

( n∑
j=1

λjAj

)

�
n∑

j=1

λjAj logAj�
( n∑

j=1

λjAj

)
log

( n∑
j=1

λjAj

)
,

(iv)

M log h
h − 1

(S(1) − 1) +
( n∑

j=1

λjAj

)
log

( n∑
j=1

λjAj

)

�
n∑

j=1

λjAj logAj�
( n∑

j=1

λjAj

)
log

( n∑
j=1

λjAj

)
,

(v) [log S(1)] +
n∑

j=1

λj logAj � log
( n∑

j=1

λjAj

)
�

n∑
j=1

λj logAj .

Firstly we shall show elementary proofs of these results and secondary we shall
give alternative simple proofs.

1. Introduction

An operator T is said to be positive (denoted by T � 0 ) if (Tx, x) � 0 and also
T is said to be strictly positive (denoted by T > 0 ) if T is positive and invertible.

DEFINITION 1. Let h > 1 . S(h, p) is defined by

S(h, p) =
h

p
hp−1

e log h
p

hp−1

for any real number p (1.1)

and S(h, p) is sometimesdenoted by S(p) briefly. Especially S(1) = S(h, 1) =
h

1
h−1

e log h
1

h−1

is said to be Specht ratio and S(1) > 1 is well known.

Let h > 1 . The generalized Kantorovich constant K(h, p) is defined by

K(h, p) =
(hp − h)

(p − 1)(h − 1)

(
(p − 1)

p
· (hp − 1)
(hp − h)

)p

for any p > 1 or p < 0 (1.2)

and K(h, p) is sometimes denoted by K(p) briefly. Many papers on Kantorovich
inequality have been published. Among others, there is a long research series by
Mond-Pecaric, we cite [6] and [7] for examples. The following result is shown in [4].

Let A be strictly positive operator satisfying MI � A � mI > 0 , where M >
m > 0 . Also let h = M

m > 1 . Then the following inequality holds for every unit vector
x :
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K(p)(Ax, x)p � (Apx, x) � (Ax, x)p for any p > 1 or p < 0 . (1.3)
On the other hand, the following interesting relation among S(1) , K′(1) and K′(0) is
shown in [Proposition 1, 5] such that S(1) = exp〈 [ dK(p)

dp ]p=1〉 = exp〈 [−dK(p)
dp ]p=0〉 .

PROPOSITION A. [5]. The following properties on K(p) and S(p) hold:
(i) K(−p) = K(p + 1) for any p � 0 ,
(ii) K(0) = K(1) = 1 ,
(iii) S(−p) = S(p) for any p � 0 ,
(iv) S(0) = 1,
(v) K′(−p) = −K′(p + 1) for any p � 0 ,
(vi) S(1) = eK′(1) = e−K′(0).

By applying this relation (vi) of Proposition A to (1.3), we have the following
result in [Theorem 1, 5] which is the definitive role to give a proof of Theorem 1.

THEOREM B. [5]. Let A be strictly positive operator satisfying MI � A � mI > 0 ,
where M > m > 0 and h = M

m > 1 . Then the following inequalities hold for every
unit vector x :

(i) [log S(1)](Ax, x) + (Ax, x) log(Ax, x) � ((A logA)x, x) � (Ax, x) log(Ax, x) .
(ii) [log S(1)] + ((logA)x, x) � log(Ax, x) � ((log A)x, x) .

We need the following result [6] by Mond and Pečarić to give a proof of Theorem 2.

THEOREM C. [6]. Let A be a strictly positive operator satisfying MI � A � mI >
0, where M > m > 0 and f ∈ C[m, M] be a convex function. Then

(i) (f (A)x, x) � f ((Ax, x)) holds for every unit vector x . Moreover, let g ∈
C([m, M]) . Then for any real number α

(ii) αg((Ax, x)) + β � (f (A)x, x) holds for every unit vector x , where β =
max

m�t�M
{f (m) + f (M)−f (m)

M−m (t − m) − αg(t)} .

2. An operator inequality and the upper bound related to the operator
convexity of A logA

At first we shall state an operator inequality associated with the operator concavity
of operator entropy A logA−1 , equivalently the operator convexity of A logA .

