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CONVEXITY ACCORDING TO MEANS

CONSTANTIN P. NICULESCU

(communicated by J. Mahwin)

Abstract. Given a function f : I → J and a pair of means M and N, on the intervals I and J
respectively, we say that f is MN -convex provided that f (M(x, y)) � N(f (x), f (y)) for every
x , y ∈ I . In this context, we prove the validity of all basic inequalities in Convex Function
Theory, such as Jensen’s Inequality and the Hermite-Hadamard Inequality.

1. Introduction

At the core of the notion of convexity is the comparison of means. By a mean (on
an interval I ) we understand any function M : I × I → I which verifies the following
two properties:

(M1) inf {s, t} � M(s, t) � sup {s, t} (Intermediacy)
(M2) M(s, t) = M(t, s) (Symmetry)

for every pair (s, t) of elements of I . When I is one of the intervals (0,∞) , [0,∞)
or (−∞,∞), it is usual to add a third property, precisely

(M3) M(tx, ty) = tM(x, y) for all t > 0 (Homogeneity)

but this assumption is not really necessary in our paper. Instead, we shall restrict
ourselves to the case of continuous means (i.e., continuous in both arguments).

Several examples of means (of strictly positive variables) are listed below.
Hölder’s means (also called power means):

Hp(s, t) = ((sp + tp)/2)1/p
, for p �= 0

G(s, t) = H0(s, t) = lim
p→0

Hp(s, t) =
√

st.

Then A = H1 is the arithmetic mean and G is the geometric mean. The mean H−1 is
known as the harmonic mean.

Lehmer’s means:

Lp(s, t) = (sp + tp)/(sp−1 + tp−1).
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Note that L1 = A , L1/2 = G and L0 = H−1 . These are the only means that are both
Lehmer means and Hölder means.

Stolarsky’s means:

Sp(s, t) = [(sp − tp)/(ps − pt)]1/(p−1), p �= 0, 1.

The limiting cases (p = 0 and p = 1 ) give the logarithmic and identric means,
respectively. Thus

S0(s, t) = lim
p→0

Sp(s, t) =
s − t

log s − log t
= L(s, t)

S1(s, t) = lim
p→1

Sp(s, t) =
1
e

(
tt

ss

)1/(t−s)

= I(s, t).

Notice that S2 = A and S−1 = G .
Of course, there are many other ways to introduce families of means. For example,

from known means we can generate new ones. In this respect we recall here the
Gaussian compound M ⊗ N of two means M and N , an iterative procedure which
extends the celebrated Gaussian arithmetic-geometric mean iteration,

(A ⊗ G) (s, t) = (π/2)/

∫ π/2

0

[
s2 cos2 θ + t2 sin2 θ

]−1/2
dθ.

See the paper of B. C. Carlson [8] for details.
A comprehensive account of the entire topics of means is given in [6].
The aim of this paper is to discuss how functions behave under the action of means,

by considering a much more general concept of a convex function. Letting M and N
be two means defined on the intervals I and J respectively, a function F : I → J will
be called MN -convex provided that

F(M(F)) � N(F(F)) for every pair F of elements of I. (MN )

In the next section we shall describe the natural process of continuation of means
from pairs of real numbers to random variables, a fact which can be seen as a nonlinear
theory of integration. As a consequence we shall be able to extend (MN) to random
variables and thus to obtain a far reaching generalization of Jensen’s Inequality.

The idea to extend the theory of convexity in the form (MN) is not new. It goes
back to people like J. Hadamard, G. H. Hardy and P. Montel [14], who considered it
under certain degrees of generality. See Section 3, which is devoted to the case where
M and N is one of the classical means A and G . Among the most recent contributions
to the extended theory of convexity we should notice here the papers by J. Matkowski
and J. Rätz [13], and D. Borwein, J. Borwein, G. Fee and R. Girgensohn [4].

In section 4 we discuss the connection of our results with the notion of comparative
convexity (in the sense of G. Hardy, J. E. Littlewood and G. Pólya [10]).
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2. The canonical continuation of a mean

In what follows we shall restrict ourselves to the case of continuous means and
continuous convex functions.