THEOREM 1. Let A and B be strictly positive operator satisfying MI � A ,
B � mI > 0 , where M > m > 0 and h = M

m > 1 . Then the following inequality
holds:

[log S(1)]((1 − λ )A + λB) + ((1 − λ )A + λB) log((1 − λ )A + λB)
� (1 − λ )A logA + λB logB

� ((1 − λ )A + λB) log((1 − λ )A + λB)

for all λ ∈ [0, 1] , where S(1) is defined in (1.1).

Secondary we shall state the upper bound associated with the operator concavity
of operator entropy A logA−1 , equivalently the operator convexity of A logA .
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THEOREM 2. Let A and B be strictly positive operator satisfying MI � A ,
B � mI > 0 , where M > m > 0 and h = M

m > 1 . Then the following inequality
holds:

M log h
h − 1

(S(1) − 1) + ((1 − λ )A + λB) log((1 − λ )A + λB)

� (1 − λ )A logA + λB logB

� ((1 − λ )A + λB) log((1 − λ )A + λB)

for all λ ∈ [0, 1] , where S(1) is defined in (1.1).

REMARK 1. Let S∇λT is defined by

S∇λT = (1 − λ )S + λT for operators S and T . (2.1)

Although the arithmetic mean S∇λT is usually defined for positive operators A
and B , we employ S∇λT fornot necessary positive operators A and B for convenience.
By using this notation, Theorem 1 and Theorem 2 can be briefly expressed as follows
respectively.

THEOREM 1’. Let A and B be strictly positive operator satisfying MI � A ,
B � mI > 0 , where M > m > 0 and h = M

m > 1 . Then the following inequality
holds:

[log S(1)]A∇λB + (A∇λB) log(A∇λB) � (A logA)∇λ (B logB)
� (A∇λB) log(A∇λB)

for all λ ∈ [0, 1] , where S(1) are S∇λT are defined in (1.1) and (2.1) respectively.

THEOREM 2’. Let A and B be strictly positive operator satisfying MI � A ,
B � mI > 0 , where M > m > 0 and h = M

m > 1 . Then the following inequality
holds:

M log h
h − 1

(S(1) − 1) + (A∇λB) log(A∇λB) � (A logA)∇λ (B logB)

� (A∇λB) log(A∇λB)

for all λ ∈ [0, 1] , where S(1) are S∇λT are defined in (1.1) and (2.1) respectively.

3. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. First of all, we state the following well known operator
inequality as the operator concavity of the operator entropy A logA−1 , equivalently the
operator convexity of A logA ([1][8] and [3]):

(1 − λ )A logA + λB logB � ((1 − λ )A + λB) log((1 − λ )A + λB). (3.1)

In Theorem B, we replace A by A ⊕ B , and also replace x by
√
λx ⊕√

1 − λx
for some fixed λ ∈ [0, 1] . Then we have
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log S(1)((1 − λ )A + λB)x, x)
= log S(1)[((1 − λ )(Ax, x) + λ (Bx, x)]
� (1 − λ )(A logAx, x) + λ (B logBx, x)
− [(1 − λ )(Ax, x) + λ (Bx, x)] log[(1 − λ )(Ax, x) + λ (Bx, x)] by Theorem B

= (((1 − λ )A logA + λB logB)x, x)
− ((1 − λ )A + λB)x, x) log(((1 − λ )A + λB)x, x)
� (((1 − λ )A logA + λB logB)x, x)
− ([((1 − λ )A + λB) log((1 − λ )A + λB)]x, x)
� 0 by (3.1)

and the second inequality follows by (T logTx, x) � (Tx, x) log(Tx, x) which is derived
from (i) of Theorem C since t log t is convex function. Whence the proof is complete.

We state the following result to give a proof of Theorem 2.

PROPOSITION 3. Let A be a strictly positive operator satisfying MI � A � mI > 0,
where M > m > 0 and h = M

m > 1 . Then the following inequality holds for every unit
vector x :

M log h
h − 1

(S(1) − 1) + (Ax, x) log(Ax, x) � (A logAx, x)

� (Ax, x) log(Ax, x),

where S(1) is defind in (1.1).

Proof of Proposition 3. We put f (t) = g(t) = t log t which is a convex function
in Theorem C. Also put α = 1 in Theorem C. Then we have

β = max
m�t�M

{
f (m) +

f (M) − f (m)
M − m

(t − m) − αg(t)
}

= max
m�t�M

{
m logm +

M logM − m logm
M − m

(t − m) − t log t

}

= max
m�t�M

{h(t)}

where h(t) =
h(t − m) log h + (h − 1)t(log m − log t)

h − 1
. By an easy differential calcu-

lation we have g′(t0) = 0 and g′′(t0) = − e
mh

−h
h−1 < 0 for t0 = m

e h
h

h−1 , so that

β = h(t0) =
M
e

(
h

1
h−1 − e log h

1
h−1

)
=

M log h
h − 1

(S(1) − 1).

Whence the proof is complete by (i) and (ii) of Theorem C.

Proof of Theorem 2. By the same way as in the proof of Theorem 1 by Theorem
B, we have Theorem 2 by Proposition 3, that is, we have only to replace [log S(1)((1−
λ )A + λB] by M log h

h−1 (S(1)− 1) in the proof of Theorem 1, swe omit its proof in detail.
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4. Further extensions of Theorem 1 and Theorem 2

In this section, we shall state further extensions of Theorem 1 and Theorem 2 as
follows.

THEOREM 4. Let Aj be strictly positive operator satisfying MI � Aj � mI > 0
for j = 1, 2, . . . , n , where M > m > 0 and h = M

m > 1 . Also λ1 , λ2 , . . . ,λn be any

positive numbers such that
n∑

j=1
λj = 1 . Then the following inequalities hold:

(i)

[log S(1)]
n∑

j=1

λjAj +
( n∑

j=1

λjAj

)
log

( n∑
j=1

λjAj

)

�
n∑

j=1

λjAj logAj

�
( n∑

j=1

λjAj

)
log

( n∑
j=1

λjAj

)

(ii) [log S(1)] +
k∑

j=1

λj logAj� log
( k∑

j=1

λjAj

)
�

k∑
j=1

λj logAj

where S(1) = S(h, 1) is Specht ratio defined in Definition (1.1).

THEOREM 5. Let Aj be strictly positive operator satisfying MI � Aj � mI > 0
for j = 1, 2, . . . , n , where M > m > 0 and h = M

m > 1 . Also λ1 , λ2 , . . . ,λn be any

positive numbers such that
n∑

j=1
λj = 1 . Then the following inequalities hold:

(i)

M log h
h − 1

(S(1) − 1) +
( n∑

j=1

λjAj

)
log

( n∑
j=1

λjAj

)

�
n∑

j=1

λjAj logAj

�
( n∑

j=1

λjAj

)
log

( n∑
j=1

λjAj

)

where S(1) = S(h, 1) is Specht ratio defined in Definition (1.1).

In order to give proofs of Theorem 4 and Theorem 5, we prepare the following
results.
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THEOREM B’. Let Aj be strictly positive operator satisfying MI � Aj � mI > 0
for j = 1, 2, . . . , n , where M > m > 0 and h = M

m > 1 and also let x1, x2, . . . , xn

be any finite number of vectors such that
n∑

j=1

||xj||2 = 1 . Then the following inequality

holds:
(i)

[log S(1)]
n∑

j=1

(Ajxj, xj) +
( n∑

j=1

(Ajxj, xj)
)

log
( n∑

j=1

(Ajxj, xj)
)

�
n∑

j=1

((Aj logAj)xj, xj)

�
( n∑

j=1

(Ajxj, xj)
)

log
( n∑

j=1

(Ajxj, xj)
)

(ii) log S(1) +
n∑

j=1

(log Ajxj, xj) � log
( n∑

j=1

Ajxj, xj

)
�

n∑
j=1

(logAjxj, xj) .

Proof of Theorem B’. We have only to put A = A1 ⊕ A2 ⊕ . . . ⊕ An and x =

x1 ⊕ x2 ⊕ . . . ⊕ xn for
n∑

j=1

||xj||2 = 1 in (i) and (ii) of Theorem B.