Under the presence of continuity the inequality (MN) can be refined to allow
weighted combinations: First, the dyadic combinations are defined as

M(x1, x2; 1/2, 1/2) = M(x1, x2)
M(x1, x2; 3/4, 1/4) = M(M(x1, x2), x1)
M(x1, x2; 1/4, 3/4) = M(M(x1, x2), x2)

and so on. Then, for λ ∈ [0, 1] , we put

M(x1, x2; 1 − λ , λ ) = lim
n→∞ M(x1, x2; 1 − dn, dn);

here (dn)n is any sequence of dyadic numbers with λ = lim
n→∞ dn .

The weighted combinations M(x1, . . . , xn; λ1, . . . , λn) of length � 2 can be de-
fined in the same manner. For example,

M(x1, x2, x3; λ1, λ2, λ3) = M

(
M

(
x1, x2;

λ1

1 − λ3
,

λ2

1 − λ3

)
, x3; 1 − λ3, λ3

)
.

EXAMPLE 1. If I is any interval and A denotes the arithmetic mean then

A(x1, . . . , xn; λ1, . . . , λn) =
n∑

k=1

λkxk.

If I is any subinterval of (0,∞) and G denotes the geometric mean then

G(x1, . . . , xn; λ1, . . . , λn) =
n∏

k=1

xλk
k .

We can bring together both examples above (as well as all Hölder’s means) by
considering the so called quasi-arithmetic mean,

Mϕ (s, t) = ϕ−1

(
1
2
ϕ(s) +

1
2
ϕ(t)

)
which is associated to a strictly monotone continuous mapping ϕ : I → R . For it,

Mϕ(x1, . . . , xn; λ1, . . . , λn) = ϕ−1

(
n∑

k=1

λkϕ(xk)

)
.

An easy inductive argument leads us to the following result:

LEMMA 1. (The discrete form of Jensen’s inequality ) . Under the presence of
continuity, for every MN -convex function F : I → J ,

F(M(x1, . . . , xn; λ1, . . . , λn)) � N((F(x1), . . . , F(xn); λ1, . . . , λn)) (J)

for every x1, . . . , xn ∈ I and every λ1, . . . , λn ∈ [0, 1] with
n∑

k=1
λk = 1 .
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The continuous version of Jensen’s Inequality can be derived from the discrete
case, by noticing that

M(x1, . . . , xn; λ1, . . . , λn)

can be thought of as the mean M(h;μ) of the random variable

h : {1, . . . , n} → I, h(i) = xi for i = 1, . . . , n

with respect to the probability measure

μ : P({1, . . . , n}) → [0, 1], μ(A) =
∑
i∈ A

λi.

If (X,Σ,μ) is an arbitrary probability field, it is still possible to define the mean
M(h;μ) for certain real random variables h ∈ L1

R
(μ) with values in I . In fact, letting

(Σa)α a upward directed net of finite subfields Σ whose union is Σ , the mathematical
expectation E(F|Σa) of F ∈ L1(μ) with respect to Σa gives rise to a positive contractive
projection

Pα : L1(μ) → L1(μ|Σa), Pα(F) = E(F|Σa)

and
E(F|Σa) → F in the norm topology of L1(μ);

due to the Lebesgue theorem on dominated convergence.
A real random variable h ∈ L1

R
(μ) (with values in I) will be called M -intgrable

provided that the limit

M(h;μ) = lim
α

M(Pα(h);μ|Σa)

exists whenever (Σa)α is a upward directed net of finite subfields Σ whose union is Σ .
For the quasi-arithmetic mean Mϕ (associated to a strictly monotone continuous

mapping ϕ : I → R) and the probability field associated to the restriction of the
Lebesgue measure to an interval [s, t] ⊂ I , the construction above yields

Mϕ

(
id[s,t];

1
t − s

dx

)
= ϕ−1

(
1

t − s

∫ t

s
ϕ(x) dx

)

which coincides with the so called integral ϕ -mean of s and t, also denoted Intϕ (s, t) .
As noticed M. E. Mayes [15], the class of all integral means equals the class of all
differential means; recall that the differential ψ -mean of s and t (associated to a
strictly monotone differentiable and convex mapping ψ : I → R) is given by the
formula

Dψ (s, t) = (ψ ′)−1

(
ψ(t) − ψ(s)

t − s

)
.

THEOREM 1. (The continuous form of Jensen’s inequality ) . Suppose that
F : I → J is a continuous MN -convex function and (X,Σ,μ) is a probability field.
Then

F(M(h;μ)) � N((F ◦ h;μ)) (J)

for every h ∈ L1
R
(μ) such that h is M -integrable and F ◦ h is N -integrable.
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Proof. Pass to the limit in Lemma 1. �

COROLLARY 1. (The Hermite-Hadamard inequality ) . Suppose that F : I → J is
a continuous function. Then F is MN -convex if, and only if, for every s < t in I and
every Radon probability measure μ on [s, t] we have the inequality

F(M(s; t)) � N((F|[s, t];μ)). (HH)

Proof. The necessity follows from Theorem 1 (applied to h = id[s,t]) . The
sufficiency represents the particular case where μ = (εs + εt)/2 . �

It is worth to mention the possibility to extend Theorem 1 beyond the case of
probability measures. That can be done under the additional assumption of positive
homogeneity (both for the means M and N , and the involved function F ) following
the model of Lebesgue theory, where formulae such as∫

R

f (x) dx = lim
n→∞

[
2n

(
1
2n

∫ n

−n
f (x) dx

)]

hold.
Given a measurable σ -field (X,Σ,μ) , a function h : X → R will be called

M -integrable provided the limit

M(h;μ) = lim
n→∞

[
μ(Ωn) · M

(
h|Ωn;

μ|Σ ∩Ωn

μ(Ωn)

)]
(Int)

exists for every increasing sequence (Ωn)n of elements of Σ with ∪Ωn = X . Then

F(M(h;μ)) � N((F ◦ h;μ)) (J’)

for every h ∈ L1
R
(μ) such that h is M -integrable and F◦h is N -integrable. Restricting

(Int) to a suitable type of increasing sequences (Ωn)n with ∪Ωn = X , one can introduce
a concept of M -integrability in the sense of principal value, a case for which (J ’) still
works.

3. Convexity associated to A and G

In this section we shall illustrate the concept of MN -convexity in the simplest case
i.e., when M , N ∈ {A, G} .

Depending on which type of mean, arithmetic (A) , or geometric (G) , it is given
on the domain and the codomain of definition, we can encounter one of the following
four classes of functions:

AA − convex functions, the usual convex functions

AG − convex functions

GA − convex functions

GG − convex functions.
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Notice that while A makes no restriction about the interval I where it applies (it
is so because x, y ∈ I, λ ∈ [0, 1] implies (1 − λ )x + λy ∈ I), the use of G forces us
to restrict to the subintervals J of (0,∞) in order to assure that

x, y ∈ J, λ ∈ [0, 1] ⇒ x1−λ yλ ∈ J.

The AG -convex functions (usually known as log -convex functions) are those
functions F : I → (0,∞) for which

x, y ∈ I and λ ∈ [0, 1] ⇒ F((1 − λ )x + λy) � F(x)1−λF(y)λ , (AG )

i.e., for which logF is convex.
The class of all GA -convex functions is constituted by all functions F : I → R

(defined on subintervals of (0,∞) ) for which

x, y ∈ I and λ ∈ [0, 1] ⇒ F(x1−λ yλ ) � (1 − λ ) F(x) + λ f (y). (GA )

In the context of twice differentiable functions F : I → R , GA -convexity means
x2F′′+xf ′ � 0 , so that all twice differentiable nondecreasing convex functions are also
GA -convex.

The GG -convex functions (called in [16] multiplicatively convex functions) are
those functions F : I → J (acting on subintervals of (0,∞) ) such that

x, y ∈ I and λ ∈ [0, 1] ⇒ F(x1−λ yλ ) � F(x)1−λF(y)λ . (GG )

Due to the following form of the AM − GM Inequality,

a, b ∈ (0,∞), λ ∈ [0, 1] ⇒ a1−λbλ � (1 − λ )a + λb, (∗ )

every log -convex function is also convex. The most notable example of such a function
is Euler’s gamma function,

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0.

See H. Bohr and J. Mollerup [3]; their argument is recalled by E. Artin [2]. See
also [16].