PROPOSITION 3’. Let Aj be strictly positive operator satisfying MI � Aj � mI > 0
for j = 1, 2, . . . , n , where M > m > 0 and h = M

m > 1 and also let x1, x2, . . . , xn

be any finite number of vectors such that
n∑

j=1

||xj||2 = 1 . Then the following inequality

holds:
(i’)

M log h
h − 1

(S(1) − 1) +
( n∑

j=1

(Ajxj, xj)
)

log
( n∑

j=1

(Ajxj, xj)
)

�
n∑

j=1

((Aj logAj)xj, xj)

�
n∑

j=1

(Ajxj, xj) log
( n∑

j=1

(Ajxj, xj)
)
.

Proof of Proposition 3’. We have only to put A = A1 ⊕ A2 ⊕ . . . ⊕ An and

x = x1 ⊕ x2 ⊕ . . . ⊕ xn for
n∑

j=1
||xj||2 = 1 in Proposition 3, so the proof is complete.
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PROPOSITION D. Let f (t) be an operator convex function and λ1 , λ2 , . . . ,λn be

any positive numbers such that
n∑

j=1
λj = 1 . Then

n∑
j=1

λjf (Aj) � f
( n∑

j=1

λjAj

)
. (4.1)

Although Proposition D is almost well known, we state a proof for the sake of
completeness and reader’s convenience.

Proof. Assume (4.1). Let λ1 , λ2 , . . . ,λn+1 be any positive numbers such that
n+1∑
j=1

λj = 1 . Also let μj = λj
1−λ1

for j = 2, . . . , n, n + 1 . Then
n+1∑
j=2

μj = 1 and

f (λ1A1 + λ2A2 + . . . + λn+1An+1)
= f (λ1A1 + (1 − λ1)(μ2A2 + . . . + μn+1An+1))
� λ1f (A1) + (1 − λ1)(f (μ2A2 + . . . + μn+1An+1))
� λ1f (A1) + (1 − λ1)(μ2f (A2) + . . . + μn+1f (An+1)))
= λ1f (A1) + λ2f (A2) + . . . + λn+1f (An+1)

since the first inequality follows by the operator convexity and the second one follows
by the assumption of (4.1) and the last equality follows by λj = (1 − λ1)μj for
j = 2, . . . , n + 1 , so the proof is complete by mathematical induction.

Proof of Theorem 4. Proof of (i). Although we have only to trace a proof of
Theorem 1, we state its proof for the sake of completeness. As (T logTx, x) �
(Tx, x) log(Tx, x) holds for every unit vector x . Since t log t is a convex function,

so we put T =
n∑

j=1
λjAj . Then we have the following (4.2)

([( n∑
j=1

λjAj

)
log

( n∑
j=1

λjAj

)]
x, x

)
�

( n∑
j=1

(λjAjx, x)
)

log
( n∑

j=1

(λjAjx, x)
)
. (4.2)

Put μj =
√
λj for j = 1, 2, . . . , n . We recall that

n∑
j=1

||μjx||2 =
n∑

j=1
λj||x||2 = 1 for

every unit vector x . Then we have

[log S(1)]
( n∑

j=1

λjAjx, x
)

= [log S(1)]
n∑

j=1

(Ajμjx,μjx)

�
n∑

j=1

(Aj logAjμjx,μjx) −
( n∑

j=1

(Ajμjx,μjx)
)

log
( n∑

j=1

(Ajμjx,μjx)
)
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by (i) of Theorem B’

=
(( n∑

j=1

λjAj logAj

)
x, x

)
−

( n∑
j=1

(λjAjx, x)
)

log
( n∑

j=1

(λjAjx, x)
)

�
(( n∑

j=1

λjAj logAj

)
x, x

)
−

([( n∑
j=1

λjAj

)
log

( n∑
j=1

λjAj

)]
x, x

)

� 0

and the second inequality follows by (4.2) and the last inequality follows by (4.1) of
Proposition D since t log t is an operator convex function by [1][8] and [3].

Proof of (ii). As the reverse inequality to (4.1) of Proposition D holds for an
operator concave function by tracing the proof of Proposition D, so that the latter
inequality of (ii) holds since f (t) = log t is an operator concave function. Next we
show the former half inequality of (ii). We recall the following inequality by (ii) of
Theorem B’:

log S(1) +
n∑

j=1

(logAjxj, xj) � log
( n∑

j=1

Ajxj, xj

)
. (4.3)

Put xj =
√
λjx for j = 1, 2, . . . , n . We recall that

n∑
j=1

||xj||2 =
n∑

j=1
λj||x||2 = 1 for every

unit vector x . Then we have the following (4.4) by refining (4.3)

log S(1) +
(( n∑

j=1

λj logAj

)
x, x

)
� log

(( n∑
j=1

λjAj

)
x, x

)
�

((
log

n∑
j=1

λjAj

)
x, x

)

(4.4)
and the last inequality of (4.4) holds since f (t) = log t is concave function. (4.4)
implies the former inequality of (ii). Whence the proof is complete.

REMARK 2. It is interesting to point out interesting contrast between (i) of The-
orem 4 and (ii) of Theorem 4, that is, (ii) of Theorem 4 is derived from the operator
concavity of log t , (i) of Theorem 4 is derived from the operator concavity of t log t−1 ,
equivalently the operator convexity of t log t .

We remark that (ii) of Theorem 4 in the case n = 2 is shown in [2] by nice
considering of operator concavity of log t .

Proof of Theorem5. Wehave only to trace a proof ofTheorem2,that is, by applying

Proposition 3’ instead of Proposition 3, we have only to replace [log S(1)(
n∑

j=1
λjAj)] by

M log h
h−1 (S(1) − 1) in the proof of Theorem 4, swe omit its proof in detail.
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5. Alternative simple proof of Theorem 4

We state an elementary proof of Theorem 4 in § 4, here we shall give an alternative
simple proof of Theorem 4. We need following result in [9] by using Mond-Pecaric
method.

THEOREM E. [9]. Let A be strictly positive operator satisfying MI � A � mI > 0 ,

where M > m > 0 . Also let h = M
m > 1 and λj ∈ R+ such that

n∑
j=1

λj = 1 . Then the

following inequality holds for p ∈ R :

α2

( n∑
j=1

λjAj

)p
�

n∑
j=1

λjA
p
j � α1

( n∑
j=1

λjAj

)p
. (5.1)

with

α2 =

⎧⎨
⎩

K(p)−1 if p < −1 or p > 2

1 if −1 � p < 0 or 1 � p � 2

K(p) if if 0 < p < 1

and

α1 =
{

K(p) if p < 0 or p > 1

1 if if 0 < p � 1

where K(p) is defined by in Definition (1.1) as follows :

K(p) = K(h, p) =
(hp − h)

(p − 1)(h − 1)
·
(

(p − 1)
p

· (hp − 1)
(hp − h)

)p

.

Alternative proof of Theorem 4. At first we recall (5.1) of Theorem E:

α2

( n∑
j=1

λjAj

)p
�

n∑
j=1

λjA
p
j � α1

( n∑
j=1

λjAj

)p
. (5.1)

Let f (p) and g(p) be defined respectively as follows:

f (p) = α1

( n∑
j=1

λjAj

)p
−

n∑
j=1

λjA
p
j

and

g(p) =
n∑

j=1

λjA
p
j − α2

( n∑
j=1

λjAj

)p
.

Then we have the following (5.2) and (5.3) by easy differential calculus:

f ′(p) =
dα1

dp

( n∑
j=1

λjAj

)p
+ α1

( n∑
j=1

λjAj

)p
log

( n∑
j=1

λjAj

)
−

n∑
j=1

λjA
p
j logAj (5.2)
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and

g′(p) =
n∑

j=1

λjA
p
j logAj − dα2

dp

( n∑
j=1

λjAj

)p
− α2

( n∑
j=1

λjAj

)p
log

( n∑
j=1

λjAj

)
. (5.3)

Proof of (i). We consider p such that 2 � p � 1 . In this case, it turns out that
α1 = K(p) and α2 = 1 by Theorem E:

Obviously f (1) = K(1)
n∑

j=1

λjAj −
n∑

j=1

λjAj = 0 holds since K(1) = 1 by (ii) of

Proposition A. As f (p) � 0 for any p such that 2 � p � 1 by the latter half inequality
of (5.1), we have f ′(1) � 0 , that is, we have

f ′(1) = K′(1)
( n∑

j=1

λjAj

)
+ K(1)

( n∑
j=1

λjAj

)
log

( n∑
j=1

λjAj

)
−

n∑
j=1

λjAj logAj � 0.