The study of the class of all multiplicatively convex functions can be easily reduced
to that of all convex functions via a suitable change of variable and function [16]:

LEMMA 2. Suppose that I is a subinterval of (0,∞) and F : I → (0,∞) is a
multiplicatively convex function. Then

F = log ◦F ◦ exp : log (I) → R

is a convex function. Conversely, if J is an interval and F : J → R is a convex function,
then

F = exp ◦F ◦ log : exp (J) → (0,∞)

is a multiplicatively convex function.
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An alternative characterization of multiplicative convexity of a function F is
“ logF(x) is a convex function of log x ”. See [16], Lemma 2.1. Modulo this char-
acterization, the class of all multiplicatively convex functions was first considered by
P. Montel [14], in a beautiful paper discussing the analogues of the notion of convex
function in n variables. However, the roots of the research in this area can be traced
long time before him. Let us mention two such results here:

HADAMARD’S THREE CIRCLES THEOREM. Let F be an analytical function in the
annulus a < |z| < b . Then logM(r) is a convex function of log r , where

M(r) = sup
|z|=r

|F(z)|.

G. H. HARDY’S MEAN VALUE THEOREM. Let F be an analytical function in the
annulus a < |z| < b and let p ∈ [1,∞) . Then logMp(r) is a convex function of log r ,
where

Mp(r) =

(
1
2π

∫ 2π

0
|F(reiθ)|p dθ

)1/p

.

As lim
n→∞Mn(r) = M(r) , Hardy’s aforementioned result implies Hadamard’s. As

well known, Hadamard’s result is instrumental in deriving the celebrating Riesz-Thorin
Interpolation Theorem (see [10]).

The concept of multiplicative mean value and the multiplicative analogues of
Jensen’s Inequality and Hermite-Hadamard Inequality make the object of our paper
[17].

4. The connection with relative convexity

The idea to introduce a notion of relative convexity appeared in the celebrated book
of G. H. Hardy, J. E. Littlewood and G. Polya [10], p. 75: Suppose that F, g : I → J
are two continuous functions and g is strictly monotone. Then F is said to be convex
with respect to g (abbreviated, g � F) if F ◦ g−1 is convex (in the usual sense) on the
interval g(I) .

EXAMPLE 2. Under appropriate assumptions on the domain and the range of a
function F , the following statements hold true:

i) F is convex if, and only if, id � F ;
ii) F is log -convex if, and only if, id � logF ;
iii) F is GG -convex if, and only if, log � logF ;
iv) F is GA -convex if, and only if, log �F .

As noticed G. T. Cargo [8], in the context of C1 -differentiable functions, F is
convex with respect to an increasing function g if F′/g′ is nondecreasing; in the
context of C2 -differentiable functions, F is convex with respect to g if, and only if,
F′′/F′ � g′′/g′ (provided the two ratios exist).

The connection of relative convexity with the topic of our paper is expressed by
the following Hermite-Hadamard type inequality:
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PROPOSITION 1. If g � F , then

F(Intg({a, b})) = F

(
g−1

(
1

b − a

∫ b

a
g(x) dx

))

� 1
b − a

∫ b

a
F(x) dx.

for every a < b in the domain of F and g .

COROLLARY 2. (H. Alzer [1] ) . Supose that F is a strictly increasing continuous
function such that 1/F−1 is convex. Then 1/x � F . As I1/x({a, b}) coincides with the
logarithmic mean L(a, b) , it follows that

F(L(a, b)) � 1
b − a

∫ b

a
F(x) dx.

Many other interesting applications of Proposition 1 can be easily deduced via the
paper [9], by N. Elezović and J. Pečarić.

Relative convexity can clarify the meaning of certain cumbersome technical con-
ditions. For example, Theorem 2.1 in [12] can be restated as follows:

THEOREM 2. Let g be a positive increasing function on [0, 1] , Φ a positive function
of bounded variation on [0, 1] , and F : (0,∞) → R positive, convex and differentiable
such that (1 − x)F′(λ (1 − x)) is convex with respect to Φ(x) for every λ > 0. Then∫ 1

0 F(g(x)) dΦ(x)∫ 1
0 dΦ(x)

� F

(∫ 1

0
g(x) dx

)
.
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