(5.4)
So that (5.4) implies the former inequality of (i) in Theorem 4 since K′(1) = log S(1)
by (vi) of Proposition A and K(1) = 1 by (ii) of Proposition A.

Obviously g(1) =
n∑

j=1

λjAj −
n∑

j=1

λjAj = 0. As g(p) � 0 for any p such that

2 � p � 1 by the former half inequality of (5.1), we have g′(1) � 0 , that is, we have

the following (5.5) since
dα2

dp
= 0 holds by α2 = 1 :

g′(1) =
n∑

j=1

λjAj logAj −
( n∑

j=1

λjAj

)
log

( n∑
j=1

λjAj

)
� 0. (5.5)

(5.5) is the latter inequality of (i) in Theorem 4.

Proof of (ii). We consider p such that 1 > p > 0 . In this case it turns out that
α1 = 1 and α2 = K(p) by Theorem E.

Obviously f (0) = 1 −
n∑

j=1

λj = 0 . As f (p) � 0 for any p such that 1 > p > 0

by the latter half inequality of (5.1), we have f ′(0) � 0 , that is, we have we have the

following (5.6) since
dα1

dp
= 0 holds by α1 = 1 :

f ′(0) = log
( n∑

j=1

λjAj

)
−

n∑
j=1

λj logAj � 0 (5.6)

so that (5.6) implies the latter inequality of (ii) in Theorem 4.
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Obviously g(0) =
n∑

j=1

λj − K(0) = 0 since K(0) = 1 by (ii) of Proposition A.

As g(p) � 0 for any p such that 1 > p > 0 by the former half inequality of (5.1), we
have g′(0) � 0 , that is,

g′(0) =
n∑

j=1

λj logAj − K′(0) − K(0) log
( n∑

j=1

λjAj

)
� 0 (5.7)

and (5.7) is the former inequality of (ii) in Theorem 4 since −K′(0) = log S(1) by (vi)
of Proposition A and K(0) = 1 by (ii) of Proposition A. Whence an alternative proof
of Theorem 4 is complete.

REMARK 3. Although we state a proof of (i) of Theorem 4 by considering the case
2 � p � 1 and also we state a proof of (ii) of Theorem 4 by considering the case
1 > p > 0 , it suffices to consider the case 1 > p > 0 to give a proof of (i), that is, we
have only to consider the case 1 > p > 0 to show both (i) and (ii). In fact, α1 = 1
and α2 = K(p) in case 1 > p > 0 , f (p) � 0 for 1 > p > 0 and f (1) = 0 , so that
f ′(1 − 0) � 0 , that is,

f ′(1 − 0) =
( n∑

j=1

λjAj

)
log

( n∑
j=1

λjAj

)
−

n∑
j=1

λjAj logAj � 0 (5.8)

and (5.8) is the latter half inequality of (i). Also g(p) � 0 for 1 > p > 0 and g(1) = 0
since K(1) = 1 by (ii) of Proposition A, so that g′(1 − 0) � 0 , that is,

g′(1 − 0) =
n∑

j=1

λjAj logAj − K′(1)
( n∑

j=1

λjAj

)
− K(1)

( n∑
j=1

λjAj

)
log

( n∑
j=1

λjAj

)
� 0

(5.9)
and (5.9) is the former half inequality of (ii) since K′(1) = log S(1) by (vi) of
Proposition A and K(1) = 1 by (ii) of Proposition A.

REMARK 4. It is interesting to remark that an alternative simple proof of (ii) of
Theorem 4 in § 5 is a direct one of the operator concavity of the operator entropy
f (A) = −A logA shown in [1][8] and [3].
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